INFSCI 2140

Information Storage and Retrieval Lecture 2: Models of Information Retrieval: Boolean model

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/2140-051/

Exploring IR aspects

- Any part of IR process to practice
- Document preparations and processing
- Simple search engine
- Similarity-based navigation
- Clustering
- Adaptive recommendation

Possible domains

- C programming
- Information Retrieval

Problems with matching

The fact that a document contains a term requested in a query doesn't mean that the document should be retrieved:

- we have to consider all the term and the condition expressed in the query
- it doesn't mean that the document is strongly related to the term
- a document can't be suitable for other reasons (age for example)

Models: Classic and New

Boolean Model

- Classic
- Extended
- Fuzzy

Vector Model

- Classic
- Others (generalized, LSI, Neural Networks)

Probabilistic Model
We will work by models, discussing Q\&M for each model separately

The query is NOT a part of the

 document space■ In more sophisticated systems the evaluation function can have values in the interval $[0,1]$, allowing to rank documents.

Boolean Model

Set Theoretic Approach
Documents form a large set

- A query defines a subset (I.e., 0 or 1)
- Elementary query has a clearly defined subset
- To make a complex query one can use Boolean functions for set operation

Boolean queries

Boolean queries are based on Boolean Algebra

- Terms are join using connectives as AND, OR, NOT
The search can be expanded using stemming, thesaurus or list of related terms
- Example:
restaurants AND (mideastern OR vegetarian) AND inexpensive

Boolean Operators

- Q1 AND Q2
- Documents that are in BOTH sets: Q1 and Q2
- Q1 OR Q2
- Documents that are in at least in one set: Q1 or Q2
NOT Q1
- All documents except the one in set Q1

Some Special Operators

Proximity (TNT)

- (Information within 1 word from Retrieval)
- This is really a special elementary query to structured text fields
NOF (N of)
- 2 of (Sashimi, Sushi, Shabu-Shabu)
- This is a simple form that can be expressed by a regular query

Normalization

Convert each Boolean function to NFs
Key: Truth Table

- Example: (A OR NOT B) AND C

Normalization to DNF

- Consider T rows

Normalization to DNF

- Consider F rows

Example: Normalize the query [Aor(notB)] and C to DNF

A	B	C	not B	Aor(notB)	$[$ Aor(notB)]and C	
0	0	0	1	1	0	
0	0	1	1	1	1	
0	1	0	0	0	0	
0	1	1	0	0	0	
1	0	0	1	1	0	
1	0	1	1	1	1	
1	1	0	0	1	0	
1	1	1	0	1	1	

Efficiency for elementary queries

Fast ways to match

- Inverted Indexing (primary and secondary key):
- Fixed value search (year = 1999)
- Full term search (Adaptive in text)

Hashing
Range search (Year < 1990)

- Sorted array search

Boolean queries and inverted file

Doc1: the cat is on the mat
Doc2: the mat is on the floor Inverted file
cat: doc1,1
floor: doc2,5
mat: doc1,5;doc2,1

Boolean queries and inverted file

Query : cat
Inverted file cat:doc1,1 floor:doc2,5 mat: doc1,5; doc2,1

Answer : doc1

Boolean queries and inverted file

Query: cat AND floor
Inverted file
cat:doc1,1
floor:doc2,
mat: doc1,5; doc2,1 in common

Answer : No document

Homework (Part 2)

- Take an example of an advanced online search system (the one you have used in HW1 or any other)retrieval systems and analyze it from the prospect of IR models presented at the lectures 3 and 4 . What kind of model this system is based upon? Can you recognize one of the models we have learned? What kind of queries the system allows? How you could use boolean operators or perform Boolean search with this engine? What kinds of usual Boolean operators it has? Whay kind of proximity operators it uses? Does it provide a form-based search for users unprepared to work with complex boolean expressions? We have discussed all that (and a number of other issues) and now you should be able to apply your knowledge for thinking in a real world context. In addition to that, please, specify what other conditions you can specify in your search request to fine-tune the matching. Does the system enable you to restrict the search to a subset of documents or to consider for matching only a specific areas of documents?

