p-HARMONIC MEASURE IS NOT SUBADDITIVE
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ABSTRACT. When 1 < p < oo and p # 2 the p-harmonic mea-
sure on the boundary of the half plane Ri is not subadditive. In
fact, there are finitely many sets F, Es,...,F, on R, of p-harmonic
measure zero, such that £1 U F, U...U E, = R.

1. INTRODUCTION

We consider the p-harmonic measure associated to the operator
Ly(u) = div (|Vu|'*Vu),

the p-Laplacian of a function u, for 1 < p < oco. A p-harmonic function
in a domain Q@ C R"(n > 2) is a weak solution of L,u = 0; that is,
u € WP(Q) and

/(]Vu]p2Vu, V)dr =0
O

whenever ¢ € C§°(§2). Weak solutions of L,(u) = 0 are indeed in the
class CL® ([DB], [L1] .) A lower semicontinuous v :  — R U {oo} is

loc

p-superharmonic provided that v # oo, and for each open D C DcQ
and each u continuous on D and p-harmonic in D, the inequality v > u
on dD implies v > w in D.
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Let E be a subset of 0. Consider the class C(E, §2) of nonnegative

p-superharmonic functions v in €2 such that
o S
Jiminf v(X) 2 xz(C)
for all ¢ € 99). The p-harmonic measure of the set E relative to the
domain (2 is the function w,(., £, Q) whose value at any X € Q is given
by
wp(X, E,Q) =inf{v(X) : v e C(E,NQ)}

We often omit the variable X and the domain © and write w,(E, 2) or
just w,(E). The function w,(E, Q) is p-harmonic in (2, satisfies

0 <wy(£,Q) <1,

and w,(E, Q) has boundary values 1 at all regular points interior to
E and boundary values 0 at all regular points interior to 092 \ E. For
these and additional potential theoretic properties of the p-Laplacian
see the book [HKM].

When p = 2 harmonic functions have the mean value property. Sup-
pose € is a Dirichlet regular domain, then ws(X, -, 2) is a probability
measure on 02 and the integral

F(Q) dwn(X, €, 92)
a0

gives the solution to the Dirichlet problem for a given boundary data
function f.

When p # 2, due to the nonlinearity of the p-Laplacian, p-harmonic
functions need not satisfy the mean value property and the sum of two
p-harmonic functions need not be p-harmonic. Consequently w, (X, -, 2)
is not additive on J€), hence not a measure.

Very little is known about measure theoretic properties of p-harmonic
measure when p # 2. Assume that {2 is Dirichlet regular. Then for all
compact subsets E of the boundary 02 we have

(1.1) wp(E, Q) + w,(0Q\E, Q) = 1;

and if £ and F are both compact, disjoint, and w,(E, Q) = w,(F, Q) =
0 then

(1.2) wy(EUF,Q) =0.

These results can be found in [GLM] and also in [HKM].

Some conditions on the smallness of a compact set F' in terms of
Hausdorff dimension or capacity that imply w,(E U F,Q) = w,(E, )
can be found in [AM], [K] and [BBS].
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Martio asked in [M1] whether p-harmonic measure defines an outer
measure on the zero level; i.e., whether (1.2) remains true when E and
F" are allowed to intersect and to be noncompact.

In this note we answer Martio’s question negatively by showing that
wy is not subadditive on null sets when p # 2. We build up an example
when ) = ]Ri is the upper half-space and 02 = R. We may consider
the point at infinity as a part of the boundary but it is not difficult to
see that w,({oo},R%) = 0. Points in R will be denoted by (z,y) or
X interchangeably.

Theorem 1. Let 1 < p < oo and p # 2. Then there exist finitely many
sets By, Es, ..., E,. on R such that

wy(Ey, R2) =0 and U Er=R

k=1
Furthermore, the sets Ey verify |R\ Ex| =0

Here |.| stands for Lebesgue measure on the real line.

Corollary 1.1. There exist A and B C R such that
wp(A,R2) = w,(B,R3) =0 and wy(AUB,R%) > 0.
Thus wy(-,RY) is not subadditive on null sets.

Corollary 1.2. Let 1 < p < 0o and p # 2. Then w,(X,-,R%) is not
a Choquet capacity for each X € Q. In fact there exists an increasing
sequence of sets By C By C--- C B; C--- CR so that

lim w,(B;) < wp( U Bj).
j—00
j=1

To prove Corollary 1.1, choose ky = min{k: w,(E1UE,U... Ey) > 0}
and let A = E1 UE2 U. --Eko—la B = Eko‘

Corollary (1.2) follows from Theorem 1 as in the tree case done in
[KLW]. The definition of Choquet capacity can be found in [HKM].

Both the Theorem and its corollaries can be extended to R’} (n > 3)
by adding n — 2 dummy variables.

Until recently, there has been no ground for conjecturing the an-
swer to Martio’s and some other questions about p-harmonic measures.
A sequence of papers [CFPR|, [KW], [ARY] and [KLW], is devoted
to studying p-harmonic measure and Fatou theorem for bounded p-
harmonic functions in an overly simplified model — forward directed
regular k-branching trees. On such trees, Theorem 1 is proved and for
each fixed p the exact value of the minimum of Hausdorff dimension of
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Fatou sets over all bounded p-harmonic functions is given in [KW] and
[KLW].

In [KLW] the construction of the sets in Theorem 1 for trees starts
with a basic p-harmonic function w that does not satisfy the mean
value property, follows with a Riesz product and then a stopping time
argument. It is really quite simple. In Ri we follow the same proce-
dures. The basic p-harmonic function is infinitely more complicated
and is provided by remarkable examples of Wolff for 2 < p < oo, and
of Lewis for 1 < p < 2 ([Wol], [Wo2] and [L2]). On a tree there
is a perfect independence among branches and the Riesz product in-
cludes all generations; in R? we obtain an approximate independence
by introducing large gaps in the Riesz product. Finally, instead of a
stopping time argument, we use an ingenious lemma of Wolff [Wol] on
gap series of p-harmonic functions, to estimate the p-harmonic function
whose boundary values are given by an infinite product.

2. PRELIMINARIES

In this section we recall several properties of p-harmonic functions
which are needed in the proofs.

If u(X) is p-harmonic and ¢ € R, then c+u(X), cu(X) and u(cX) are
p-harmonic. If u is a nonnegative p-harmonic function in 2 and B is a
ball such that 2B C €, then supu < C’i%fu for some C'=C(n,p) >0

B

(Harnack inequality). A nonconstant p-harmonic function in a domain
cannot attain its supremum or infimum (Strong Maximum Principle).
If a sequence of p-harmonic functions converges uniformly then the
limit is also p-harmonic.
We list now some basic properties of p-harmonic measure.
(1) If w,(X, E,Q) =0 at some X € 2 then w,(Y, E,Q) = 0 for any
other Y € ) by Harnack inequality.
(2) If By C Ey C 09 then wy(Eq, Q) < w,(Es, ) (monotonicity).
(3) If Q; C Qy and £ C 0y N 08y then wy(E, Q) < wy(E, Q)
(Carleman’s principle).
(4) If By D Ey D,...,2 E; O ... are closed sets on 05, then

(e}

Wp(m E;, Q) = jhl?o wy(Ej)
j=1

(upper semicontinuity on closed sets).

See chapter 11 in [HKM] for these properties.
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We follow [Wol] and set WP be the class of all functions f : R2 — R
which are A-periodic in the  variable (f(z+\,y) = f(x,y)) and satisfy

1= | V£ (2, )P dzdy < o0
[0,M) % (0,00)

where the gradient is taken in the sense of distributions. If f € Wrl*
then the function f has a well-defined trace on R; and among the
functions ¢ such that ¢ — f € WP* has trace 0 on R, there is a unique
g, denoted by f, which minimizes l9]lpja- The function f is the unique
p-harmonic function in R% with boundary values f on R. Moreover,
there exists £ € R so that

A Y
[f(z,y) =€l <2 A fllo

for some v = v(p) > 0, [Wol]. Extend then f to R by its boundary
values. The comparison principle holds in this setting: let f, g € W»*
satisfy f < ¢ in the Sobolev sense on R, then f < § in R? ([Mal,
[Wol]).

The following lemma of Wolff ([Wol]) is a substitute for a “local
comparison principle” (unknown for p # 2) for p-harmonic functions.
It is not difficult to prove (2.1) below for y < Av~" and (2.3) below for
y > 1. However, much deeper analysis is needed to obtain (2.1) and
(2.3) below on two opposite sides of y = Av~® for some 0 < a < 1. We
shall need the full force of Wolff’s lemma.

Wolff’s Lemma ([Wol]). Let 1 < p < co. Define a =1 —2/p if
p>2anda=1—p/2 ifp <2 Lete>0and0 < M < oo. Then
there are small A = A(p,e, M) > 0 and large vy = vo(p, e, M) < 00 so
that the following are true:

If v > vy is an integer, f, g, q € Lip1(R) are periodic with periods
1,1, vt respectively, and

max (|| flloo: 19lloos [1alloos I £l zips s 19l zipy s vl i) < M,
then for (z,y) € R3 we have

21)  laf +9)(z.y) = (A(z,y)f(2) + g(@)] <e if y<A™
If, in addition to the above, hatq(z,y) — 0 as y — oo, then

(2.2) (af +9)(x, Av™) — g(x)| <

—

(2.3) ((af +9)(z,y) = g(x,y)| <e if y>Av ™
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The key to [Wol] and [L2] is the existence of a basic function ® which
shows the failure of the mean value property for periodic p-harmonic
functions in the class WPA(R2) when p # 2. The mean of ®(z,0) on
0, 1] equals the limit of ® at oo when p = 2.

Theorem A. (Wolff and Lewis [Wol], [L2]) For 1 < p < oo and

p # 2 there exists a Lipschitz function ®: R% — R such that L,® =0,
O has period 1 in the x variable ®(z + 1,y) = ®(z,y),

/ VO Pdrdy < +oo,
[0,1) % (0,00)

1
/ O(z,0)dzr >0, but P(r,y) =0 as y— oo.
0

Note that in R\ {0}(n > 2), the p-harmonic function |X|7=1 if
p # n , or log | X| if p = n, fails to have the mean value property on
spheres when p # 2.

3. PROOFS

Proof of Theorem 1: Fix p # 2, 1 < p < oo. Let ® be the basic
function of Wolff and Lewis. Note that ®(x,0) must take both posi-
tive and negative values by the comparison principle. Replacing ® by
c¢® (¢ > 0 small constant), if necessary, we may assume

1
3.1 Pl < =
(3.1) 1@l <

and
1
/ log(1 + ®(z,0))dz > 0.
0

Fix a positive integer « such that

K

Zak >0 and ﬁ(l—i—ak) > 1,
k=1

k=1
where
k—1 k
2 = mi () : —
(3.2) ar mln{ (x,0) Z’E{ - ,J}
Let

L= ||(I)||Lip1,
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and fix A > 1 and an integer ny > 5 so that

(3.3) 1< A<JJ+an
k=1
and
. : L
(3.4) 37" < min {1 + max{ax} — A, —} :
KR

For convenience we write f(z) for f(z,0) and w,(E) for w,(E,R?%) from
now on.

We shall choose inductively an increasing sequence of positive powers
of the integer x

<<y <...

and shall define for each k € [1, k] two sequences of functions on R

(35) (m@=¢@+fl%,ﬁm=1+ﬁm

and
36 ) =0 (ne+ ) ) = £ @0+ )

After these are defined, we observe from (3.2), (3.3) and the period-
icity of ®(x) that

(3.7) f[ff(x) = ﬁ f[ (1 + @(Vi:v + %)) > A" for all .

i=1 k=1

Next, it follows from (3.1) that for j > 1

1
(38) gl < 5.
. . 3\’
(3.9) 277 < fj < (5) ,
(3.10) g} || i, < Ly,
and
(3.11) 1 |z, < L2’

We then define for each k € [1, x| a set
Ep,={zeR: ka(x) > A7 for infinitely many j's}
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Observe that (3.7) implies

To finish the proof we need to establish
wp(Er) =0 and |R\ Ey =0

for each k.

We start by discussing the choice of {v;} and two other sequences
{r;} and {t;}; we always assume {v;} are positive powers of x, and
{r;} and {t;} are negative powers of .

Set 1o = tp = 1 and vy = 1. After {vy,va,... v}, {ro,71,...,7j-1}
and {tg,t1,...,tj_1} are chosen, the functions

{d,db,.... 4}
and
{0, I}

are then defined by (3.5) and (3.6) for each k € [1, k]. We then choose
r; > 0 so that

(3.12) r; < min{t;_y, (Ly6/tH) 1}
and that
(3.13) R ,y) — fH@) <3770 i 0<y<n

for all k € [1, &].
Let f =g = ff,q = q;?H, M = Lv;27 and € = 37771 in Wolff’s
lemma; then v;;; and ¢; can be chosen from (2.1) and (2.3) so that

(3.14) Vil <t <r;

(3.15)  [ffalwy) = fH@) 1+ (e, y) <3770 i 0<y <ty

and

(3.16) [fia(ey) = [yl <377 if y >t
for all k£ € [1,k]. The fact that 0 < o < 1 in Wolff’s lemma is needed

here to insure that we can always find a ¢; such that 1/]-111 <t; <rj.

We also need the fact that q/f:l(x,y) — 0 as y — oo to obtain (3.16).
This ends the induction procedure.
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For each k € [1, k] the sequence { fF} converges to a p-harmonic func-

tion f* on Ri uniformly on compact subsets. Since {¢;} is decreasing,
it follows from (3.16) that

(3.17) |fR(x,y) = fRe,y)| <377 if y>t;
for all N > j and k € [1, k]; and from (3.15) and (3.17) that

—_~ 1 s .
(3.18) fr(z,y) > §f]k(:v) —37 it i <y<t

for all N > j+ 1 and k € [1,k]. To see (3.18), observe that, since
y > tj11, we get by (3.17),

|f]lif(x7 y) - f]k+1($, y>| < 37]'71'
On the other hand, since y < ¢;, by (3.15) and (3.1) we have

- 1

f]kJrl(:U?y) > §f]k(w) — 377

We are now ready to prove w,(Ey) = 0 for all k£ € [1,]. In view of
the Harnack inequality it is enough to prove w,(Xo, Ey, R3) = 0 for a
fixed point X, € R?. We take X, = (0,1). We fix k£ and from now
on, we omit k in the subscripts and superscripts of Ej, qf and ff. Let
G ={z: f;(z) > A7}, so that we have

E=(Ués

n=1j=n
00

By monotonicity we get w,(E) < wp< U
]:

j=n

Gj>. Therefore it suffices to

prove that for some C' > 0,

(3.19) Wy (Xo, U Gj) < CA™ forall n > ng.

j=n

In fact it is enough to show that for some C' > 0,

N
(3.20) Wp (XO, U Gj> <CA™ forall N >n>ng

j=n

Let us see how (3.20) implies (3.19). Observe that R \ Uj\f:n Gj,
N > n is a decreasing sequence of closed sets on R. Since the charac-
teristic function of an open set is bounded and lower semicontinous, it
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is resolutive so that

o (CJG> Sy, (R\g@)

(See (9.31) and (11.4) of [HKM].) By the upper semicontinuity of
p-harmonic measure on closed sets, we can let N go to oo to get

N 9]
lim w, (U Gj> =1-w, <]R\ U Gj) :
J=n j=n

Therefore we conclude

N 00
J\ll_{n Wp (U GJ> = Wp (U G]> .
j=n j=n

We need to establish (3.20). Define for each j > ng a set
H; = U {I: k-adic closed interval of length ¢;, max fi(z) > A — 3_j_1}
ze

and let
Tj = Hj X [O’tj]'
Observe that from the definition of H; we have
(3.21) fi(z) < AV =377 on H;\ }OIj
where ]E—)[ ; is the relative interior of H;. Hence, it follows that
G, CG; Ql%jg H;.
Note from (3.8),(3.9), (3.10), (3.11), (3.12), and (3.14) that we have
(3.22) |fi(z) — fi(2)| < Lv;27t; < 377671 if |z — 2| <t
Therefore the inequality
(3.23) min f; > A — 377271
holds. Finally, from (3.13) and (3.14) we deduce
(3.24) j/;(x,y) >AN —-37 on T
We pause for a remark. If the statement

(3.25) E(x,y) >CN on OTj\ [ij forall N >j > mng
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were true, then it would follow from the comparison principle applied
on the domain R? \ UY, T} and the convergence of {f;} that

N N
wp (XD, U Gj> <w, (Xg, o7\ ﬁfj> < CT'AT"fy(Xo) < C(Xp)A™™
j=n j=n
This would give (3.20) and thus w,(E) = 0. Since (3.25) need not be
true on vertical edges in J7};, we need to modify the sets 7).
The connected components of T are mutually disjoint rectangles )
of height ¢; and of widths integer multiples of ¢;. This class of rectangles
is mapped to itself by the family of mappings (z,y) — (myj’1 + z,y),
m € Z.
Suppose @ = [a,b] x [0,1;] is such a component. Then

(3.26) fi(a), f;(b) <A =377
by (3.21). There are two possibilities.

CAsE I: I%laf( fi <M.
a,b

In this case define @* to be the empty set (), and note from (3.26)
and the definition of G; that

(327) Gj N [CL, b] = @
CASsE 1II: r[ne}j(fj > M.

In this case let IJQ = [a,a + t;] and JjQ = [b —t;,b], and note from
(3.22), (3.23), and (3.26) that
N -39 < fi(x) <A —377"2 on IJQ U JJQ,
so that we have
(3.28) Gin(IPUJ?) =0
To modify ) in Case II, we need the following fact.

Fact. If I is a k-adic closed interval of length t, (¢ > ng) on which
fe(x) > A* —37% then I contains a k-adic closed subinterval of length
tp+1 ON which ngrl(l’) > AL

To see this, we write fry1 = (1 4+ ¢or1)fe and note that I contains
tevey1 periods of goi1. So from (3.2), the interval I has at least v,
r-adic subintervals of length H_IV[_SI on which go1 > max{ay}. Let I”

be any one of such subintervals and let I’ be any k-adic subinterval of
1" of length ty,1. Then

forr > (A" = 3791 + max{az}) > A" on [’
by (3.4).



12 LLORENTE, MANFREDI, AND WU

Therefore, we may choose two sequences of k-adic closed intervals:

Q Q Q
and

Q Q Q

Jj 2 Jj+1 2 ‘]j+22

such that [I°| = |J?| = t, and
(3.29) folx) > A =37 on IPUJ?
for all £ > 4. Let
(3.30) a* =17 and b =()J2

=j =)

Clearly we have the inclusioin [a +¢;,b —t;] C [a*,b*] C [a,b]. Finally
replace ) by

Q" = [a", "] x [0, 1]
in Case II.

Set
T = U{Q* : () acomponent of Tj},

and

H; =T;n{y = 0}.
Then it follows from (3.27) and (3.28) that

G; CG; CH;C H; CT; CTj.

CrAm. fy(z,y) > AI/3 on OT:\ HY forall N > j.

To establish the claim, note first that 977\ ]—il); C Ty}, so that (3.24)
implies '
. . Y 0
filx,y) >N —377 > 5 on oT;\ Hj .
Next assume N > j+1. On T; N{t;1 <y < ¢}, it follows from (3.18)
and (3.23) that
— j
Iz, y) > %fj(x) —377 > %(AJ’ —37927) —- 377 > %
The portion V' = (9T}\ I—jf)]*) N{0 <y < t;41} consists of vertical line
segments only. Suppose (x,y) € V, then & = a* or b*, associated with
some component [a,b] x [0,t;] of T}, as defined in (3.30). If (z,y) €
V{te <y <t} for some l € [j+ 1, N — 1], then
A

E(xay) > %ff(x) - 376 > %(AE - 37() - 376 > ?
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by (3.18) and (3.29). Finally, if (z,y) € VN {0 <y <ty}, then
— N
Fal0) > () =3 > AN -3 N g 2
by (3.13), (3.14) and (3.29). This proves the claim.

From the claim we deduce that the function u(z,y) = 3A‘”fj\v(3:, Y)
has values u(z,y) > 1 on

N N
o n{y >0} = JOT; \ H).
j=n j=n

We can now pass to a subset to conclude

N
u(z,y) >1 on 8( U TJ*) N{y > 0},
j=n
for N > n > ny.

Repeat now the argument after (3.25).The statement (3.20) follows
by applying the comparison principle to the functions v and w, (U;V:nG j)
on the domainR? \U_, T*. This completes the proof of w,(Ey, R?) = 0.

It remains to prove |R\ Ej| = 0 for all k € [1, k]. Define ¥ on [0, 1)

so that
(-1 ¢
K K

U(z) =log(l +a;) on { ) 1</¢<kg,

and extend W periodically to R so that ¥(z + 1) = ¥(zx) for all z.
Recall that a; = min {®(z) : z € [=1, £]}. Define for each k € [1,x] a
sequence of functions hY, bS5 h% ... so that

kE—1
h?(l’) =V (ij + T) —m,
where m = 1 Z g(1+ ay).

Fix k in [1, /{] Note that hk is constant on each interval [W , j), 1
J J

an integer, and has average zero with respect to the Lebesgue measure
1 on each interval

1 —1 ?

RVj_1 ’ RVj_1 .

Here we have set v_; = x~!. Therefore the functions h¥ k5 R ...

are orthogonal in L2. Since the sequence is uniformly bounded, it has
partial sums

h]f+h§+-~-+h§=0(j3/4) w— a.e.
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Since

J J

k—1

log f§ >y :‘IJ(WH T) =mj+ Y ()
=1 1

and 1 < A < e™, therefore for p-almost every = there exist an integer
j(x) > 0 so that

ff(x) > A forall j> j(x).
This says that |R! \ E;| = 0.

4. QUESTIONS AND COMMENTS

Many questions concerning p-harmonic measure and p-harmonic func-
tions remain unanswered.

4.1.  Are there compact sets A C R and B C R so that we have
(A R2) = (B, R2) =0,

but w,(AU B,R%) > 07

4.2.  Can the number « of sets in Theorem 1 be as small as 27

Based on a theorem of Baernstein [B], we conjecture that when p is
closed to 2 and p # 2, kK = 5 suffices. In the tree case, k must be and
can be any integer > 3 [KLW].

Theorem B. (Baernstein [B]) Let D be the unit disk in R?. For a
set S C ID let S* be the closed arc on 0D centered at 1 of length |S].
Suppose that E C 0D 1is the union of two disjoint closed arcs of equal
positive length, and that the two components of OD \ E have unequal
length, then there exist p1 and py (depending on E) with 1 < p; <2 <
P2 < 00 such that

(4.1) wy(0, E,D) > w,(0, E*, D)  for p1<p<2
and
(4.2) wp(0, E,D) < w,(0, E*,D)  for 2<p<pe

If E C 0D s the union of two disjoint closed arcs of unequal positive
length for which the components of 0D\ E do have equal length, then
inequalities opposite to (4.1) and (4.2) are true.

According to Baernstein’s theorem, there exist 1 < p; < 2 < py < 00
so that for each p € (p1,2) U (2, p2), there is one set J among the four
{e” 0 € [0,ZF]},{e” : 0 € [0,FU [T, ¥} {e” : 0 € [0,5F]} and

{e?:0 €0, U[%, 2]}, which satisfies

(4.3) wy(0,J,D) < |J|/27.
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From this, a p-harmonic function UonD having Lipschitz continuous
boundary values U may be constructed so that ¥(0) = 0 and

5

(4.4) Z (! OHR/5)) > ¢ > 0 for every 6 € [0, 2n];
k=1

consequently,

2
L U(e?)dh > ¢ > 0.
2m Jo
On the other hand, using p-capacity estimates we can show that if
l<p< % and J is an arc of the unit circle then (4.3) holds provided
|J| < do(p). This implies that (4.4) holds for 1 < p < 2 with 5 replaced
by some k = K(p).

Let W, (¢) = ®(e™?) for integers n > 1. It is not clear, and probably
false, whether W, (0) = 0. Therefore it is unclear how to adapt Wolff’s
lemma to disks. Unlike in the half plane, shortening the period of the
boundary function on 0D complicates the p-harmonic solution in D.

4.3. Given any Lipschitz function ¥ on 0D, let U be the p-harmonic
function in D with boundary values ¥, and let U, (¢) = W(e™).

Suppose U(0) < £ [*" W(e?)df. We ask whether

2r Jo

— 1T [
U(0) <V,(0) < —/ T(e)dd for n>2;
0

- 27

and whether nlljg(> U,,(0) might take the value ¥(0) or = OQW U (e)db.
4.4. Not much is known about the structure of the sets having p-
harmonic measure zero. Sets £ C R" of absolute p-harmonic measure
zero, w,(E N 082, Q) = 0 for all bounded domains €2, are exactly those
of p-capacity zero. There exist sets on R of Hausdorff dimension
n — 1 that have zero p-harmonic measure with respect to R’} when
p # 2. There are also sufficient conditions on sets £ C 8R'fr in terms
of porosity, that imply w,(E,R"}) = 0. For these and more, see [HM],
[M2] and [W].

Further questions and discussions on p-harmonic measures can be
found in [B] and [HKM]

4.5. Given a function v in R, denote by F(u) the Fatou set

{:E c Rt liH(l] u(z,y) exists and it is finite } :
y*)
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Fatou’s Theorem states that R"~!\ F(u) has zero (n — 1)-dimensional
measure for any bounded 2-harmonic function v in R}. When 1 <
p < oo and p # 2, the Hausdorff dimension of the Fatou set of any
bounded p-harmonic function in R’ is bounded below by a positive
number ¢(n, p) independent of the function [FGMS], [MW].

Deep and unexpected examples in [Wol], [Wo2] and [L2] show that
Fatou Theorem relative to the Lebesgue measure fails when p # 2.

Theorem C. (Wolff and Lewis [Wol], [L2]) For 1 < p < oo and
p # 2, there exists a bounded p-harmonic function u on ]Ri such that
the Fatou set F(u) has zero length, and there exists a bounded positive
p-harmonic function v on R% such that the set

{reR: lljiir(l)supv(x,y) > 0}
has zero length.
Define the infimum of the dimensions of Fatou sets to be
dimg(p) = inf{dim F(u) : u bounded p-harmonic in R? },
and the dimension of the p-harmonic measure to be
dimw, = inf{dim £ : E CR', w,(E,R%) = 1}.

We ask what the values of dim#(p) and dim w,, are, and conjecture that
dimw, = dimz(p) < 1 when p # 2.

The question and the conjecture are based on results in [KW]. In
the case of forward directed regular x-branching trees (x > 1) whose
boundary is normalized to have dimension 1, the infimum of the di-
mensions of Fatou sets dimz(k, p) is attained and is given by

logd e, }

dimz(k, p) = min {W ; ng|xj]p2 =0

furthermore 0 < dimz(k,p) < 1 except when p = 2 or Kk = 2, and in
the exceptional case dimg(k,p) = 1.
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