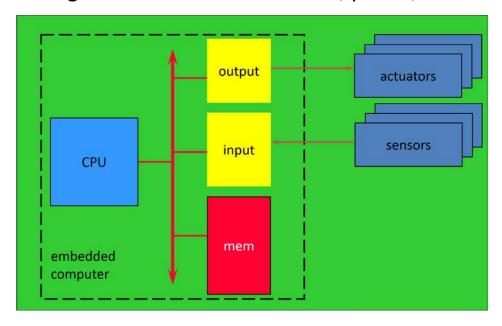
ECE 1161/2161 Embedded Computer System Design 2

Introduction


Wei Gao

Course Information

- Class time: 4:30pm 5:45pm TuTh
- Instructor: Wei Gao, weigao@pitt.edu
 - Office: 1205 Benedum
 - Office hour: 3:30pm 4:30pm TuTh
- TA: Ting Han, <u>tih34@pitt.edu</u>
 - TA office: 1237 Benedum
 - TA Office hour: TBD
- Schedule and lecture notes posted at instructor website
 - http://www.pitt.edu/~weigao/ece1161/spring2018/ece1161sp18.html
- CourseWeb is used for posting announcements, grades and project feedback

- Course description in catalog
 - Organized as a <u>full term project</u> carried out by student design groups. A complex embedded system will be designed, implemented and tested using Altera and other <u>CAD tools.</u> Grade will be based on project reviews and the final project report. Proper design process will be emphasized.

- ECE1160/2160 Embedded Computer System Design 1
 - Common design methodology and concepts
 - Embedded system basics
 - Primary technologies of different system components
 - Design considerations: real-time, power, cost

- ECE1161/2161 Embedded Computer System Design 2
 - Applying these basics to emerging application paradigms
 - Advanced design choices and technologies
 - Practical hands-on skills

Cyber-physical systems

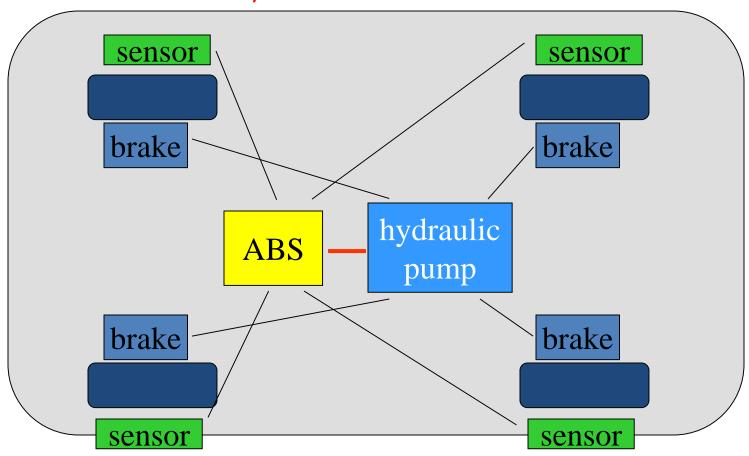
Smart Cities and Communities

Virtual Reality

- ECE1161/2161 Embedded Computer System Design 2
 - Advanced embedded computing architecture
 - Mobile cloud and edge computing
 - Advanced I/O interfaces
 - Batteryless sensing and communication
 - Energy harvesting
 - Cross-technology communication

Definition

 Embedded system: any device that includes a computer but is not itself a general-purpose computer.


- Application specific
 - The design is specialized and optimized for specific application
 - Don't need all the general-purpose bells and whistles.

Examples of Embedded Systems

- Cellphone, Personal Digital Assistant (PDA)
- Printer.
- GPS.
- Automobile: engine, brakes, dash, etc.
- Digital camera.
- iPod.
- Household appliances: microwave, air conditioning
- Wrist watch.
- and a lot more ...
- Fact: > 95% of all microprocessors are used for embedded systems.

Anti-Lock Brake System

- Pumps brakes to reduce skidding.
 - Real-time and safety

Automotive Systems

- A high-end car may have 100 microprocessors:
 - 4-bit microcontroller checks seat belt;
 - microcontrollers run dashboard devices;
 - 16/32-bit microprocessor controls engine;
 - Navigation;
 - Entertainment: DVD, audio, satellite radio...
- Future
 - Cars may drive by themselves??
 - Control your car by speaking out, or even your mind

Other examples

- Simple control
 - Front panel of microwave oven
 - Digital control of air conditioning
- Canon EOS 3 has three microprocessors.
 - 32-bit RISC CPU runs autofocus and eye control systems.

- BRAVIA Engine 2
- Full 1080p video streaming: high throughput required

Why are those systems special?

- Application specific
 - Specialize and optimize the design for specific application
 - Not a general-purpose computer.
 - Don't need all the bells and whistles, e.g., hard drive, monitor, keyboard...
- Have to worry about both hardware and software
- Have to worry about non-functional constraints
 - Real-time
 - Memory footprint
 - Power
 - Reliability and safety
 - Cost

Just functionally working is NOT enough!

Cyber-Physical Systems

Physical objects -> digital objects

- Wearable computing
- Innovative Sensing
- Low-power networking
- Interconnection -> Internet of Things

Smart Building

- Occupancy sensing and monitoring
 - Camera, infrared, ultrasound, etc
 - Adjustment based on user needs
- Remote and intelligent control
 - Lighting, HVAC, sound
 - Custom and zonal control
- Information infrastructure
 - Ubiquitous display and feedback
 - Emergency evacuation

Honeywell's vision:

https://www.youtube.com/watch?v=kQ3CJdwP3fY

Smart Cities and Communities

- What is a smart city?
 - https://www.youtube.com/watch?v=vpSLICKnjPc
 - Public safety
 - Gunshot detection: https://www.youtube.com/watch?v=f8jkApBTGd4
 - City surveillance and planning
 - Traffic monitoring and control
 - Air quality and noise monitoring
 - Array of Things in Chicago: <u>https://www.youtube.com/watch?v=pFL5QNwgs6A</u>

Intelligent Transportation System

- Autonomous driving
 - Road sensing
 - Traffic detection, pedestrian detection
 - Al decision and control
 - Following and avoidance

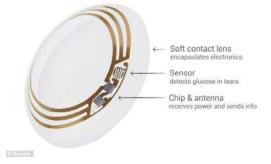
- Communication
 - Vehicle to road side
 - Vehicle to vehicle
 - Toyota's vision:

https://www.youtube.com/watch?v=uwLE3csyDAc

Virtual Reality

- Immersive experience
- Sensing is the key!
 - Headset
 - Gyroscope + accelerometer
 - Eye gaze tracking: https://www.youtube.com/watch?v=ImgfCFk8qy0
 - Emotion sensing: https://www.youtube.com/watch?v=2aXnfxH-
 anA
 - Hand controllers
 - Motion tracking with accelerometers
 - More controllers...

Smart Health


Digital fitness tracking

Tele medicine and diagnostics

- Surgery assistance
 - Smart brain surgery system: https://www.youtube.com/watch?v=QOafVIkLgyk

Course Organization

- Goal: design and implement your own embedded system idea as a semester-long project
- Part 1: classroom lectures
 - Key enabling technologies in the above application paradigms
 - Computing architecture
 - Communication
 - Sensing
 - Low-power design
 - Necessary background for project designs
- Part 2: Project milestone presentations & discussions
 - Your projects are expected to focus on the paradigms presented in Part 1
 - Keep your progress on track
 - Details to be discussed in the next class

What will you learn from this course?

- Most recent technical advances in emerging embedded computer systems
 - Integrated computation, communication, sensing and control
 - Revolutionary ideas and designs
- Hands-on experiences working with modern embedded platforms
 - Custom hardware prototyping
 - Familiarity and experiences with new hardware devices
 - Adoption of machine learning, AI and signal processing software
- Experiences in collaborative project development and management
- Optional: use this course as alternative of your senior design

What will you NOT learn from this course?

- Mathematics
 - We focus on hands-on system development skills
- Chip design
 - ECE 1192/2192: Introduction to VLSI Design
 - ECE 2162/3162: Computer Architecture
- Operating system
 - COE 1550: Introduction to Operating Systems
- Mobile application development
 - Fancy UI, graphics optimization, user experience...

Grading

- Based on your performance in course project
 - Project proposal: 10%
 - 4 interim project milestones: 15% each
 - Project final presentation & report: 25%
 - Class participation: 5%
- Project: 2-3 students per group
 - Each student will be graded individually
 - Each team member needs to undertake an equitable portion of workload
 - Details in next class

Course policy

- Academic integrity
 - Your project must be your OWN work
 - Your original project idea + development work
 - Online code repository: open-source only
 - No collaboration between teams
- Project policy
 - Be serious about taking this course: Late drop will affect your project teammates!
 - Clearly identify the contribution of each group member
- Class policy
 - No laptops in class
 - Attend each lecture
 - Active involvement in in-class project discussions is mandatory

Next Class

Overview of course projects