
Introduction to 
spatial modeling
(a mostly geometrical 

presentation)
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Alternatives

• X = ℜn e.g. (x1,x2,…, xn) ∈ X

• Alternatives are infinite set of “policies” in n-
dimensional Euclidean space

• Each dimension is an issue or characteristic of policy:

Defense spending
Welfare spending
Trade protection
Immigration

Economic liberalism
Civil liberties
Taxation
Redistribution
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Preferences

• Preferences are satiable
• Each agent has an ideal point
• Utility declines as a distance from ideal point increases

j indexes dimensions
αj = weight on dimension j
θj = ideal policy on dimension j
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One dimension

• Preferences satisfy single-peaked 
property

• Black’s median voter theorem applies
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Two dimensions

• Median voter theorem does not apply

• Can we guarantee transitivity of MR?

• Can it be generalized to 2 dimensions?
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Utility function
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Projection onto policy space
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Indifferent between x and y
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Projection onto policy space

w P z P x I y
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Effect of weights

Different weights:
Indifference ellipse

Equal weights:
Indifference circle

α1= α2 α1 < α2
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Cut point

• Midpoint between two alternatives, divides 
ideal points
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Cut point

• Midpoint between two alternatives, divides 
agents with opposing preferences
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d(θ,x)

θ

d(θ,y) ⇒ xPθy
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Cut point

• Midpoint between two alternatives, divides 
ideal points
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d(τ,x)

τ

d(τ,y) ⇒ yPτx
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Cutting lines

• Set of points equidistant between two alternatives
• Convenient way to determine preferences

x

y

All voters with ideal points 
on this side of line: xPy

All voters with ideal points 
on this side of line: yPx
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Useful sets 

Pi(x) = i’s preferred-to set of x
Set of policies an individual prefers to x
(Interior of indifference curve through x)

W(x) = Majority rule winset of x 
Set of all policies that some majority prefers to x

Finding winsets
Step 1. For each majority coalition, find 

intersection of preferred-to sets
Step 2. Winset is union of sets in Step 1.
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Set of policies coalition {1,2} prefers to Q

Finding W(Q)
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Set of policies coalition {1,3} prefers to Q

Finding W(Q)
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Set of policies coalition {2,3} prefers to Q

Finding W(Q)

NOTE: This figure is 
incorrect since P2’s 
indifference curve 
should go through Q 
instead of P3.
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Majority rule winset of Q

Finding W(Q)

NOTE: This figure is 
incorrect since P2’s 
indifference curve 
should go through Q 
instead of P3.
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Unanimity rule winset of Q

Finding W(Q)

NOTE: This figure is 
incorrect since P2’s 
indifference curve 
should go through Q 
instead of P3.
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Plott conditions

• The core is non-empty if and only if 
ideal points are distributed in a “radially
symmetric” fashion around a policy x* 
and x* is a voter’s ideal point

• Radial symmetry means that pairs of 
ideal points form lines that intersect x* 
with x* between the pair of ideal points
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Examples
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P2 has an empty winset ⇒ Condorcet Winner

Examples: Plott conditions hold
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P2 has an empty winset ⇒ Condorcet Winner

Examples: Plott conditions hold
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Plott conditions are violated ⇒ W(P2) nonempty

Examples: Plott conditions violated
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Plott conditions are violated ⇒ W(P2) nonempty

Example: Plott conditions violated
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Constructing a preference cycle

Majority {P1, P4, P5} votes for B over A
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Majority {P1, P2, P5} votes for C over B

Constructing a preference cycle
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Majority {P2, P3, P4} votes for A over C

Constructing a preference cycle
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Top cycle set

Alternatives in the top cycle set
– Defeat all alternatives outside the set 
– Preference cycles over the alternatives in 

the set
Example:

aPb, bPc, cPa, aPd, bPd, cPd
T = {a,b,c}
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McKelvey’s Theorem

Given the spatial model, the majority 
rule core is either non-empty or the 
top cycle set is T = X.
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McKelvey’s Theorem (corollary)

If the Plott conditions are not satisfied, 
then for any two points x and y, there 
exists a finite chain of policies
{a1,a2,…,an} such that xPa1Pa2…PanPy
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Construct a chain from y to x
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Note that x is majority preferred to y!
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W(x)
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z1 P x
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W(z1)
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z2 P z1 P x
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y P z2 P z1 P x
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Although x P y, we have the chain: y P z2 
P z1 P x
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Implications

• Plott conditions are very rarely satisfied

• In two dimensions, we can cycle over every 
policy

• McKelvey’s Theorem does not predict “chaos”

• All preference aggregation rules are problematic, 
including majority rule

• Preference aggregation alone is insufficient to 
understand political outcomes


