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1. Introduction

For p > 1 consider the p-Laplace equation
(1) —Apu = —div (|VulP7?Vu) = 0,

where u: 2 — R is a real function defined on a domain
Q2 C R™. Equation (1) is the Euler-Lagrange equation of
the p-Dirichlet integral

1
—/ |VulP dz.
p JQ2

For p = 2 we just get the usual Laplacian.

For p > 2 equation (1) is degenerate elliptic and for
1 < p < 2 singular, at points where Vu = 0.

2. Sobolev Weak Solutions

Multiply equation (1) by a function ¢ € C5°(£2) and inte-
grate by parts to obtain

(2) /Q IVuP~2(Vu, V) dz = O.

For the integrand to be in L! one would need a priori
to know only that Vu € L2-1(Q). We could say that

loc

a function in the Sobolev space Wlé’f_l(Q) is a weak

solution of equation (1), if (2) holds for every ¢ € C5°(L2).
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However, little is known about this class of “ultra” weak
solutions. In order to get the first Cacciopoli type esti-
mates it is necessary to use test functions of the form
nPu where n € C5°(€2). One needs to assume a priori that
p

Vu € L, (£2).

Definition: A function u € Wé’f(Q) is a (Sobolev) weak
solution of the p-Laplace equation if (2) holds for every
¢ € CSO(Q).

Weak solutions of the p-Laplace equation are often called
p-harmonic functions.

Remark on regularity: Ural'tseva (68) proved that for
p > 2 weak solutions of equation (1) have Holder contin-
uous derivatives. This result was later extended to cover
the case 1 < p < 2 by Lewis (83) and DiBenedetto (83).
However, in general, solutions do not have any better
regularity than C&)’g‘.

The lack of classical second derivatives prevents the point-
wise interpretation of (1) as well as rigorous calculations
with second derivatives that formally make sense. The
consideration of viscosity solutions of degenerate elliptic
equations like (1) provides us with a device to overcome
this difficulty.

As in the linear theory (p = 2), sub and supersolutions
are necessary for the treatment of the obstacle problem

and for Perron’s method. 5



Definition A function u € ng’f(fz) is a (Sobolev) p-
supersolution of equation (1) if

(3) | IVuP=2(Vu, Vg) do > 0

for every nonnegative test function ¢ € C5°(£2).

Theorem (Serrin, 64) Every p-supersolution is locally
essentially bounded below and it always has a represen-
tative that is lower semi-continuous.

3. Potential Theoretic Weak
Solutions

p-supersolutions always satisfy the comparison principle
with respect to p-harmonic functions. This property is
used to define supersolutions in the potential theoretic
sense.

Definition: A lower semi-continuous function u: 2 —
R U {400} that is not identically 4oc0 is p-superharmonic,
if it satisfies the comparison principle with respect to p-
harmonic functions in every subdomain D with closure in
Q: If a p-harmonic function h € C(D) is such that

u(x) > h(x) for all x € D
then
u(x) > h(zx) for all z € D.



Theorem (Lindqvist, 86) Every p-supersolution has a
lower semicontinuous representative that is p-superhar-
monic.

Example: The fundamental solution given by

p—n

x — |z|p—1
for 1 < p<n and by

()
r+—log | —
||

for p = n, IS p-superharmonic, yet not a p-supersolution
in any domain containing the origin.

Theorem (Lindgvist, 86) If v is locally bounded and
p-superharmonic, then v € Wlé’f and it is a (Sobolev) p-
supersolutions.



4. Viscosity Solutions

Local Definition: A lower semi-continuous function u: €2 —
R U {400} that is not identically 4oc is a p-supersolution
in the viscosity sense if for every zg € 2 and ¢ € C2(Q)
touching v from below at xg, that is

(1) ¢(zg) = u(zo),
(4) (12) ¢(x) < u(zx) for z # zg, and
(i11) Vo(zg) #O,

we have

(5) —div ([V[P~2V¢) (z0) > 0.

Note the need for condition (4)(iii) in the pointwise eval-
uation of (5) in the case 1 < p < 2, since we need the
function x — — div (|V¢|p_2Vq§) (z) to be defined at every
point near xzg.

Remarks: (i) we need only to ask that (4)(ii) holds in a
neighborhood of the point zg,

(ii) by adding —e|z — 2g|* to ¢ we can replace “<” by
“< " in (4)(ii) and,

(iii) it suffices to test with quadratic polynomials ¢.
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Definition based on Comparison A lower semi-continuous
function u: Q — RU {400} that is not identically oo is
a p-supersolution in the viscosity sense, if for every do-
main D whose closure is contained in €2 and for every
» € C2(D)NC(D) such that

—div (|V¢[P72V$) < 0in D
¢ < uonaD
we have ¢ < u in D.

Lemma 1: Local Definition = Definition based on com-
parison.

Lemma 2: Every p-superharmonic function is a p-super-
solution in the viscosity sense.

We have three different notions of weak supersolutions in
increasing order of generality:

p-supersolutions,
p-superharmonic functions, and
p-supersolutions in the viscosity sense.
The relationship between the first two is very well under-
stood. Locally bounded p-superharmonic functions are p-

supersolutions and a given p-superharmonic function is is
a monotone increasing pointwise limit of p—supersolut6ions.



Theorem 1 (Juutinen-Lindqvist-M, 01)
p-superharmonic functions = p-supersolutions in the vis-
cosity sense.

In order to prove this theorem, we must show that p-
supersolutions in the viscosity sense satisfy the compari-
son principle with respect to p-harmonic functions. If one
knew that p-harmonic functions could be approximated
by C2-smooth strict supersolutions, the converse would
follow easily. However, such an approximation result is
not known to us for p #= 2.

Theorem 2 (Juutinen-Lindqvist-M, 01) Suppose that
u IS a p-subsolution in viscosity sense and v is a p-super-
solution in the viscosity sense in a bounded domain 2. If
for all x € 0€2 we have

Ilr;’l_f:gpu(y) < liminfw(y)
and both sides are not simultaneously oo or —oo, then
u(x) < wv(x) for all x € Q.

The proof of this theorem is based on the maximum
principle for semi-continuous functions of Crandall-Ishii-
Lions-Jensen (92).



5. Jets

Definition: Let v be an extended real valued function
defined in a domain 2. For a point g € 2 we define
the second order sub-jet J2~ (v, zg) as the set of all pairs
(n,X) € R" x S(R"), where S(R™) is the set of symmetric
n X n real matrices, such that as * — xg we have

o(@) > 0(w0)+n, #—z0)+ 3 (X (20, 2—z0)+0 (|17 — w0[2) .

Definition: Let u be an extended real valued function
defined in a domain €2. For xg € €2 we define the second
order super-jet J2(u,zg) as the set of all pairs (1, X) €
R™ x S(R™) such that as x — xg we have

u(e) < w0+, w—z0)+ (X (o—0), 2—z0)+o (| — 7o)

Facts about Jets:

(i) the sets J21(u,z) and J2~(u,z) could very well be
empty.

(i) If J2 T (u,z)NJ?~(u,z) £ 0, then it contains only one
pair (ng, Xp). Moreover, the function u is differentiable
at zg, the vector ng = Vu(xzg) and we say that « is twice
pointwise differentiable at zg and write D?u(zg) = Xp.



(iii) Jets are determined by smooth functions ¢ that touch
a function u from above or below at a point zg € 2.
Denote by K2~ (u,zg) the collection of pairs

(Vé(z0), D?¢(z0)) € R" x S(R™)

where ¢ € C2(2) touches w from below at zg; that is,
d(xg) = u(xg) and ¢(x) < u(x) for x #= xg. Similarly, we
define K271 (u, zg) using smooth test functions that touch
a function u from above. In fact we have:
Lemma (Ishii-Crandall, 96):

K2’+(’U,,ZE0) — J2’+(’U,71130)
and

K27_(u7 330) — J2’_(’U,, 560).

From this lemma we see that the local definition and the
definition based on comparison of viscosity supersolutions
are equivalent to:

Jets Definition: A lower semi-continuous function u: €2 —
R U {400} that is not identically 4oc is a p-supersolution

in the viscosity sense, if for every zg € €2 and every pair

(n,X) € J>(u,zg) with n %= 0, we have

(6)  —[InlP~2trace(X) + (p — 2)lP~*HX - n,n)] > 0.

Note that (6) can be replaced by

(7) — [Inl? trace(X) + (p — 2)(X -, )| > 0
without affecting the notion of p-supersolution.



6. Proof of Theorem 2

First reduction (approximation by smooth domains). We
may assume, without loss of generality, that the bounded
domain € is smooth, the function v € CL(Q) is p-
harmonic, and v < v on 0f2.

Based on regularity results for the p-Laplacian.

Second reduction (approximation by “regularized” equa-
tions). It is enough to prove the comparison principle in
the case when v is a weak solution of the equation

(8) —Apv = ¢, e > 0.

Based on the following:

Lemma: Let v € W1P(Q) be p-harmonic in a bounded
domain 2, and let v be the unique solution of the Dirich-
let problem

—Apve =€ In €2,
Ve = v ON OfL2.

Then ve — v locally uniformly in €2 as € — O.

The ‘“viscosity properties” of weak solutions of (8) are
contained in the following:
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Key Lemma: Let v € WHP(Q) be a continuous weak
solution of the equation —Apve = € in €2, and let zg € 2
and ¢ € C?%(2) be such that ve — ¢ has a strict local
minimum at xg (¢ touches v from below exactly at zg.)
Then

' — >

Ilggsx%p( App()) > ¢,

TFxQ
provided that Vo¢(xg) &= O or zg is an isolated critical
point.

Final Step: Suppose that 2 C R" is a smoothly bounded
domain, w is a viscosity p-subsolution, and v € C1L2() is
a weak solution of —Apv = ¢ in €2 such that v < v on 0€2.
Then v <wvin £2.

Based on a p-variation of the maximum principle for semi-
continuous functions of Crandall-Ishii-Lions-Jensen.
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7. oo-harmonic functions

What is the limit of the p-Laplacian as p — oco? Let up be
the solution of the Dirichlet problem

(9) —div (|VuP™2Vu) = 0in Q
F on 0f2.
where the domain €2 and the boundary datum F' are

smooth. Does the limit of u, exist as p — oo? If SO,
what equation does it satisfy?

Up

To discover the equation that uc must satisfy, let us
proceed formally and divide (7) by p — 2 and let p — .
We obtain that for every pair (n,X) € J% (uoco, zg) We
must have

—(X -n,n) > 0.

This argument can be made rigorous (by using jets) to
conclude that uso IS a viscosity solution of the equation

(10) —Aoou = —(D?u - Vu,Vu) =0
in 2. The operator on the left-hand side of (10) is de-
noted A~ and is given by

n 82u  Ou Ou

DAocou = :
> z‘,jzz:l Ox;0x; Ox; 0x;
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It is not clear whether notions of weak solution other
than viscosity solutions apply in this case. Naturally, this
operator is called the oco-Laplacian and the solutions of the
equation —Asu = 0 are called co-harmonic functions.

For a finite p, the unique solution to (9) minimizes the
p-Dirichlet integral

/ VulP dx
2

among all functions with boundary values F'. Letting p —
oo one would guess that uose Minimizes the sup-norm of
the gradient among all functions with boundary values F'.
This is, indeed, the case. Moreover, this minimization
property still holds when restricting uoo to any subdomain
of 2 (Aronsson, 67)

We could say that (10) is the Euler-Lagrange equation of
the functional ||Vul|co-

So far we have indicated how to show the existence of
oo-harmonic functions with given boundary values.

Jensen (93) established uniqueness in the viscosity class,
thereby showing that the Dirichlet problem for —A iS
well posed.
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8. The oo-eigenvalue problem

Up to multiplication by a positive constant there exists a
unique positive function uy, € Wol’p(Q) that minimizes the
p-Rayleigh quotient

(Jo [VulP de)t/P

o) = (Joy [ulP da) /P

among all nonzero functions u € Wol’p(Q).

Let Ap be the minimum of J,. Then the p-ground state
up 1S a solution of the equation

(11) —div (|VulP72Vu) = AbjulP~2u.

We ask now what should be the equation that the oo-
ground state satisfies. This number turns out to be the
reciprocal of the radius of the largest ball in 2

1
max{d(z,0Q): x € Q}
One can now proceed formally to obtain that wee Must
be a solution of the equation

Noo =

(12) Min{|Vu| — Aoott, —Asou} = 0.

This calculation can indeed be made rigorous (Juutinen-
Lindqvist-M, Fukagai-Ito-Narukawa, 99).
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In the case of a ball, it is known that the distance to the
boundary is an oo-ground state, since it is the limit of
p-ground states. For more complicated geometries, we
can use the equation for the oco-ground states to prove
that this is not the case. For example, when €2 is a
square, the distance to the boundary d(z,92) is not an
oo-ground state, although it minimizes the formal limit of
the functionals J, as p — oo,

Ty = Il
||l

To obtain deeper results we must study the uniqueness of
oo-ground states. So far as we know, unigueness has only
been established in the case when 2 is a ball, where the
only solution is the distance to the boundary. However,
we do have unigqueness for the Dirichlet problem for the
equation (12) if the boundary datum is strictly positive.

Corollary: If we have a non-trivial solution to (12) with
any A\ € R in place of Ax, then indeed A = A .
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9. Superharmonicity of ground
states

Consider the p-ground state up in a bounded convex do-
main 2. This is the unique positive solution of (11) up
to multiplication by a positive constant.

Theorem (Lindqvist-M-Saaksman,00) For p > 2 the
ground state uy is superharmonic (that is 2-superharmonic).

This statement does not involve any use of Vviscosity SO-
lutions. However its proof is based on calculations with
second derivatives that are rigorous only in the viscosity
sense.
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10. Concavity

Consider the equation
(13) — D%y =0,

where 0 denotes the zero matrix. Supersolutions in the
viscosity sense are defined using the matrix partial order
relation. A lower semicontinuos function is a supersolu-
tion in the viscosity sense of (13) if for every test function
¢ € C? touching u from below at a point zg we have

—D?¢(zg) >0

in the sense of matrices. That is, the symmetric matrix
—D?¢(zp) is positive semi-definite.

It is easy to see that a concave function must always be
a supersolution in the viscosity sense of (13). Actually,
the converse is also true:

Theorem (Alvarez-Lasry-Lions, 97 and Lindqvist-M-
Saaksman, 00): Concave functions are precisely super-
solutions of equation (13) in the viscosity sense.
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11. Rado’s Theorem

T he classical theorem of T. Rado says that if a continuous
function f(z) is holomorphic when f(z) # 0, then it is
holomorphic in its domain of definition.

Theorem (Kral, 83): Let 2 be a domain in R™ and
suppose that v € C1(Q). If w is harmonic on the set

Q\{x € R": u(x) = 0},

then it is harmonic in the whole (2.

Theorem ( Kilpelainen for n = 2 (94), Juutinen-
Lindqgvist for general n > 2, (02)): Let €2 be a domain
in R” and suppose that u € C1(). If w is p-harmonic on
the set

Q\{x € R": u(x) = 0},

then it is p-harmonic in the whole 2.
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