hi res pic 1
hi res pic 2
hi res pic 3
hi res pic 4
hi res pic 5
cartoon pic
Portrait by
Josephine Norton



Includes direct links to my papers.

A synopsis of my research in history and philosophy of physics and general philosophy of science, with links to papers.

Some things are just too much fun.

Complete syllabi for my courses and the complete text of "Einstein for Everyone."

Some lecture series I have given.

Editing and Publishing

Distinguished Professor,
Department of History and Philosophy of Science
University of Pittsburgh
Pittsburgh PA USA 15260
412 624 5896

book I am preparing a book, The Material Theory of Induction. Many of the chapters in draft form are available for download.

Chapters added in December 2016, May, July 2017:

8. Inference to the Best Explanation: The General Account.
9. Inference to the Best Explanation: Examples

10. Why Not Bayes
11. Circularity in the Scoring Rule Vindication of Probabilities

13. Indeterministic Physical Systems
14. Infinite Lottery Machines
Synoptic table of contents.

Download draft chapters.
Stacked Galaxies The measure problem in eternal inflationary cosmology arises because we try to force a probability distribution where it is not warranted. The problem is solved by asking which inductive logic is picked out by the background conditions. That logic is the same highly non-additive inductive logic as applies to an infinite lottery. "Eternal Inflation: When Probabilities Fail," Prepared for special edition "Reasoning in Physics," Synthese, eds. Ben Eva and Stephan Hartmann. Draft.
jumping flea An infinite lottery machines chooses without favor among a countable infinity of outcomes. This sort of selection creates well-known problems for probability theory. But is it really physically possible to construct such a machine?. "How to Build an Infinite Lottery Machine" Download draft.
Narrative conventions in a thought experiment allow thought experimenters great latitude in deciding which processes are typical and bear generalization and which can be idealized away as incidental. This latitude is abused in the worst thought experiment in science. "The Worst Thought Experiment" Download draft.
Our urge to oversimplify has led to many myths about what powered Einstein's discoveries. Naive thinking? Capricious rule-breaking? Operational thinking? I correct some myths and try to give a more accurate picture of how Einstein made two discoveries: special relativity and the light quantum. "How Einstein Did Not Discover," Physics in Perspective, 18 (2016), pp. 249-282. Download.
The received view is that a Maxwell's demon must fail to reverse the second law of thermodynamics for reasons to do with information and computation. This received view has failed, I argue, and our continuing preoccupation with it has distracted us from a simpler and more secure exorcism that merely uses the Liouville theorem of statistical physics. I extend this exorcism to the quantum case. "Maxwell's Demon Does not Compute." Prepared for Michael E. Cuffaro and Samuel C. Fletcher, eds., Physical Perspectives on Computation, Computational Perspectives on Physics. Cambridge University Press." Download draft.
non equilibrium space The idea of a thermodynamically reversible process is central to thermodynamics. Yet essentially all descriptions of them over nearly two centuries are internally contradictory. They consist of equilibrium states, which are by definition unchanging in time; yet still they still change in time. I review the history and offer a solution. "The Impossible Process: Thermodynamic Reversibility," Studies in History and Philosophy of Modern Physics, 55(2016), pp. 43-61. Download
Brownian fragment Thermodynamically reversible processes cannot be completed in systems at molecular scales. They are fatally disrupted by fluctuations. This paper reviews the general result and computes two cases in detail. "Thermodynamically Reversible Processes in Statistical Physics." American Journal of Physics, 85 (2017), pp. 135-145. Download.
mona lisa Non-trivial calculi of inductive inference are shown to be incomplete. That is, it is impossible for a calculus of inductive inference to capture all inductive truths in some domain, no matter how large, without resorting to inductive content drawn from outside that domain. Hence inductive inference cannot be characterized merely as inference that conforms with some specified calculus. "A Demonstration of the Incompleteness of Calculi of Inductive Inference" Draft

"The Ideal of the Completeness of Calculi of Inductive Inference: An Introductory Guide to its Failure" Draft
Michelson interferometer The replicability of experiment, the gold standard of evidence, is not supported by a universal principle of replicability in inductive logic. A failure of replication may not impugn a credible experimental result; and a successful replication can fail to vindicate an incredible experimental result.The evidential import of successful replication of an experiment is determined by the prevailing background facts. Their success has fostered the illusion of a deeper, exceptionless principle. "Replicability of Experiment," Theoria, 30(No. 2) (2015), pp. 229-248. Download.
1, 3, 5, 7, ... ? Standard accounts of inductive inference are unstable, meriting skeptical attack. They have misidentified its fundamental nature. Accounts of inductive inference should not be modeled on those of deductive inference that are formal and non-contextual. Accounts of inductive inference should be contextual and material. I summarize the case for a material theory of induction. "A Material Defense of Inductive Inference." Download.
Galileo triangle The inductive problem of extending the sequence 1, 3, 5, 7, is solved when these numbers are the ratios of the incremental distances fallen in successive unit times. The controlling fact is Galileo's assumption that these ratios are invariant under a change of the unit of time. It admits few laws and only one is compatible with the two-numbered initial sequence 1, 3. "Invariance of Galileo's Law of Fall under a Change of the Unit of Time." Download.


Sydney Harbour Bridge. I was born and grew up in Sydney Australia. I studied chemical engineering at the University of New South Wales (1971-74) and then worked for two years as a technologist at the Shell Oil Refinery at Clyde, Sydney. I then switched fields and began a doctoral program in the School of History and Philosophy of Science at the University of New South Wales (1978-1981). My dissertation was on the history of general relativity.

When it was finished, I visited at the Einstein Papers Project (1982-83) when the Papers were located at Princeton University Press with John Stachel as editor.

In September 1983, I came to Pittsburgh as a visitor in the Center for Philosophy of Science/visiting faculty member in the Department of History and Philosophy of Science at the University of Pittsburgh. I've been in the Department of HPS ever since. I was promoted to full professor in 1997, served as Chair in 2000-2005 and was promoted to Distinguished Professor in 2014. I served as the Director of the Center for Philosophy of Science, from September 2005 to August 2016.




Cathedral of Learning

Updated July 2017 and possibly later too.