#### ECE 351 Digital Systems Design

# Introduction

Wei Gao



Spring 2017

### **Course Information**

- Class time: 9:40am 10:55am TTR, Min Kao 405
- Instructor: Wei Gao, weigao@utk.edu
  - Office: Min Kao 353
  - Office hour: 11:00am 12:00pm TTR
- TA: Sagarvarma Sayyaparaju, <u>ssayyapa@vols.utk.edu</u>
  - TA Office Hour: TBD
- Slides, schedule, announcement posted at <u>http://web.eecs.utk.edu/~weigao/ece351/spring201</u> <u>7/schedule.html</u>



# **Examples of Digital Systems**

- Cellphone, Personal Digital Assistant (PDA)
- Printer.
- GPS.
- Automobile: engine, brakes, dash, etc.
- Digital camera.
- iPod.
- Household appliances: microwave, air conditioning
- Wrist watch.
- and a lot more ...
- Fact: > 95% of daily appliances are having digital system components



# **Design Choices of Digital Systems**

- Application-Specific Integrated Circuits (ASICs)
- Microprocessors
- Field-Programmable Gate Arrays (FPGAs)



#### ASIC

Example: Digital baseband processing for cell phones

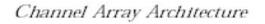
- Performance: Fast!
- ✓ Power: Fewer logic elements → low power
- > Development cost: Very high
  - 2 million \$ for starting production of a new ASIC
  - Needs a long time and a large team
- Reprogrammability: None!
  - $\rightarrow$  Single-purpose devices
  - $\rightarrow$  Difficult to upgrade systems



#### Microprocessors

- Von Neumann (or Harvard) architecture is fundamentally slow!
  - Fetch, decode instructions
- Improve performance at the cost of power!
  - Performance/watt remains low
- Let software do the work
  - Flexibility and low development cost
  - Microprocessor + ASIC is common

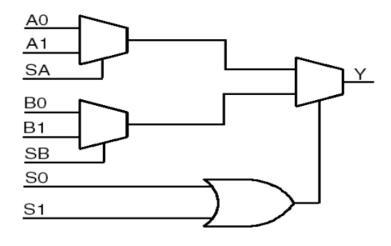


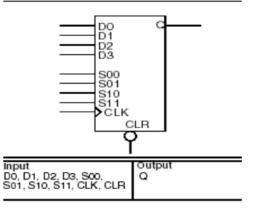

#### Field-Programmable Gate Arrays (FPGA)

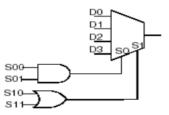
- Programmable hardware
- Combine the benefits of ASIC and microprocessor
  - Hardware implementation  $\rightarrow$  good performance/watt
  - Reprogammable  $\rightarrow$  lower development cost
- Implement something in hardware, but change it as easily as changing software running on a microprocessor
  - The ideal hardware analogy would be the ability to reconfigure the connection between millions of transistors to compute a new function for a new application



### **Traditional FPGA Architecture**


- Modules are connected by a "programmable" link.
  - One-time-programmable only
  - Analogy: Early-stage Flash ROM storage devices





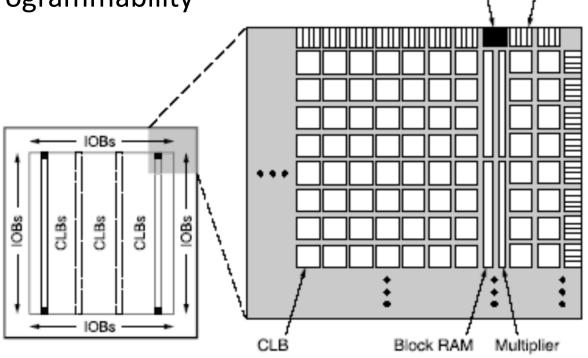

#### **Actel Logic Elements**







#### **Combinatorial module**

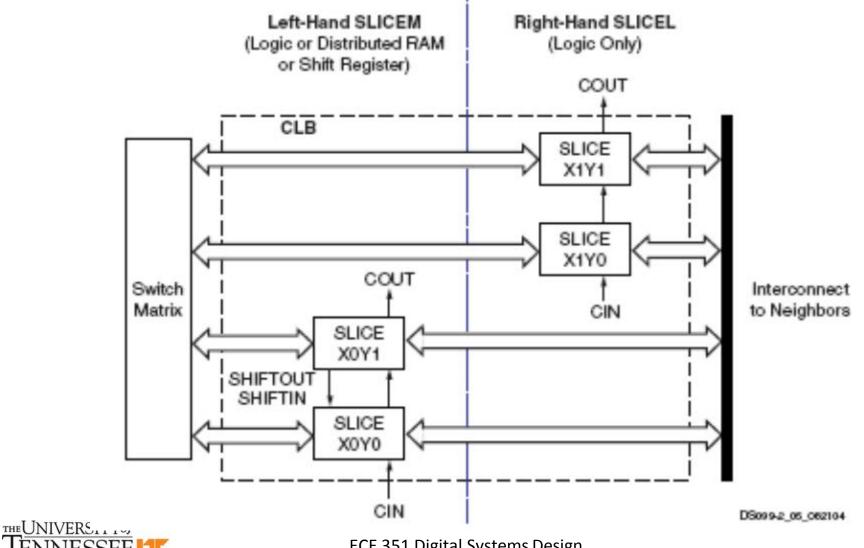

Sequential module



ECE 351 Digital Systems Design

#### **Xilinx Spartan FPGA Implemenation**

- Configurable Logic Blocks are connected by programmable interconnect, configuration of which is controlled by SRAM
  - Unlimited reprogrammability






DCM

IOB

## **Configurable Logic Block**



KNOXVILLE

ECE 351 Digital Systems Design

# **Programmable Logic Design Flow**

- <u>Capture design</u>: Draw Schematic or use a Hardware Description Language (HDL)
- Synthesis/Map: Maps and optimizes design to fit into FPGA architecture primitives
- Place / Route: figures out where on the FPGA/CPLD each primitive block goes, and how to connect them together.
- Programming: Using the output from the FPGA design software, the connections on the FPGA are physically created on the actual chip.



# VHSIC Hardware Description Language (VHDL)

- Programming models operating FPGA
- VHSIC: Very-High-Speed Integrated Circuits
  - DoD project in 1980s military use
  - Control given to IEEE in 1986 for standardization
- Functional description of a digital circuit
  - VHDL '87: first VHDL standard
  - VHDL '93: first revision among lots of software



# **VHDL Modeling**

- Circuit complexity is so high that designs can't be completely analyzed
- Digital circuits are highly parallel and not easily modelled by traditional software.
- Simulation of our system is how we verify.
- VHDL provides a convenient, universally supported means to model circuit behavior



## **Examples of VHDL Use**

- Early Project Verification: VHDL system model can be used to verify that a proposed system design will work
- Subsystem design requirements specification:
  Detailed requirements for each piece of the system can be formed with the aid of the system model
- <u>Synthesis</u>: models of some pieces can be refined to be synthesizable and thus easily built.
- <u>Verification</u>: post-synthesis VHDL models with timing can be inserted into the system model and verified.

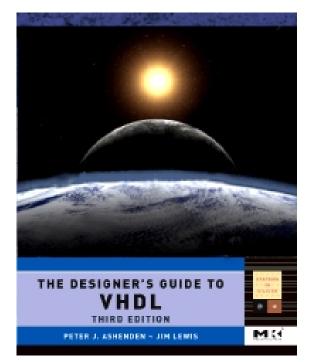


#### **Generalization: Cyber-Physical System**

- A physical system that tightly interacts with a digital system.
  - Digital circuits replace mechanical controllers
  - Use the sensed data for feedback control and optimization
- Automobile systems:
  - Engine controllers replace distributor, carburetor, etc
  - Complex algorithms allow both greater fuel efficiency and lower emissions
- More examples
  - Urban sensing, smart healthcare, etc



#### Why are those digital systems special?


- Application specific
  - Specialize and optimize the design for specific application
  - *Not* a general-purpose computer.
    - Don't need all the bells and whistles, e.g., hard drive, monitor, keyboard...
- Have to worry about both hardware and software
- Have to worry about non-functional constraints
  - Real-time
  - Memory footprint
  - Power
  - Reliability and safety
  - Cost

#### Just functionally working is NOT enough!



# **Goal of This Course**

- The common principles and hands-on skills of digital system design
  - Instead of a specific type of FPGA device
  - Emphasize aspects that are distinct to reprogrammable digital systems
- Textbook:
  - The Designer's Guide to VHDL, 3rd edition
  - Peter J. Ashenden
  - Morgan Kaufmann Publishers, 2008
  - Not required but recommended
- Experimentation platform
  - Diligent Basys 2 FPGA board
  - Embedded system components





# **Goal of This Course**

#### References

- The Student's Guide to VHDL
  - Peter J. Ashenden
  - Morgan Kaufmann, 2<sup>nd</sup> edition, 2008.
- Digital Design: An Embedded Systems Approach Using VHDL
  - Peter J. Ashenden
  - Morgan Kaufmann, 2008.
- FPGA-Based System Design
  - Wayne Wolf
  - Prentice Hall, 2004.



#### What will you learn from this course?

- Hardware
  - FPGA, reprogrammable circuits, etc.
- VHDL programming
  - Synthesis of digital hardware
  - Modeling of complex digital systems
  - Testbench development
- FPGA development
  - FPGA design concepts
  - Hybrid hardware/software systems-on-chip using the soft-core microprocessors inside the FPGA
- Digital system development
  - Using the FPGA to control peripheral components and realize system functionality



#### What will you NOT learn from this course?

- Computer logic
  - ECE 255: Introduction to Logic Design of Digital Systems
- Computer architecture
  - ECE 451: Computer System Architecture
- Embedded system design
  - ECE 455: Embedded System design
- System programming
  - COSC 360: Systems programming



# **Grading (Tentative)**

- Labs (4) 25%
- Group project 35%
  - Proposal presentation 5%
  - Midterm presentation/demo 7%
  - Final presentation/demo 8%
  - Final report 15%
  - 2 students per group
- Midterm exam 15%
- Final exam 20%
- Participation 5%



# **Course policy**

- Academic integrity
  - Must be your OWN work
  - No collaboration for homework/lab assignment
- Lab policy
  - Results must be checked by TA
  - Printed copy of source code needs to be submitted
- Exam policy
  - Closed-book, No discussion, No make-up exams
- Project policy
  - Clearly identify the contribution of each group member
- Class policy
  - No laptops in class
  - Attend each lecture



#### Discussion

- TA office hours vs. lab hours
- Choice 1: 2 1-hour office hours + 2 1-hour lab hours
- Choice 2: 3-4 1-hour lab hours but no office hours
- What specific help do you expect to need from the TA?



#### **Next Class**

Introduction of course projects

