prev next front |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |review
Thinking of the lung-ventilator unit in terms of this simple model is also useful in aiding an understanding of the use of monitoring end-inspiratory pause pressure. In volume and flow preset modes pressure becomes a dependent variable. It is important to monitor pressure in order to minimize the risk of barotrauma. However, in this context it is alveolar pressure not airway pressure that is important. By measuring the airway pressure during an end-inspiratory pause it is possible to eliminate the component due to resistance because during an end-inspiratory pause there is no flow and thus PAW=PALV. In most circumstances the contribution of the resistance component to airway presssure is relatively small and constant so it is reasonable to monitor airway pressure, however in patients with high resistance (eg patients with obstructive lung disease) it is important to monitor end-inspiratory pressure. Measurement of end-inspiratory pressure may also help determine the cause of a sudden rise in airway pressure. If both are high then the problem is due to a fall in compliance (eg endobronchial intubation, pneumothorax) while if only the airway pressure is high then the problem is due to increased resistance (eg partially blocked ETT, bronchospasm).