/*
Example 9.3: Min of array elements

Author: Peter Brusilovsky

*/

#include

#define N 7 /* dimension of the array */

main(){

/* declare an array */

int ar[N]; /* elements from ar[0] to ar[N-1]; */

int i, min;

/* array input */

for (i = 0; i < N; ++i) {

printf("%d> ", i);

scanf("%d", &ar[i]);

}

/* finding min of array elements */

min = ar[0];

for (i = 1; i < N; ++i)

if (min > ar[i]) min = ar[i];

printf("%d\n", min);

}

Dissection:

/*
Example 9.1: Summing up array elements

Author: Peter Brusilovsky

*/

Comments of the purpose and author of the program should be included in a program.

#include <stdio.h>

This is a preprocessor command. System header file stdio.h will be
inserted there during compilation.
(intro: include)(pre: preprocessor, header file)

We include stdio.h header file because it contains function
prototypes for printf and scanf.

(pre: function prototype, header file)(intro: stdio.h)

#define N 7

Dimension of the array. The define statement sets up a meaningful, symbolic constant value that is used consistently throughout the program. For example, wherever N is used, the value 7 will replace it.

Very useful if the value of N needs to be changed and eliminates changing it in various places in the program which can lead to inconsistency.

(intro: #define)(pre:name, replacement text)

main () {

This is the start of main function definition. Every program should
have function main.
(intro: main)
int ar[N];

An array of N or 7 integer values are defined.

Because array positions begin from 0 unless otherwise noted, elements range from 0 to N–1.
int i, min;

i and min are both declared as integers. They are integers because min will be storage for the minimum value in the array and i is a counter variable. A counter variable keeps track of loop iterations.

/* array input */

for (i = 0; i < N; ++i) {

A for loop iterates to a set amount of iterations, which in this case is N or 7. There are 3 parts to a for loop. The first part, in this case, i = 0; initializes the counter variable i to 0. The second part, i < N;, is a conditional that sets the case for which the for loop should be exited, in this case, iterate until i is less than N or 7. The third part, ++i, increments the counter variable by one each time the loop is iterated.

(intro: for)(pre:initialization, conditional, incrementation)

printf("%d> ", i);

printf is a standard output function, that in this case takes the value i (the current iteration number) and outputs it. The % symbol is used to show where the value is to be printed and d is formatting for integers, which i is. This occurs for each iteration of the for loop.

intro:printf)(Pre: %format, value)

scanf("%d", &ar[i]);

scanf is a standard input function, that in this case takes a value from standard input and stores it into an array slot denoted by i (the memory location 0 to N-1). The % symbol is used to show where the value is to be printed and d is formatting for integers, which i is. This occurs for each iteration of the for loop.

(intro: scanf)(pre: %format, &value)

}

End bracket of the for loop. If a loop contains more than one statement to be executed, denoted by a semi-colon, then brackets are needed to keep all relevant statements together.

min = ar[0];

The integer type min is initialized to the first element of the array’s (position 0) value.

for (i = 0; i < N; ++i)

A for loop iterates to a set amount of iterations, which in this case is N or 7. There are 3 parts to a for loop. The first part, in this case, i = 0; initializes the counter variable to 0. The second part, I < N;, is a conditional that sets the case for which the for loop should be exited, in this case, iterate until I is less than N or 7. The third part, ++i, increments the counter variable by one each time the loop is iterated.

(intro: for)(pre:initialization, conditional, incrementation)
if (min > ar[i]) min = ar[i];

if is a conditional statement, if what is contained in the parenthesis after the if, is true, then the following statement(s) in it’s scope will be executed. If the current value of min is greater than the current value in the array then min gets the value in the array, since it is a smaller value.

(intro: if)(pre: conditional, statement(s))

printf("%d\n", min);

printf is a standard output function that in this case takes the value min and outputs it. The % symbol is used to show where the value is to be printed and d is formatting for integers, which min is. The \n symbol sets the output cursor to the next line.

(intro:printf)(Pre: %format, value)
}

End bracket of main. Brackets are needed to keep all relevant statements together.
