p-HARMONIC MEASURE IS NOT SUBADDITIVE

JOSÉ G. LLORENTE, JUAN J. MANFREDI, AND JANG-MEI WU
Dedicated to the memory of Tom Wolff.
Without his work this note would not have been possible.

Abstract

When $1<p<\infty$ and $p \neq 2$ the p-harmonic measure on the boundary of the half plane \mathbb{R}_{+}^{2} is not subadditive. In fact, there are finitely many sets $E_{1}, E_{2}, \ldots, E_{\kappa}$ on \mathbb{R}, of p-harmonic measure zero, such that $E_{1} \cup E_{2} \cup \ldots \cup E_{\kappa}=\mathbb{R}$.

1. Introduction

We consider the p-harmonic measure associated to the operator

$$
L_{p}(u)=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right),
$$

the p-Laplacian of a function u, for $1<p<\infty$. A p-harmonic function in a domain $\Omega \subseteq R^{n}(n \geq 2)$ is a weak solution of $L_{p} u=0$; that is, $u \in W_{\mathrm{loc}}^{1, p}(\Omega)$ and

$$
\left.\left.\int_{\Omega}\langle | \nabla u\right|^{p-2} \nabla u, \nabla \varphi\right\rangle d x=0
$$

whenever $\varphi \in C_{0}^{\infty}(\Omega)$. Weak solutions of $L_{p}(u)=0$ are indeed in the class $C_{\text {loc }}^{1, \alpha}([\mathrm{DB}],[\mathrm{L} 1]$.$) A lower semicontinuous v: \Omega \rightarrow \mathbb{R} \cup\{\infty\}$ is p-superharmonic provided that $v \not \equiv \infty$, and for each open $D \subset \bar{D} \subset \Omega$ and each u continuous on \bar{D} and p-harmonic in D, the inequality $v \geq u$ on ∂D implies $v \geq u$ in D.

[^0]Let E be a subset of $\partial \Omega$. Consider the class $\mathcal{C}(E, \Omega)$ of nonnegative p-superharmonic functions v in Ω such that

$$
\liminf _{X \in \Omega, X \rightarrow \zeta} v(X) \geq \chi_{E}(\zeta)
$$

for all $\zeta \in \partial \Omega$. The p-harmonic measure of the set E relative to the domain Ω is the function $\omega_{p}(., E, \Omega)$ whose value at any $X \in \Omega$ is given by

$$
\omega_{p}(X, E, \Omega)=\inf \{v(X): v \in \mathcal{C}(E, \Omega)\}
$$

We often omit the variable X and the domain Ω and write $\omega_{p}(E, \Omega)$ or just $\omega_{p}(E)$. The function $\omega_{p}(E, \Omega)$ is p-harmonic in Ω, satisfies

$$
0 \leq \omega_{p}(E, \Omega) \leq 1
$$

and $\omega_{p}(E, \Omega)$ has boundary values 1 at all regular points interior to E and boundary values 0 at all regular points interior to $\partial \Omega \backslash E$. For these and additional potential theoretic properties of the p-Laplacian see the book [HKM].

When $p=2$ harmonic functions have the mean value property. Suppose Ω is a Dirichlet regular domain, then $\omega_{2}(X, \cdot, \Omega)$ is a probability measure on $\partial \Omega$ and the integral

$$
\int_{\partial \Omega} f(\zeta) d \omega_{2}(X, \zeta, \Omega)
$$

gives the solution to the Dirichlet problem for a given boundary data function f.

When $p \neq 2$, due to the nonlinearity of the p-Laplacian, p-harmonic functions need not satisfy the mean value property and the sum of two p-harmonic functions need not be p-harmonic. Consequently $\omega_{p}(X, \cdot, \Omega)$ is not additive on $\partial \Omega$, hence not a measure.

Very little is known about measure theoretic properties of p-harmonic measure when $p \neq 2$. Assume that Ω is Dirichlet regular. Then for all compact subsets E of the boundary $\partial \Omega$ we have

$$
\begin{equation*}
\omega_{p}(E, \Omega)+\omega_{p}(\partial \Omega \backslash E, \Omega)=1 \tag{1.1}
\end{equation*}
$$

and if E and F are both compact, disjoint, and $\omega_{p}(E, \Omega)=\omega_{p}(F, \Omega)=$ 0 then

$$
\begin{equation*}
\omega_{p}(E \cup F, \Omega)=0 \tag{1.2}
\end{equation*}
$$

These results can be found in [GLM] and also in [HKM].
Some conditions on the smallness of a compact set F in terms of Hausdorff dimension or capacity that imply $\omega_{p}(E \cup F, \Omega)=\omega_{p}(E, \Omega)$ can be found in $[\mathrm{AM}],[\mathrm{K}]$ and $[\mathrm{BBS}]$.

Martio asked in [M1] whether p-harmonic measure defines an outer measure on the zero level; i.e., whether (1.2) remains true when E and F are allowed to intersect and to be noncompact.

In this note we answer Martio's question negatively by showing that ω_{p} is not subadditive on null sets when $p \neq 2$. We build up an example when $\Omega=\mathbb{R}_{+}^{2}$ is the upper half-space and $\partial \Omega=\mathbb{R}$. We may consider the point at infinity as a part of the boundary but it is not difficult to see that $\omega_{p}\left(\{\infty\}, \mathbb{R}_{+}^{2}\right)=0$. Points in \mathbb{R}_{+}^{2} will be denoted by (x, y) or X interchangeably.

Theorem 1. Let $1<p<\infty$ and $p \neq 2$. Then there exist finitely many sets $E_{1}, E_{2}, \ldots, E_{\kappa}$ on \mathbb{R} such that

$$
\omega_{p}\left(E_{k}, \mathbb{R}_{+}^{2}\right)=0 \quad \text { and } \quad \bigcup_{k=1}^{\kappa} E_{k}=\mathbb{R}
$$

Furthermore, the sets E_{k} verify $\left|\mathbb{R} \backslash E_{k}\right|=0$
Here |.| stands for Lebesgue measure on the real line.
Corollary 1.1. There exist A and $B \subseteq \mathbb{R}$ such that

$$
\omega_{p}\left(A, \mathbb{R}_{+}^{2}\right)=\omega_{p}\left(B, \mathbb{R}_{+}^{2}\right)=0 \quad \text { and } \quad \omega_{p}\left(A \cup B, \mathbb{R}_{+}^{2}\right)>0
$$

Thus $\omega_{p}\left(\cdot, \mathbb{R}_{+}^{2}\right)$ is not subadditive on null sets.
Corollary 1.2. Let $1<p<\infty$ and $p \neq 2$. Then $\omega_{p}\left(X, \cdot, \mathbb{R}_{+}^{2}\right)$ is not a Choquet capacity for each $X \in \Omega$. In fact there exists an increasing sequence of sets $B_{1} \subseteq B_{2} \subseteq \cdots \subseteq B_{j} \subseteq \cdots \subseteq \mathbb{R}$ so that

$$
\lim _{j \rightarrow \infty} \omega_{p}\left(B_{j}\right)<\omega_{p}\left(\bigcup_{j=1}^{\infty} B_{j}\right)
$$

To prove Corollary 1.1, choose $k_{0}=\min \left\{k: \omega_{p}\left(E_{1} \cup E_{2} \cup \ldots E_{k}\right)>0\right\}$ and let $A=E_{1} \cup E_{2} \cup \ldots E_{k_{0}-1}, B=E_{k_{0}}$.

Corollary (1.2) follows from Theorem 1 as in the tree case done in [KLW]. The definition of Choquet capacity can be found in [HKM].

Both the Theorem and its corollaries can be extended to $\mathbb{R}_{+}^{n}(n \geq 3)$ by adding $n-2$ dummy variables.

Until recently, there has been no ground for conjecturing the answer to Martio's and some other questions about p-harmonic measures. A sequence of papers [CFPR], [KW], [ARY] and [KLW], is devoted to studying p-harmonic measure and Fatou theorem for bounded p harmonic functions in an overly simplified model - forward directed regular κ-branching trees. On such trees, Theorem 1 is proved and for each fixed p the exact value of the minimum of Hausdorff dimension of

Fatou sets over all bounded p-harmonic functions is given in $[\mathrm{KW}]$ and [KLW].

In [KLW] the construction of the sets in Theorem 1 for trees starts with a basic p-harmonic function u that does not satisfy the mean value property, follows with a Riesz product and then a stopping time argument. It is really quite simple. In \mathbb{R}_{+}^{2} we follow the same procedures. The basic p-harmonic function is infinitely more complicated and is provided by remarkable examples of Wolff for $2<p<\infty$, and of Lewis for $1<p<2$ ([Wo1], [Wo2] and [L2]). On a tree there is a perfect independence among branches and the Riesz product includes all generations; in \mathbb{R}_{+}^{2} we obtain an approximate independence by introducing large gaps in the Riesz product. Finally, instead of a stopping time argument, we use an ingenious lemma of Wolff [Wo1] on gap series of p-harmonic functions, to estimate the p-harmonic function whose boundary values are given by an infinite product.

2. Preliminaries

In this section we recall several properties of p-harmonic functions which are needed in the proofs.

If $u(X)$ is p-harmonic and $c \in \mathbb{R}$, then $c+u(X), c u(X)$ and $u(c X)$ are p-harmonic. If u is a nonnegative p-harmonic function in Ω and B is a ball such that $2 B \subseteq \Omega$, then $\sup _{B} u \leq C \inf _{B} u$ for some $C=C(n, p)>0$ (Harnack inequality). A nonconstant p-harmonic function in a domain cannot attain its supremum or infimum (Strong Maximum Principle). If a sequence of p-harmonic functions converges uniformly then the limit is also p-harmonic.

We list now some basic properties of p-harmonic measure.
(1) If $\omega_{p}(X, E, \Omega)=0$ at some $X \in \Omega$ then $\omega_{p}(Y, E, \Omega)=0$ for any other $Y \in \Omega$ by Harnack inequality.
(2) If $E_{1} \subseteq E_{2} \subseteq \partial \Omega$ then $\omega_{p}\left(E_{1}, \Omega\right) \leq \omega_{p}\left(E_{2}, \Omega\right)$ (monotonicity).
(3) If $\Omega_{1} \subseteq \Omega_{2}$ and $E \subseteq \partial \Omega_{1} \cap \partial \Omega_{2}$ then $\omega_{p}\left(E, \Omega_{1}\right) \leq \omega_{p}\left(E, \Omega_{2}\right)$ (Carleman's principle).
(4) If $E_{1} \supseteq E_{2} \supseteq, \ldots, \supseteq E_{j} \supseteq \ldots$ are closed sets on $\partial \Omega$, then

$$
\omega_{p}\left(\bigcap_{j=1}^{\infty} E_{j}, \Omega\right)=\lim _{j \rightarrow \infty} \omega_{p}\left(E_{j}\right)
$$

(upper semicontinuity on closed sets).
See chapter 11 in [HKM] for these properties.

We follow [Wo1] and set $W^{p \mid \lambda}$ be the class of all functions $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ which are λ-periodic in the x variable $(f(x+\lambda, y)=f(x, y))$ and satisfy

$$
\|f\|_{p \mid \lambda}^{p}=\int_{[0, \lambda) \times(0, \infty)}|\nabla f(x, y)|^{p} d x d y<\infty
$$

where the gradient is taken in the sense of distributions. If $f \in W^{p \mid \lambda}$ then the function f has a well-defined trace on \mathbb{R}; and among the functions g such that $g-f \in W^{p \mid \lambda}$ has trace 0 on \mathbb{R}, there is a unique g, denoted by \hat{f}, which minimizes $\|g\|_{p \mid \lambda}$. The function \hat{f} is the unique p-harmonic function in \mathbb{R}_{+}^{2} with boundary values f on \mathbb{R}. Moreover, there exists $\xi \in \mathbb{R}$ so that

$$
|\hat{f}(x, y)-\xi| \leq 2 e^{-\frac{\gamma y}{\lambda}}\|f\|_{\infty}
$$

for some $\gamma=\gamma(p)>0$, [Wo1]. Extend then \hat{f} to \mathbb{R} by its boundary values. The comparison principle holds in this setting: let $f, g \in W^{p \mid \lambda}$ satisfy $f \leq g$ in the Sobolev sense on \mathbb{R}, then $\hat{f} \leq \hat{g}$ in $\mathbb{R}_{+}^{2}([\mathrm{Ma}]$, [Wo1]).

The following lemma of Wolff ([Wo1]) is a substitute for a "local comparison principle" (unknown for $p \neq 2$) for p-harmonic functions. It is not difficult to prove (2.1) below for $y<A \nu^{-1}$ and (2.3) below for $y>1$. However, much deeper analysis is needed to obtain (2.1) and (2.3) below on two opposite sides of $y=A \nu^{-\alpha}$ for some $0<\alpha<1$. We shall need the full force of Wolff's lemma.

Wolff's Lemma ([Wo1]). Let $1<p<\infty$. Define $\alpha=1-2 / p$ if $p \geq 2$ and $\alpha=1-p / 2$ if $p<2$. Let $\epsilon>0$ and $0<M<\infty$. Then there are small $A=A(p, \epsilon, M)>0$ and large $\nu_{0}=\nu_{0}(p, \epsilon, M)<\infty$ so that the following are true:

If $\nu>\nu_{0}$ is an integer, $f, g, q \in \operatorname{Lip}_{1}(\mathbb{R})$ are periodic with periods $1,1, \nu^{-1}$ respectively, and

$$
\max \left(\|f\|_{\infty},\|g\|_{\infty},\|q\|_{\infty},\|f\|_{L i p_{1}},\|g\|_{L i p_{1}}, \nu^{-1}\|q\|_{L i p_{1}}\right) \leq M
$$

then for $(x, y) \in \mathbb{R}_{+}^{2}$ we have

$$
\begin{equation*}
\mid \widehat{(q f+g})(x, y)-(\hat{q}(x, y) f(x)+g(x)) \mid<\epsilon \quad \text { if } \quad y<A \nu^{-\alpha} \tag{2.1}
\end{equation*}
$$

If, in addition to the above, $\operatorname{hatq}(x, y) \rightarrow 0$ as $y \rightarrow \infty$, then

$$
\begin{gather*}
\left|(\widehat{q f+g})\left(x, A \nu^{-\alpha}\right)-g(x)\right|<\epsilon \tag{2.2}\\
\mid \widehat{(q f+g})(x, y)-\hat{g}(x, y) \mid<\epsilon \quad \text { if } \quad y>A \nu^{-\alpha} \tag{2.3}
\end{gather*}
$$

The key to [Wo1] and [L2] is the existence of a basic function Φ which shows the failure of the mean value property for periodic p-harmonic functions in the class $W^{p \mid \lambda}\left(\mathbb{R}_{+}^{2}\right)$ when $p \neq 2$. The mean of $\Phi(x, 0)$ on $[0,1]$ equals the limit of Φ at ∞ when $p=2$.

Theorem A. (Wolff and Lewis [Wo1], [L2]) For $1<p<\infty$ and $p \neq 2$ there exists a Lipschitz function $\Phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ such that $L_{p} \Phi=0$, Φ has period 1 in the x variable $\Phi(x+1, y)=\Phi(x, y)$,

$$
\begin{gathered}
\int_{[0,1) \times(0, \infty)}|\nabla \Phi|^{p} d x d y<+\infty \\
\int_{0}^{1} \Phi(x, 0) d x>0, \quad \text { but } \quad \Phi(x, y) \rightarrow 0 \quad \text { as } \quad y \rightarrow \infty .
\end{gathered}
$$

Note that in $\mathbb{R}^{n} \backslash\{0\}(n \geq 2)$, the p-harmonic function $|X|^{\frac{p-n}{p-1}}$ if $p \neq n$, or $\log |X|$ if $p=n$, fails to have the mean value property on spheres when $p \neq 2$.

3. Proofs

Proof of Theorem 1: Fix $p \neq 2,1<p<\infty$. Let Φ be the basic function of Wolff and Lewis. Note that $\Phi(x, 0)$ must take both positive and negative values by the comparison principle. Replacing Φ by $c \Phi$ ($c>0$ small constant), if necessary, we may assume

$$
\begin{equation*}
\|\Phi\|_{\infty}<\frac{1}{2} \tag{3.1}
\end{equation*}
$$

and

$$
\int_{0}^{1} \log (1+\Phi(x, 0)) d x>0
$$

Fix a positive integer κ such that

$$
\sum_{k=1}^{\kappa} a_{k}>0 \quad \text { and } \quad \prod_{k=1}^{\kappa}\left(1+a_{k}\right)>1
$$

where

$$
\begin{equation*}
a_{k}=\min \left\{\Phi(x, 0): x \in\left[\frac{k-1}{\kappa}, \frac{k}{\kappa}\right]\right\} \tag{3.2}
\end{equation*}
$$

Let

$$
L=\|\Phi\|_{L i p_{1}}
$$

and fix $\Lambda>1$ and an integer $n_{0}>5$ so that

$$
\begin{equation*}
1<\Lambda<\prod_{k=1}^{\kappa}\left(1+a_{k}\right)^{\frac{1}{\kappa}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
3^{-n_{0}}<\min \left\{1+\max \left\{a_{k}\right\}-\Lambda, \frac{L}{\kappa}\right\} . \tag{3.4}
\end{equation*}
$$

For convenience we write $f(x)$ for $f(x, 0)$ and $\omega_{p}(E)$ for $\omega_{p}\left(E, \mathbb{R}_{+}^{2}\right)$ from now on.

We shall choose inductively an increasing sequence of positive powers of the integer κ

$$
1<\nu_{1}<\nu_{2}<\ldots
$$

and shall define for each $k \in[1, \kappa]$ two sequences of functions on \mathbb{R}

$$
\begin{equation*}
q_{1}^{k}(x)=\Phi\left(x+\frac{k-1}{\kappa}\right), f_{1}^{k}(x)=1+q_{1}^{k}(x) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{j}^{k}(x)=\Phi\left(\nu_{j} x+\frac{k-1}{\kappa}\right), f_{j}^{k}(x)=f_{j-1}^{k}(x)\left(1+q_{j}^{k}(x)\right) . \tag{3.6}
\end{equation*}
$$

After these are defined, we observe from (3.2), (3.3) and the periodicity of $\Phi(x)$ that

$$
\begin{equation*}
\prod_{k=1}^{\kappa} f_{j}^{k}(x)=\prod_{i=1}^{j} \prod_{k=1}^{\kappa}\left(1+\Phi\left(\nu_{i} x+\frac{k-1}{\kappa}\right)\right)>\Lambda^{\kappa j} \quad \text { for all } \quad x \tag{3.7}
\end{equation*}
$$

Next, it follows from (3.1) that for $j \geq 1$

$$
\begin{equation*}
\left\|q_{j}^{k}\right\|<\frac{1}{2} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{j}^{k}\right\|_{L i p_{1}} \leq L \nu_{j} 2^{j} \tag{3.11}
\end{equation*}
$$

We then define for each $k \in[1, \kappa]$ a set

$$
E_{k}=\left\{x \in \mathbb{R}: f_{j}^{k}(x)>\Lambda^{j} \quad \text { for infinitely many } \quad j^{\prime} s\right\}
$$

Observe that (3.7) implies

$$
\bigcup_{k=1}^{\kappa} E_{k}=\mathbb{R}
$$

To finish the proof we need to establish

$$
\omega_{p}\left(E_{k}\right)=0 \quad \text { and } \quad\left|\mathbb{R} \backslash E_{k}\right|=0
$$

for each k.
We start by discussing the choice of $\left\{\nu_{j}\right\}$ and two other sequences $\left\{r_{j}\right\}$ and $\left\{t_{j}\right\}$; we always assume $\left\{\nu_{j}\right\}$ are positive powers of κ, and $\left\{r_{j}\right\}$ and $\left\{t_{j}\right\}$ are negative powers of κ.

Set $r_{0}=t_{0}=1$ and $\nu_{1}=1$. After $\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{j}\right\},\left\{r_{0}, r_{1}, \ldots, r_{j-1}\right\}$ and $\left\{t_{0}, t_{1}, \ldots, t_{j-1}\right\}$ are chosen, the functions

$$
\left\{q_{1}^{k}, q_{2}^{k}, \ldots, q_{j}^{k}\right\}
$$

and

$$
\left\{f_{1}^{k}, f_{2}^{k}, \ldots, f_{j}^{k}\right\}
$$

are then defined by (3.5) and (3.6) for each $k \in[1, \kappa]$. We then choose $r_{j}>0$ so that

$$
\begin{equation*}
r_{j}<\min \left\{t_{j-1},\left(L \nu_{j} 6^{j+1}\right)^{-1}\right\} \tag{3.12}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|\widehat{f_{j}^{k}}(x, y)-f_{j}^{k}(x)\right|<3^{-j-1} \quad \text { if } \quad 0 \leq y \leq r_{j} \tag{3.13}
\end{equation*}
$$

for all $k \in[1, \kappa]$.
Let $f=g=f_{j}^{k}, q=q_{j+1}^{k}, \quad M=L \nu_{j} 2^{j}$ and $\epsilon=3^{-j-1}$ in Wolff's lemma; then ν_{j+1} and t_{j} can be chosen from (2.1) and (2.3) so that

$$
\begin{gather*}
\nu_{j+1}^{-1}<t_{j}<r_{j} \tag{3.14}\\
\left|\widehat{f_{j+1}^{k}}(x, y)-f_{j}^{k}(x)\left(1+\widehat{q_{j+1}^{k}}(x, y)\right)\right|<3^{-j-1} \quad \text { if } \quad 0<y \leq t_{j} \tag{3.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\widehat{f_{j+1}^{k}}(x, y)-\widehat{f_{j}^{k}}(x, y)\right|<3^{-j-1} \quad \text { if } \quad y \geq t_{j} \tag{3.16}
\end{equation*}
$$

for all $k \in[1, \kappa]$. The fact that $0<\alpha<1$ in Wolff's lemma is needed here to insure that we can always find a t_{j} such that $\nu_{j+1}^{-1}<t_{j}<r_{j}$. We also need the fact that $\widehat{q_{j+1}^{k}}(x, y) \rightarrow 0$ as $y \rightarrow \infty$ to obtain (3.16). This ends the induction procedure.

For each $k \in[1, \kappa]$ the sequence $\left\{\widehat{f_{j}^{k}}\right\}$ converges to a p-harmonic function f^{k} on \mathbb{R}_{+}^{2} uniformly on compact subsets. Since $\left\{t_{j}\right\}$ is decreasing, it follows from (3.16) that

$$
\begin{equation*}
\left|\widehat{f_{N}^{k}}(x, y)-\widehat{f_{j}^{k}}(x, y)\right|<3^{-j} \quad \text { if } \quad y \geq t_{j} \tag{3.17}
\end{equation*}
$$

for all $N \geq j$ and $k \in[1, \kappa]$; and from (3.15) and (3.17) that

$$
\begin{equation*}
\widehat{f_{N}^{k}}(x, y)>\frac{1}{2} f_{j}^{k}(x)-3^{-j} \quad \text { if } \quad t_{j+1} \leq y \leq t_{j} \tag{3.18}
\end{equation*}
$$

for all $N \geq j+1$ and $k \in[1, \kappa]$. To see (3.18), observe that, since $y \geq t_{j+1}$, we get by (3.17),

$$
\left|\widehat{f_{N}^{k}}(x, y)-\widehat{f_{j+1}^{k}}(x, y)\right|<3^{-j-1}
$$

On the other hand, since $y \leq t_{j}$, by (3.15) and (3.1) we have

$$
\widehat{f_{j+1}^{k}}(x, y)>\frac{1}{2} f_{j}^{k}(x)-3^{-j-1} .
$$

We are now ready to prove $\omega_{p}\left(E_{k}\right)=0$ for all $k \in[1, \kappa]$. In view of the Harnack inequality it is enough to prove $\omega_{p}\left(X_{0}, E_{k}, \mathbb{R}_{+}^{2}\right)=0$ for a fixed point $X_{0} \in \mathbb{R}_{+}^{2}$. We take $X_{0}=(0,1)$. We fix k and from now on, we omit k in the subscripts and superscripts of E_{k}, q_{j}^{k} and f_{j}^{k}. Let $G_{j}=\left\{x: f_{j}(x)>\Lambda^{j}\right\}$, so that we have

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} G_{j}
$$

By monotonicity we get $\omega_{p}(E) \leq \omega_{p}\left(\bigcup_{j=n}^{\infty} G_{j}\right)$. Therefore it suffices to prove that for some $C>0$,

$$
\begin{equation*}
\omega_{p}\left(X_{0}, \bigcup_{j=n}^{\infty} G_{j}\right) \leq C \Lambda^{-n} \text { for all } n>n_{0} \tag{3.19}
\end{equation*}
$$

In fact it is enough to show that for some $C>0$,

$$
\begin{equation*}
\omega_{p}\left(X_{0}, \bigcup_{j=n}^{N} G_{j}\right)<C \Lambda^{-n} \quad \text { for all } \quad N>n>n_{0} \tag{3.20}
\end{equation*}
$$

Let us see how (3.20) implies (3.19). Observe that $\mathbb{R} \backslash \bigcup_{j=n}^{N} G_{j}$, $N \geq n$ is a decreasing sequence of closed sets on \mathbb{R}. Since the characteristic function of an open set is bounded and lower semicontinous, it
is resolutive so that

$$
\omega_{p}\left(\bigcup_{j=n}^{N} G_{j}\right)=1-\omega_{p}\left(\mathbb{R} \backslash \bigcup_{j=n}^{N} G_{j}\right)
$$

(See (9.31) and (11.4) of [HKM].) By the upper semicontinuity of p-harmonic measure on closed sets, we can let N go to ∞ to get

$$
\lim _{N \rightarrow \infty} \omega_{p}\left(\bigcup_{j=n}^{N} G_{j}\right)=1-\omega_{p}\left(\mathbb{R} \backslash \bigcup_{j=n}^{\infty} G_{j}\right) .
$$

Therefore we conclude

$$
\lim _{N \rightarrow \infty} \omega_{p}\left(\bigcup_{j=n}^{N} G_{j}\right)=\omega_{p}\left(\bigcup_{j=n}^{\infty} G_{j}\right)
$$

We need to establish (3.20). Define for each $j>n_{0}$ a set
$H_{j}=\bigcup\left\{I: \kappa\right.$-adic closed interval of length $\left.t_{j}, \max _{x \in I} f_{j}(x) \geq \Lambda^{j}-3^{-j-1}\right\}$ and let

$$
T_{j}=H_{j} \times\left[0, t_{j}\right] .
$$

Observe that from the definition of H_{j} we have

$$
\begin{equation*}
f_{j}(x)<\Lambda^{j}-3^{-j-1} \quad \text { on } \quad H_{j} \backslash \stackrel{o}{H}_{j} \tag{3.21}
\end{equation*}
$$

where $\stackrel{o}{H}_{j}$ is the relative interior of H_{j}. Hence, it follows that

$$
G_{j} \subseteq \overline{G_{j}} \subseteq \stackrel{o}{H}_{j} \subseteq H_{j}
$$

Note from (3.8), (3.9), (3.10), (3.11), (3.12), and (3.14) that we have

$$
\begin{equation*}
\left|f_{j}(x)-f_{j}\left(x^{\prime}\right)\right| \leq L \nu_{j} 2^{j} t_{j}<3^{-j} 6^{-1} \quad \text { if } \quad\left|x-x^{\prime}\right| \leq t_{j} \tag{3.22}
\end{equation*}
$$

Therefore the inequality

$$
\begin{equation*}
\min _{H_{j}} f_{j} \geq \Lambda^{j}-3^{-j} 2^{-1} \tag{3.23}
\end{equation*}
$$

holds. Finally, from (3.13) and (3.14) we deduce

$$
\begin{equation*}
\widehat{f}_{j}(x, y)>\Lambda^{j}-3^{-j} \quad \text { on } \quad T_{j} \tag{3.24}
\end{equation*}
$$

We pause for a remark. If the statement

$$
\begin{equation*}
\widehat{f_{N}}(x, y)>C \Lambda^{j} \quad \text { on } \quad \partial T_{j} \backslash \stackrel{o}{H}_{j} \quad \text { for all } \quad N \geq j>n_{0} \tag{3.25}
\end{equation*}
$$

were true, then it would follow from the comparison principle applied on the domain $\mathbb{R}_{+}^{2} \backslash \cup_{j=1}^{N} T_{j}$ and the convergence of $\left\{\widehat{f}_{j}\right\}$ that
$\omega_{p}\left(X_{0}, \bigcup_{j=n}^{N} G_{j}\right) \leq \omega_{p}\left(X_{0}, \bigcup_{j=n}^{N} \partial T_{j} \backslash \stackrel{o}{H}_{j}\right) \leq C^{-1} \Lambda^{-n} \widehat{f_{N}}\left(X_{0}\right)<C\left(X_{0}\right) \Lambda^{-n}$.
This would give (3.20) and thus $\omega_{p}(E)=0$. Since (3.25) need not be true on vertical edges in ∂T_{j}, we need to modify the sets T_{j}.

The connected components of T_{j} are mutually disjoint rectangles Q of height t_{j} and of widths integer multiples of t_{j}. This class of rectangles is mapped to itself by the family of mappings $(x, y) \mapsto\left(m \nu_{j}^{-1}+x, y\right)$, $m \in \mathbb{Z}$.

Suppose $Q=[a, b] \times\left[0, t_{j}\right]$ is such a component. Then

$$
\begin{equation*}
f_{j}(a), f_{j}(b)<\Lambda^{j}-3^{-j-1} \tag{3.26}
\end{equation*}
$$

by (3.21). There are two possibilities.
Case I: $\max _{[a, b]} f_{j} \leq \Lambda^{j}$.
In this case define Q^{*} to be the empty set \emptyset, and note from (3.26) and the definition of G_{j} that

$$
\begin{equation*}
\overline{G_{j}} \cap[a, b]=\emptyset \tag{3.27}
\end{equation*}
$$

CASE II: $\max _{[a, b]} f_{j}>\Lambda^{j}$.
In this case let $I_{j}^{Q}=\left[a, a+t_{j}\right]$ and $J_{j}^{Q}=\left[b-t_{j}, b\right]$, and note from (3.22), (3.23), and (3.26) that

$$
\Lambda^{j}-3^{-j}<f_{j}(x)<\Lambda^{j}-3^{-j-2} \quad \text { on } \quad I_{j}^{Q} \cup J_{j}^{Q},
$$

so that we have

$$
\begin{equation*}
\overline{G_{j}} \cap\left(I_{j}^{Q} \cup J_{j}^{Q}\right)=\emptyset \tag{3.28}
\end{equation*}
$$

To modify Q in Case II, we need the following fact.
FACt. If I is a κ-adic closed interval of length $t_{\ell}\left(\ell>n_{0}\right)$ on which $f_{\ell}(x) \geq \Lambda^{\ell}-3^{-\ell}$, then I contains a κ-adic closed subinterval of length $t_{\ell+1}$ on which $f_{\ell+1}(x)>\Lambda^{\ell+1}$.

To see this, we write $f_{\ell+1}=\left(1+q_{\ell+1}\right) f_{\ell}$ and note that I contains $t_{\ell} \nu_{\ell+1}$ periods of $q_{\ell+1}$. So from (3.2), the interval I has at least $t_{\ell} \nu_{\ell+1}$ κ-adic subintervals of length $\kappa^{-1} \nu_{\ell+1}^{-1}$ on which $q_{\ell+1} \geq \max \left\{a_{k}\right\}$. Let $I^{\prime \prime}$ be any one of such subintervals and let I^{\prime} be any κ-adic subinterval of $I^{\prime \prime}$ of length $t_{\ell+1}$. Then

$$
f_{\ell+1} \geq\left(\Lambda^{\ell}-3^{-\ell}\right)\left(1+\max \left\{a_{k}\right\}\right)>\Lambda^{\ell+1} \quad \text { on } \quad I^{\prime}
$$

by (3.4).

Therefore, we may choose two sequences of κ-adic closed intervals:

$$
I_{j}^{Q} \supseteq I_{j+1}^{Q} \supseteq I_{j+2}^{Q} \supseteq \ldots
$$

and

$$
J_{j}^{Q} \supseteq J_{j+1}^{Q} \supseteq J_{j+2}^{Q} \supseteq \ldots
$$

such that $\left|I_{\ell}^{Q}\right|=\left|J_{\ell}^{Q}\right|=t_{\ell}$ and

$$
\begin{equation*}
f_{\ell}(x)>\Lambda^{\ell}-3^{-\ell} \quad \text { on } \quad I_{\ell}^{Q} \cup J_{\ell}^{Q} \tag{3.29}
\end{equation*}
$$

for all $\ell \geq j$. Let

$$
\begin{equation*}
a^{*}=\bigcap_{\ell=j}^{\infty} I_{\ell}^{Q} \quad \text { and } \quad b^{*}=\bigcap_{\ell=j}^{\infty} J_{\ell}^{Q} \tag{3.30}
\end{equation*}
$$

Clearly we have the inclusioin $\left[a+t_{j}, b-t_{j}\right] \subseteq\left[a^{*}, b^{*}\right] \subseteq[a, b]$. Finally replace Q by

$$
Q^{*}=\left[a^{*}, b^{*}\right] \times\left[0, t_{j}\right]
$$

in Case II.
Set

$$
T_{j}^{*}=\bigcup\left\{Q^{*}: Q \quad \text { a component of } \quad T_{j}\right\}
$$

and

$$
H_{j}^{*}=T_{j}^{*} \cap\{y=0\}
$$

Then it follows from (3.27) and (3.28) that

$$
G_{j} \subseteq \overline{G_{j}} \subseteq \stackrel{o}{H_{j}^{*}} \subseteq H_{j}^{*} \subseteq T_{j}^{*} \subseteq T_{j}
$$

CLAim. $\widehat{f_{N}}(x, y)>\Lambda^{j} / 3$ on $\partial T_{j}^{*} \backslash \stackrel{o}{H_{j}^{*}} \quad$ for all $N \geq j$.
To establish the claim, note first that $\partial T_{j}^{*} \backslash \stackrel{o}{H_{j}^{*}} \subseteq T_{j}$, so that (3.24) implies

$$
\widehat{f}_{j}(x, y)>\Lambda^{j}-3^{-j}>\frac{\Lambda^{j}}{3} \quad \text { on } \quad \partial T_{j}^{*} \backslash \stackrel{o}{H_{j}^{*}} .
$$

Next assume $N \geq j+1$. On $T_{j}^{*} \cap\left\{t_{j+1} \leq y \leq t_{j}\right\}$, it follows from (3.18) and (3.23) that

$$
\widehat{f_{N}}(x, y)>\frac{1}{2} f_{j}(x)-3^{-j}>\frac{1}{2}\left(\Lambda^{j}-3^{-j} 2^{-1}\right)-3^{-j}>\frac{\Lambda^{j}}{3}
$$

The portion $V=\left(\partial T_{j}^{*} \backslash \stackrel{o}{H_{j}^{*}}\right) \cap\left\{0 \leq y \leq t_{j+1}\right\}$ consists of vertical line segments only. Suppose $(x, y) \in V$, then $x=a^{*}$ or b^{*}, associated with some component $[a, b] \times\left[0, t_{j}\right]$ of T_{j}, as defined in (3.30). If $(x, y) \in$ $V \cap\left\{t_{\ell+1} \leq y \leq t_{\ell}\right\}$ for some $\ell \in[j+1, N-1]$, then

$$
\widehat{f_{N}}(x, y)>\frac{1}{2} f_{\ell}(x)-3^{-\ell}>\frac{1}{2}\left(\Lambda^{\ell}-3^{-\ell}\right)-3^{-\ell}>\frac{\Lambda^{j}}{3}
$$

by (3.18) and (3.29). Finally, if $(x, y) \in V \cap\left\{0 \leq y \leq t_{N}\right\}$, then

$$
\widehat{f_{N}}(x, y)>f_{N}(x)-3^{-N-1}>\Lambda^{N}-3^{-N}-3^{-N-1}>\frac{\Lambda^{j}}{3}
$$

by (3.13), (3.14) and (3.29). This proves the claim.
From the claim we deduce that the function $u(x, y)=3 \Lambda^{-n} \widehat{f_{N}}(x, y)$ has values $u(x, y)>1$ on

$$
\overline{\bigcup_{j=n}^{N} \partial T_{j}^{*} \cap\{y>0\}}=\bigcup_{j=n}^{N}\left(\partial T_{j}^{*} \backslash H_{j}^{* o}\right) .
$$

We can now pass to a subset to conclude

$$
u(x, y)>1 \quad \text { on } \quad \overline{\partial\left(\bigcup_{j=n}^{N} T_{j}^{*}\right) \cap\{y>0\}}
$$

for $N \geq n>n_{0}$.
Repeat now the argument after (3.25).The statement (3.20) follows by applying the comparison principle to the functions u and $\omega_{p}\left(\cup_{j=n}^{N} G_{j}\right)$ on the domain $\mathbb{R}_{+}^{2} \backslash \cup_{j=n}^{N} T_{j}^{*}$. This completes the proof of $\omega_{p}\left(E_{k}, \mathbb{R}_{+}^{2}\right)=0$.

It remains to prove $\left|\mathbb{R} \backslash E_{k}\right|=0$ for all $k \in[1, \kappa]$. Define Ψ on $[0,1)$ so that

$$
\Psi(x)=\log \left(1+a_{\ell}\right) \quad \text { on } \quad\left[\frac{\ell-1}{\kappa}, \frac{\ell}{\kappa}\right), 1 \leq \ell \leq \kappa,
$$

and extend Ψ periodically to \mathbb{R} so that $\Psi(x+1)=\Psi(x)$ for all x. Recall that $a_{\ell}=\min \left\{\Phi(x): x \in\left[\frac{\ell-1}{\kappa}, \frac{\ell}{\kappa}\right]\right\}$. Define for each $k \in[1, \kappa]$ a sequence of functions $h_{1}^{k}, h_{2}^{k}, h_{3}^{k}, \ldots$ so that

$$
h_{j}^{k}(x)=\Psi\left(\nu_{j} x+\frac{k-1}{\kappa}\right)-m,
$$

where $m=\frac{1}{\kappa} \sum_{k=1}^{\kappa} \log \left(1+a_{\ell}\right)$.
Fix k in $[1, \kappa]$. Note that h_{j}^{k} is constant on each interval $\left[\frac{i-1}{\kappa \nu_{j}}, \frac{i}{\kappa \nu_{j}}\right), i$ an integer, and has average zero with respect to the Lebesgue measure μ on each interval

$$
\left[\frac{i-1}{\kappa \nu_{j-1}}, \frac{i}{\kappa \nu_{j-1}}\right) .
$$

Here we have set $\nu_{-1}=\kappa^{-1}$. Therefore the functions $h_{1}^{k}, h_{2}^{k}, h_{3}^{k}, \ldots$ are orthogonal in L^{2}. Since the sequence is uniformly bounded, it has partial sums

$$
h_{1}^{k}+h_{2}^{k}+\cdots+h_{j}^{k}=o\left(j^{3 / 4}\right) \quad \mu-a . e .
$$

Since

$$
\log f_{j}^{k} \geq \sum_{\ell=1}^{j} \Psi\left(\nu_{\ell} x+\frac{k-1}{\kappa}\right)=m j+\sum_{1}^{j} h_{\ell}^{k}(x)
$$

and $1<\Lambda<e^{m}$, therefore for μ-almost every x there exist an integer $j(x)>0$ so that

$$
f_{j}^{k}(x)>\Lambda^{j} \quad \text { for all } \quad j>j(x)
$$

This says that $\left|R^{1} \backslash E_{k}\right|=0$.

4. Questions and Comments

Many questions concerning p-harmonic measure and p-harmonic functions remain unanswered.
4.1. Are there compact sets $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ so that we have

$$
\omega_{p}\left(A, \mathbb{R}_{+}^{2}\right)=\omega_{p}\left(B, \mathbb{R}_{+}^{2}\right)=0
$$

but $\omega_{p}\left(A \cup B, \mathbb{R}_{+}^{2}\right)>0$?
4.2. Can the number κ of sets in Theorem 1 be as small as 2 ?

Based on a theorem of Baernstein [B], we conjecture that when p is closed to 2 and $p \neq 2, \kappa=5$ suffices. In the tree case, κ must be and can be any integer $\geq 3[\mathrm{KLW}]$.
Theorem B. (Baernstein $[\mathrm{B}]$) Let \mathbb{D} be the unit disk in \mathbb{R}^{2}. For a set $S \subseteq \partial \mathbb{D}$ let S^{*} be the closed arc on $\partial \mathbb{D}$ centered at 1 of length $|S|$. Suppose that $E \subseteq \partial \mathbb{D}$ is the union of two disjoint closed arcs of equal positive length, and that the two components of $\partial \mathbb{D} \backslash E$ have unequal length, then there exist p_{1} and p_{2} (depending on E) with $1<p_{1}<2<$ $p_{2}<\infty$ such that

$$
\begin{equation*}
\omega_{p}(0, E, \mathbb{D})>\omega_{p}\left(0, E^{*}, \mathbb{D}\right) \quad \text { for } \quad p_{1}<p<2 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{p}(0, E, \mathbb{D})<\omega_{p}\left(0, E^{*}, \mathbb{D}\right) \quad \text { for } \quad 2<p<p_{2} \tag{4.2}
\end{equation*}
$$

If $E \subseteq \partial \mathbb{D}$ is the union of two disjoint closed arcs of unequal positive length for which the components of $\partial \mathbb{D} \backslash E$ do have equal length, then inequalities opposite to (4.1) and (4.2) are true.

According to Baernstein's theorem, there exist $1<p_{1}<2<p_{2}<\infty$ so that for each $p \in\left(p_{1}, 2\right) \cup\left(2, p_{2}\right)$, there is one set J among the four $\left\{e^{i \theta}: \theta \in\left[0, \frac{4 \pi}{5}\right]\right\},\left\{e^{i \theta}: \theta \in\left[0, \frac{2 \pi}{5}\right] \cup\left[\frac{4 \pi}{4}, \frac{6 \pi}{5}\right]\right\},\left\{e^{i \theta}: \theta \in\left[0, \frac{6 \pi}{5}\right]\right\}$ and $\left\{e^{i \theta}: \theta \in\left[0, \frac{4 \pi}{5}\right] \cup\left[\frac{6 \pi}{5}, \frac{8 \pi}{5}\right]\right\}$, which satisfies

$$
\begin{equation*}
\omega_{p}(0, J, \mathbb{D})<|J| / 2 \pi \tag{4.3}
\end{equation*}
$$

From this, a p-harmonic function $\hat{\Psi}$ on \mathbb{D} having Lipschitz continuous boundary values Ψ may be constructed so that $\Psi(0)=0$ and

$$
\begin{equation*}
\sum_{k=1}^{5} \Psi\left(e^{i(\theta+k 2 \pi / 5)}\right)>c>0 \quad \text { for every } \quad \theta \in[0,2 \pi] ; \tag{4.4}
\end{equation*}
$$

consequently,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(e^{i \theta}\right) d \theta>c>0
$$

On the other hand, using p-capacity estimates we can show that if $1<p<\frac{3}{2}$ and J is an arc of the unit circle then (4.3) holds provided $|J|<\delta_{0}(p)$. This implies that (4.4) holds for $1<p<\frac{3}{2}$ with 5 replaced by some $\kappa=\kappa(p)$.

Let $\Psi_{n}\left(e^{i \theta}\right)=\Phi\left(e^{i n \theta}\right)$ for integers $n \geq 1$. It is not clear, and probably false, whether $\widehat{\Psi}_{n}(0)=0$. Therefore it is unclear how to adapt Wolff's lemma to disks. Unlike in the half plane, shortening the period of the boundary function on $\partial \mathbb{D}$ complicates the p-harmonic solution in \mathbb{D}.
4.3. Given any Lipschitz function Ψ on ∂D, let $\widehat{\Psi}$ be the p-harmonic function in \mathbb{D} with boundary values Ψ, and let $\Psi_{n}\left(e^{i \theta}\right)=\Psi\left(e^{i n \theta}\right)$. Suppose $\widehat{\Psi}(0) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(e^{i \theta}\right) d \theta$. We ask whether

$$
\widehat{\Psi(0)} \leq \widehat{\Psi}_{n}(0) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(e^{i \theta}\right) d \theta \quad \text { for } \quad n \geq 2
$$

and whether $\lim _{n \rightarrow \infty} \widehat{\Psi}_{n}(0)$ might take the value $\widehat{\Psi}(0)$ or $\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(e^{i \theta}\right) d \theta$.
4.4. Not much is known about the structure of the sets having p harmonic measure zero. Sets $E \subseteq \mathbb{R}^{n}$ of absolute p-harmonic measure zero, $\omega_{p}(E \cap \partial \Omega, \Omega)=0$ for all bounded domains Ω, are exactly those of p-capacity zero. There exist sets on $\partial \mathbb{R}_{+}^{n}$ of Hausdorff dimension $n-1$ that have zero p-harmonic measure with respect to \mathbb{R}_{+}^{n} when $p \neq 2$. There are also sufficient conditions on sets $E \subseteq \partial \mathbb{R}_{+}^{n}$ in terms of porosity, that imply $\omega_{p}\left(E, \mathbb{R}_{+}^{n}\right)=0$. For these and more, see $[\mathrm{HM}]$, [M2] and [W].

Further questions and discussions on p-harmonic measures can be found in $[\mathrm{B}]$ and $[\mathrm{HKM}]$
4.5. Given a function u in \mathbb{R}_{+}^{n}, denote by $\mathcal{F}(u)$ the Fatou set

$$
\left\{x \in \mathbb{R}^{n-1}: \lim _{y \rightarrow 0} u(x, y) \text { exists and it is finite }\right\} .
$$

Fatou's Theorem states that $R^{n-1} \backslash \mathcal{F}(u)$ has zero ($n-1$)-dimensional measure for any bounded 2-harmonic function u in \mathbb{R}_{+}^{n}. When $1<$ $p<\infty$ and $p \neq 2$, the Hausdorff dimension of the Fatou set of any bounded p-harmonic function in R_{+}^{n} is bounded below by a positive number $c(n, p)$ independent of the function [FGMS], [MW].

Deep and unexpected examples in [Wo1], [Wo2] and [L2] show that Fatou Theorem relative to the Lebesgue measure fails when $p \neq 2$.
Theorem C. (Wolff and Lewis [Wo1], [L2]) For $1<p<\infty$ and $p \neq 2$, there exists a bounded p-harmonic function u on \mathbb{R}_{+}^{2} such that the Fatou set $\mathcal{F}(u)$ has zero length, and there exists a bounded positive p-harmonic function v on \mathbb{R}_{+}^{2} such that the set

$$
\left\{x \in R: \lim _{y \rightarrow 0} \sup v(x, y)>0\right\}
$$

has zero length.
Define the infimum of the dimensions of Fatou sets to be

$$
\operatorname{dim}_{\mathcal{F}}(p)=\inf \left\{\operatorname{dim} \mathcal{F}(u): u \text { bounded p-harmonic in } \mathbb{R}_{+}^{2}\right\}
$$

and the dimension of the p-harmonic measure to be

$$
\operatorname{dim} \omega_{p}=\inf \left\{\operatorname{dim} E: E \subseteq \mathbb{R}^{1}, \omega_{p}\left(E, \mathbb{R}_{+}^{2}\right)=1\right\}
$$

We ask what the values of $\operatorname{dim}_{\mathcal{F}}(p)$ and $\operatorname{dim} \omega_{p}$ are, and conjecture that $\operatorname{dim} \omega_{p}=\operatorname{dim}_{\mathcal{F}}(p)<1$ when $p \neq 2$.

The question and the conjecture are based on results in $[\mathrm{KW}]$. In the case of forward directed regular κ-branching trees ($\kappa>1$) whose boundary is normalized to have dimension 1 , the infimum of the dimensions of Fatou sets $\operatorname{dim}_{\mathcal{F}}(\kappa, p)$ is attained and is given by

$$
\operatorname{dim}_{\mathcal{F}}(\kappa, p)=\min \left\{\frac{\log \sum_{1}^{\kappa} e^{x_{j}}}{\log \kappa}: \sum_{1}^{\kappa} x_{j}\left|x_{j}\right|^{p-2}=0\right\} ;
$$

furthermore $0<\operatorname{dim}_{\mathcal{F}}(\kappa, p)<1$ except when $p=2$ or $\kappa=2$, and in the exceptional case $\operatorname{dim}_{\mathcal{F}}(\kappa, p)=1$.

References

[ARY] V. Alvarez, J.M. Rodríguez, and D.V. Yakubovich, Estimates for nonlinear harmonic "measures" on trees Michigan Math. J. 48 (2001), 47-64.
[AM] P. Avilés and J. J. Manfredi, On null sets of p-harmonic measure, in Partial Differential Equations with minimal smoothness and applications, Chicago, IL 1990, B. Dahlberg et al. eds., Springer Verlag, New York (1992), 33-36.
[B] A. Baernstein, Comparison of p-harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543-551.
[BBS] A. Björn, J. Björn, and N. Shanmugalingam, A problem of Baernstein on the equality of the p-harmonic measure of a set and its closure, preprint 2004.
[DB] E. DiBenedetto, $C^{1+\alpha}$-local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis, Theory, Methods and Appl. 7 (1983), 827-850.
[CFPR] A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Analysis 15 (2001), 1999-244.
[FGMS] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227-251.
[GLM] S. Granlund, P. Lindquist and O. Martio, F-harmonic measure in space, Ann. Acad. Sci. Fenn. Math. 7 (1982), 233-247
[HM] J. Heinonen and O. Martio, Estimates for F-harmonic measures and Øksendal's theorem for quasiconformal mappings, Indiana Univ. Math. Jour. 36 (1987), 659-683.
[HKM] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, New York, 1993
[KW] R. Kaufman and J.-M. Wu, Fatou theorem of p-harmonic functions on trees, Ann. Probability 28 (2000), 1138-1148.
[KLW] R. Kaufman, J. G. Llorente, and J.-M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. 28 (2003), 279-302.
[K] J. Kurki, Invariant sets for \mathcal{A}-harmonic measure, Ann. Acad. Sci. Fenn. Math. 20 (1995), 433-436.
[L1] J. L. LEWIS, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856.
[L2] J. L. Lewis, Note on a theorem of Wolff, Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al., eds., Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93-100.
[MW] J. J. Manfredi and A. Weitsman, On the Fatou theorem for pharmonic functions, Comm. Partial Differential Equations 13 (1988), 651-658.
[M1] O. Martio, Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989.
[M2] O. Martio, Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. 14 (1989), 47-55.
[Ma] V. G. MAZ'JA, On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225-242. Original in Vestnik Leningrad. Univ. 25 (1970), 42-45 (in Russian.)
[Wo1] T. Wolff, Gap series constructions for the p-Laplacian, Preprint, 1984.
[Wo2] T. Wolff, Generalizations of Fatou's theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990-993.
[W] J.-M. Wu, Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18(1993), 77-91.

Department de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

E-mail address: jgllorente@mat.uab.es
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail address: manfredi@pitt.edu
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

E-mail address: wu@math. uiuc.edu

[^0]: Date: December 26, 2004
 2000 Mathematics Subject Classification. Primary 31A15. Secondary 35J70, 60G46.

 Key words and phrases. p-harmonic measure, Fatou theorem, Choquet capacity.
 First author partially supported by grants DGICYT BFM 2002-04072-102-02 1 and SGR 149275, 149255. Second author supported in part by NSF award DMS0100107. Third author supported in part by NSF award DMS-0400810.

 This research was initiated when the first author visited the University of Illinois and the University of Pittsburgh in February 2004. He wishes to thank both institutions for their hospitality .

