Introduction to spatial modeling

(a mostly geometrical presentation)

Alternatives

- $X = \Re^n$ e.g. $(x_1, x_2, ..., x_n) \in X$
- Alternatives are infinite set of "policies" in ndimensional Euclidean space
- Each dimension is an issue or characteristic of policy:

Economic liberalism	Defense spending
Civil liberties	Welfare spending
Taxation	Trade protection
Redistribution	Immigration

Preferences

- Preferences are satiable
- Each agent has an ideal point
- Utility declines as a distance from ideal point increases

$$\boldsymbol{U}(\boldsymbol{x}) = -\sum_{j=1}^{k} \alpha_{j} |\boldsymbol{x}_{j} - \boldsymbol{\theta}_{j}|$$

Linear

$$\boldsymbol{U}(\boldsymbol{X}) = -\sum_{j=1}^{k} \alpha_{j} (\boldsymbol{X}_{j} - \boldsymbol{\theta}_{j})^{2}$$

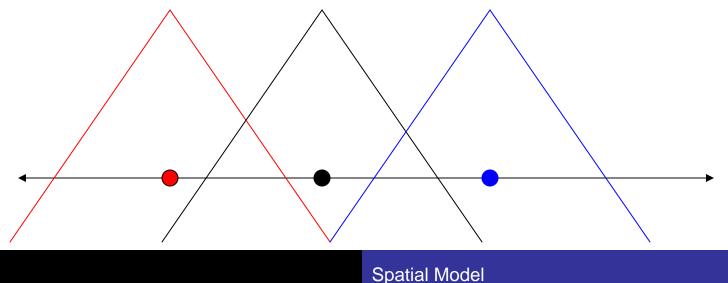
Quadratic

j indexes dimensions α_i = weight on dimension j

 θ_i = ideal policy on dimension j

One dimension

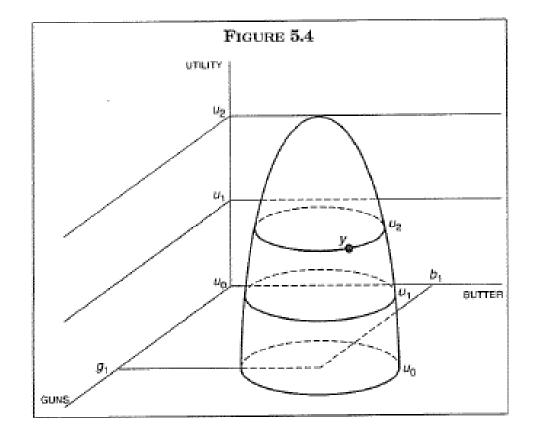
- Preferences satisfy single-peaked property
- Black's median voter theorem applies



Two dimensions

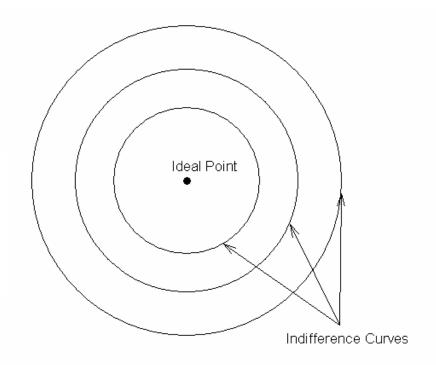
- Median voter theorem does not apply
- Can we guarantee transitivity of MR?
- Can it be generalized to 2 dimensions?

Utility function

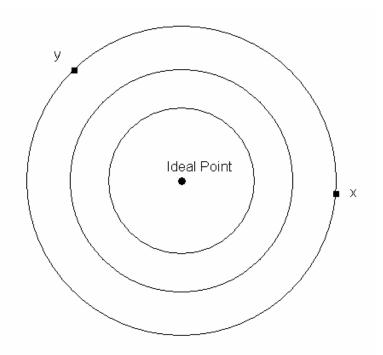


Projection onto policy space

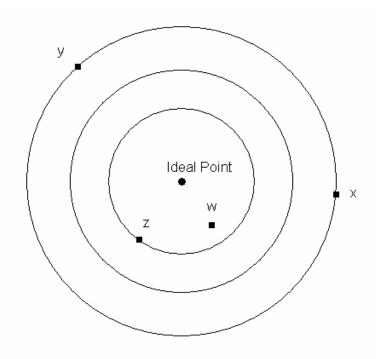
$$U(x, y) = -(x - \theta_1)^2 - (y - \theta_2)^2$$



Indifferent between x and y



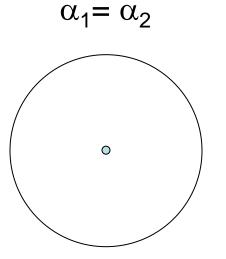
Projection onto policy space



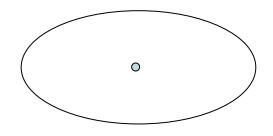
wPzPxIy

Effect of weights

Equal weights: Indifference circle Different weights: Indifference ellipse

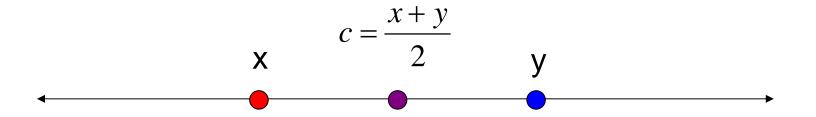


 $\alpha_1 < \alpha_2$



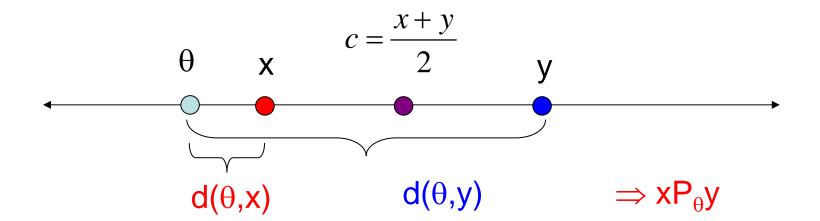
Cut point

 Midpoint between two alternatives, divides ideal points



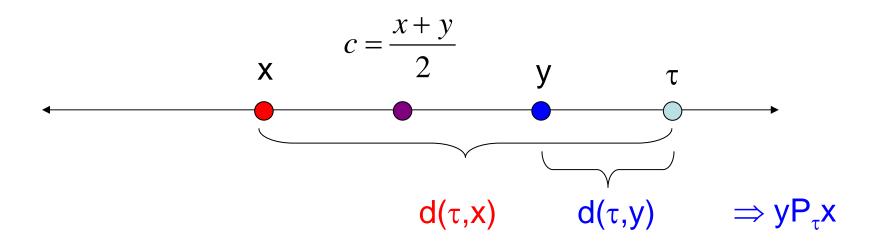
Cut point

• Midpoint between two alternatives, divides agents with opposing preferences



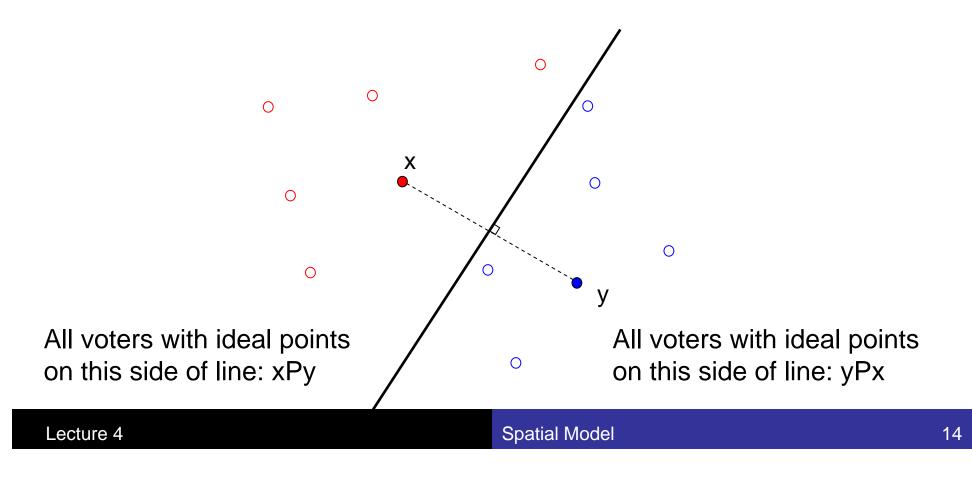
Cut point

 Midpoint between two alternatives, divides ideal points



Cutting lines

- Set of points equidistant between two alternatives
- Convenient way to determine preferences

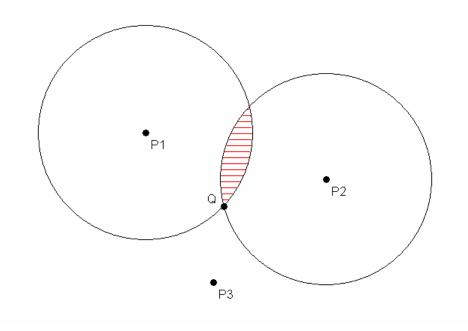


Useful sets

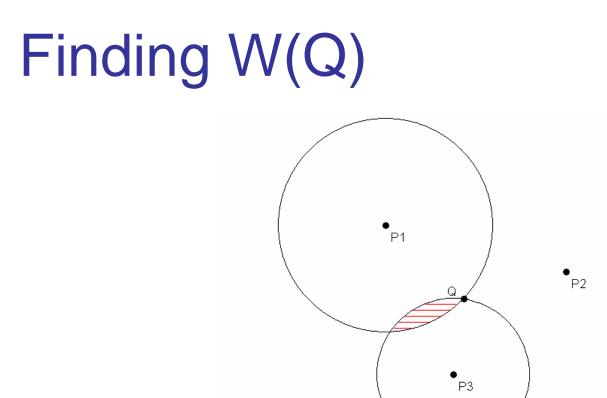
- P_i(x) = i's preferred-to set of x Set of policies an individual prefers to x (Interior of indifference curve through x)
- W(x) = Majority rule winset of x Set of all policies that some majority prefers to x

Finding winsets

- Step 1. For each majority coalition, find intersection of preferred-to sets
- Step 2. Winset is **union** of sets in Step 1.

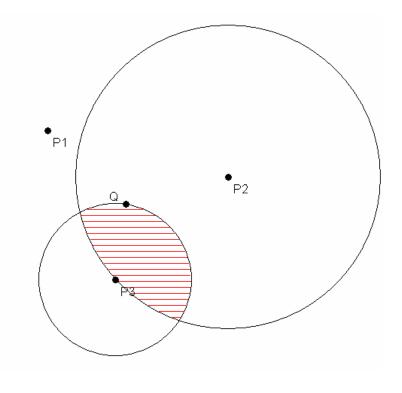


Set of policies coalition {1,2} prefers to Q

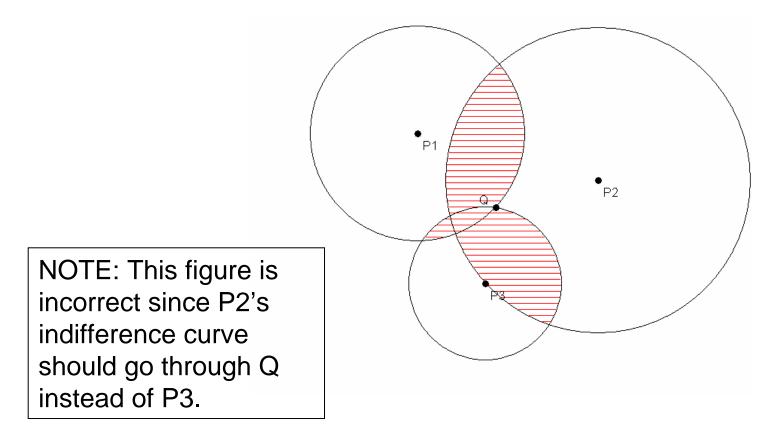


Set of policies coalition {1,3} prefers to Q

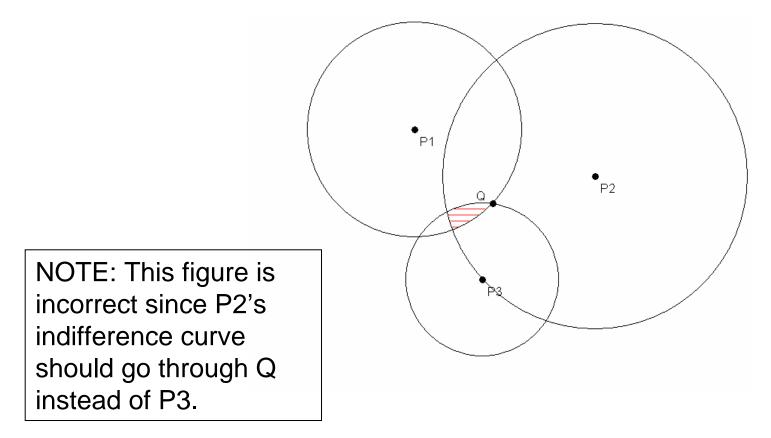
NOTE: This figure is incorrect since P2's indifference curve should go through Q instead of P3.



Set of policies coalition {2,3} prefers to Q



Majority rule winset of Q

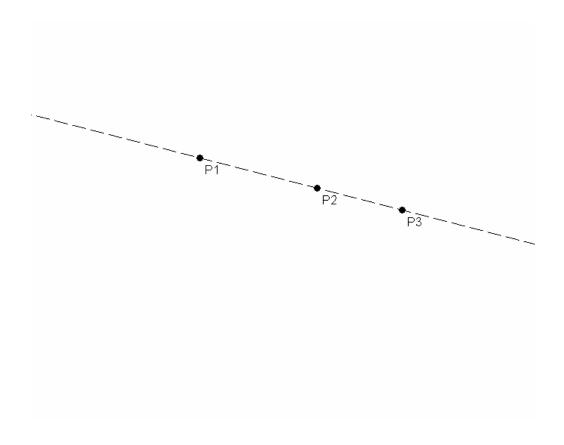


Unanimity rule winset of Q

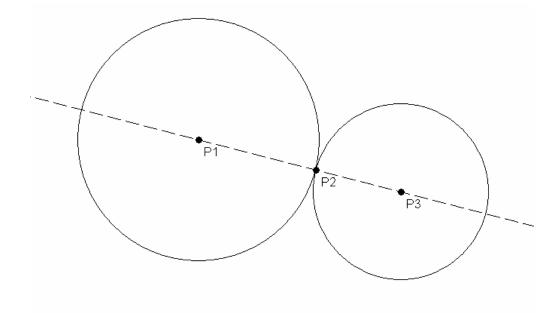
Plott conditions

- The core is non-empty if and only if ideal points are distributed in a "radially symmetric" fashion around a policy x* and x* is a voter's ideal point
- Radial symmetry means that pairs of ideal points form lines that intersect x* with x* between the pair of ideal points

Examples

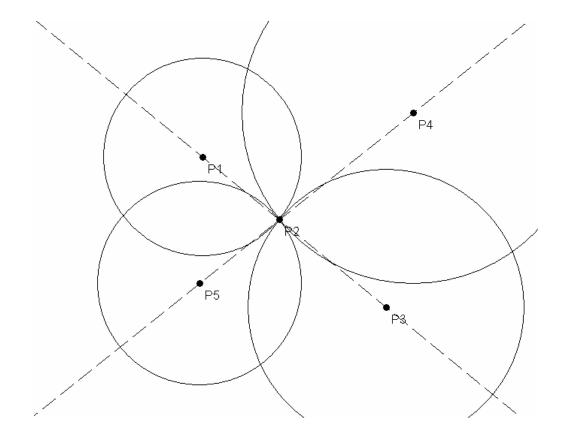


Examples: Plott conditions hold



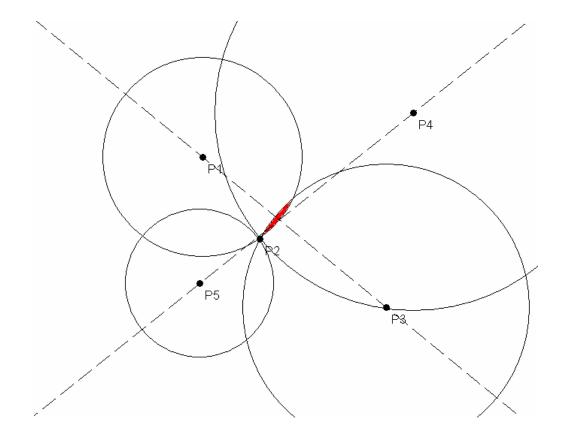
P2 has an empty winset \Rightarrow Condorcet Winner

Examples: Plott conditions hold



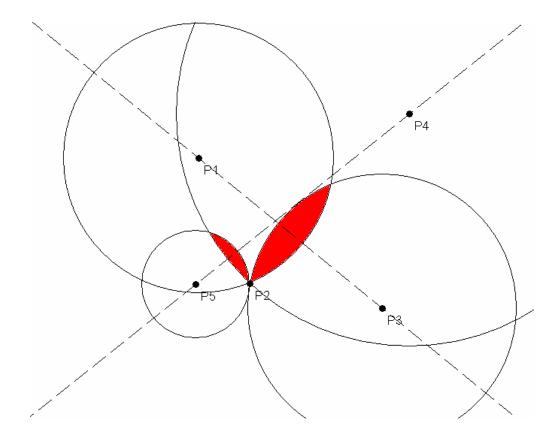
P2 has an empty winset \Rightarrow Condorcet Winner

Examples: Plott conditions violated



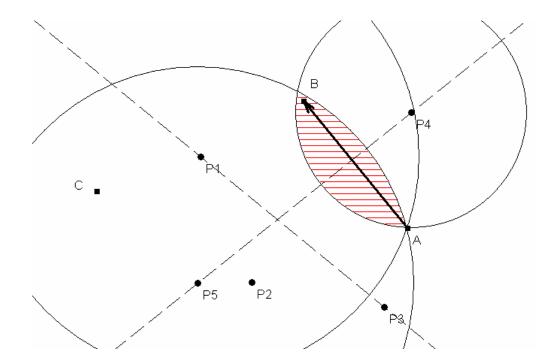
Plott conditions are violated \Rightarrow W(P2) nonempty

Example: Plott conditions violated



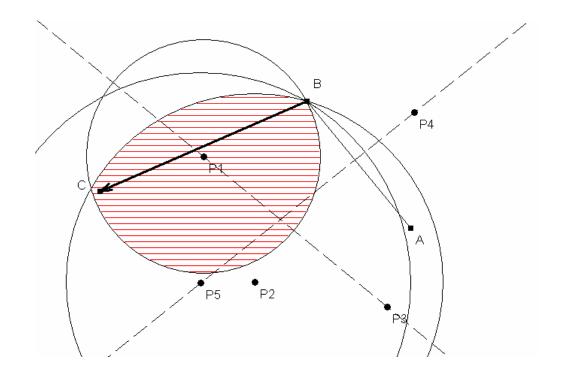
Plott conditions are violated \Rightarrow W(P2) nonempty

Constructing a preference cycle



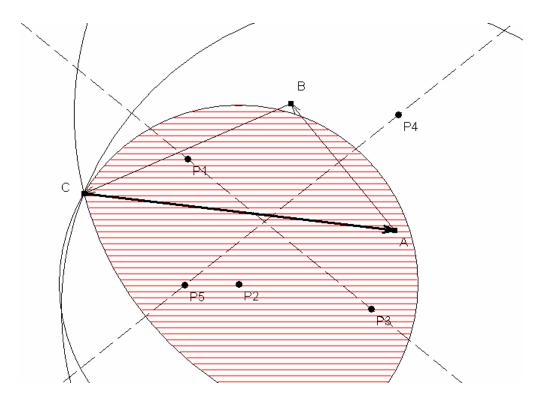
Majority {P1, P4, P5} votes for B over A

Constructing a preference cycle



Majority {P1, P2, P5} votes for C over B

Constructing a preference cycle



Majority {P2, P3, P4} votes for A over C

Top cycle set

Alternatives in the top cycle set

- Defeat all alternatives outside the set
- Preference cycles over the alternatives in the set

Example:

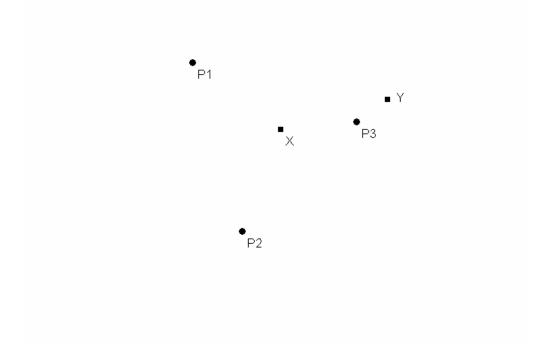
aPb, bPc, cPa, aPd, bPd, cPd T = {a,b,c}

McKelvey's Theorem

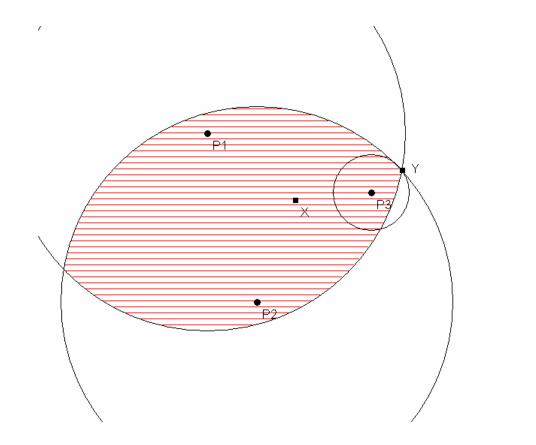
Given the spatial model, the majority rule core is either **non-empty or the** top cycle set is T = X.

McKelvey's Theorem (corollary)

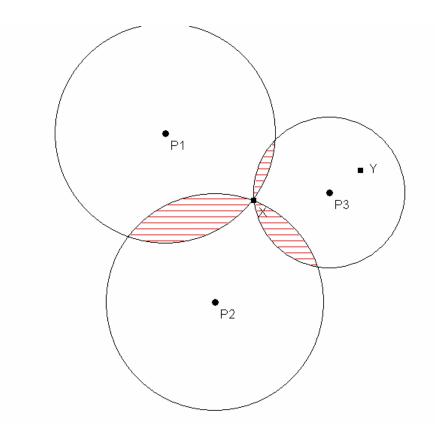
If the Plott conditions are not satisfied, then for any two points x and y, there exists a finite chain of policies $\{a_1, a_2, ..., a_n\}$ such that $xPa_1Pa_2...Pa_nPy$



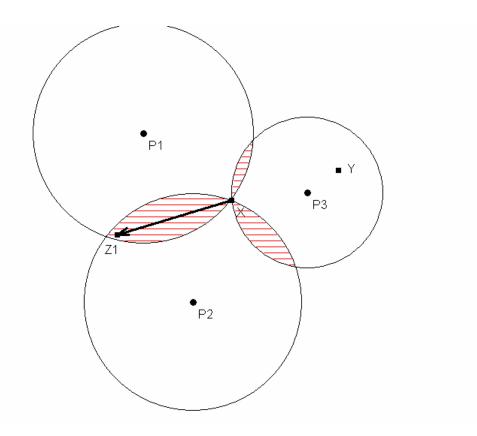
Construct a chain from y to x



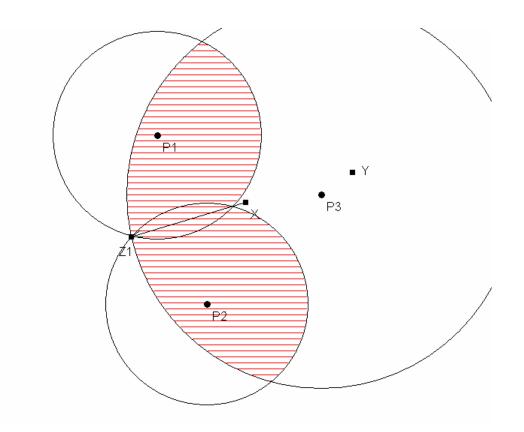
Note that x is majority preferred to y!



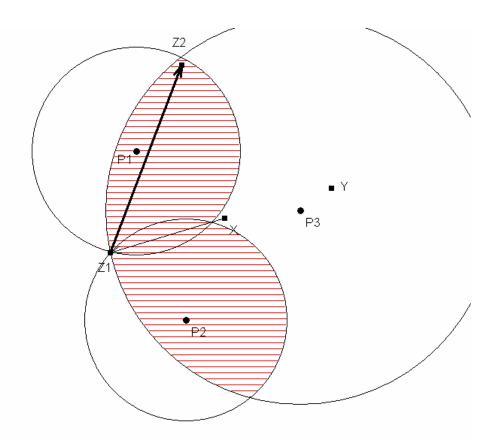
W(x)



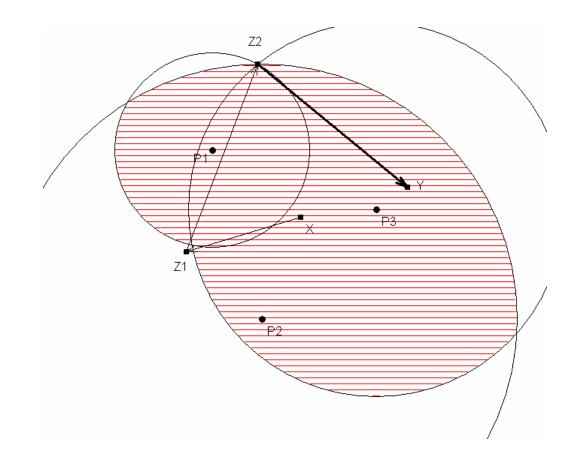
 $z_1 P x$



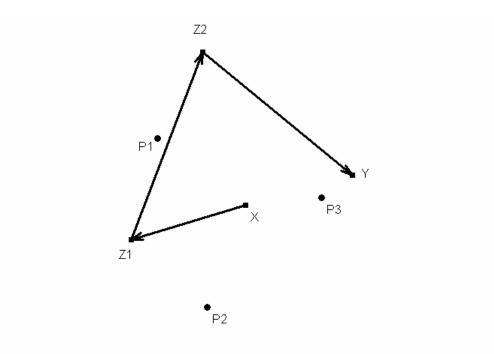
 $W(z_1)$



 $z_2 P z_1 P x$



 $y P z_2 P z_1 P x$



Although x P y, we have the chain: y P z_2 P z_1 P x

Implications

- Plott conditions are very rarely satisfied
- In two dimensions, we can cycle over every policy
- McKelvey's Theorem does not predict "chaos"
- All preference aggregation rules are problematic, including majority rule
- Preference aggregation alone is insufficient to understand political outcomes