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Abstract. When 1 < p < ∞ and p 6= 2 the p-harmonic mea-
sure on the boundary of the half plane R2

+ is not subadditive. In
fact, there are finitely many sets E1, E2,...,Eκ on R, of p-harmonic
measure zero, such that E1 ∪ E2 ∪ ... ∪ Eκ = R.

1. Introduction

We consider the p-harmonic measure associated to the operator

Lp(u) = div
(
|∇u|p−2∇u

)
,

the p-Laplacian of a function u, for 1 < p < ∞. A p-harmonic function
in a domain Ω ⊆ Rn(n ≥ 2) is a weak solution of Lpu = 0; that is,

u ∈ W 1,p
loc (Ω) and ∫

Ω

〈|∇u|p−2∇u,∇ϕ〉 dx = 0

whenever ϕ ∈ C∞
0 (Ω). Weak solutions of Lp(u) = 0 are indeed in the

class C1,α
loc ([DB], [L1] .) A lower semicontinuous v : Ω → R ∪ {∞} is

p-superharmonic provided that v 6≡ ∞, and for each open D ⊂ D ⊂ Ω
and each u continuous on D and p-harmonic in D, the inequality v ≥ u
on ∂D implies v ≥ u in D.
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Let E be a subset of ∂Ω. Consider the class C(E, Ω) of nonnegative
p-superharmonic functions v in Ω such that

lim inf
X∈Ω,X→ζ

v(X) ≥ χE(ζ)

for all ζ ∈ ∂Ω. The p-harmonic measure of the set E relative to the
domain Ω is the function ωp(., E, Ω) whose value at any X ∈ Ω is given
by

ωp(X, E, Ω) = inf {v(X) : v ∈ C(E, Ω)}
We often omit the variable X and the domain Ω and write ωp(E, Ω) or
just ωp(E). The function ωp(E, Ω) is p-harmonic in Ω, satisfies

0 ≤ ωp(E, Ω) ≤ 1,

and ωp(E, Ω) has boundary values 1 at all regular points interior to
E and boundary values 0 at all regular points interior to ∂Ω \ E. For
these and additional potential theoretic properties of the p-Laplacian
see the book [HKM].

When p = 2 harmonic functions have the mean value property. Sup-
pose Ω is a Dirichlet regular domain, then ω2(X, ·, Ω) is a probability
measure on ∂Ω and the integral∫

∂Ω

f(ζ) dω2(X, ζ, Ω)

gives the solution to the Dirichlet problem for a given boundary data
function f .

When p 6= 2, due to the nonlinearity of the p-Laplacian, p-harmonic
functions need not satisfy the mean value property and the sum of two
p-harmonic functions need not be p-harmonic. Consequently ωp(X, ·, Ω)
is not additive on ∂Ω, hence not a measure.

Very little is known about measure theoretic properties of p-harmonic
measure when p 6= 2. Assume that Ω is Dirichlet regular. Then for all
compact subsets E of the boundary ∂Ω we have

(1.1) ωp(E, Ω) + ωp(∂Ω\E, Ω) = 1;

and if E and F are both compact, disjoint, and ωp(E, Ω) = ωp(F, Ω) =
0 then

(1.2) ωp(E ∪ F, Ω) = 0.

These results can be found in [GLM] and also in [HKM].
Some conditions on the smallness of a compact set F in terms of

Hausdorff dimension or capacity that imply ωp(E ∪ F, Ω) = ωp(E, Ω)
can be found in [AM], [K] and [BBS].
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Martio asked in [M1] whether p-harmonic measure defines an outer
measure on the zero level; i.e., whether (1.2) remains true when E and
F are allowed to intersect and to be noncompact.

In this note we answer Martio’s question negatively by showing that
ωp is not subadditive on null sets when p 6= 2. We build up an example
when Ω = R2

+ is the upper half-space and ∂Ω = R. We may consider
the point at infinity as a part of the boundary but it is not difficult to
see that ωp({∞}, R2

+) = 0. Points in R2
+ will be denoted by (x, y) or

X interchangeably.

Theorem 1. Let 1 < p < ∞ and p 6= 2. Then there exist finitely many
sets E1, E2, . . . , Eκ on R such that

ωp(Ek, R2
+) = 0 and

κ⋃
k=1

Ek = R

Furthermore, the sets Ek verify |R \ Ek| = 0

Here |.| stands for Lebesgue measure on the real line.

Corollary 1.1. There exist A and B ⊆ R such that

ωp(A, R2
+) = ωp(B, R2

+) = 0 and ωp(A ∪B, R2
+) > 0.

Thus ωp(·, R2
+) is not subadditive on null sets.

Corollary 1.2. Let 1 < p < ∞ and p 6= 2. Then ωp(X, ·, R2
+) is not

a Choquet capacity for each X ∈ Ω. In fact there exists an increasing
sequence of sets B1 ⊆ B2 ⊆ · · · ⊆ Bj ⊆ · · · ⊆ R so that

lim
j→∞

ωp(Bj) < ωp

( ∞⋃
j=1

Bj

)
.

To prove Corollary 1.1, choose k0 = min{k : ωp(E1∪E2∪. . . Ek) > 0}
and let A = E1 ∪ E2 ∪ . . . Ek0−1, B = Ek0 .

Corollary (1.2) follows from Theorem 1 as in the tree case done in
[KLW]. The definition of Choquet capacity can be found in [HKM].

Both the Theorem and its corollaries can be extended to Rn
+(n ≥ 3)

by adding n− 2 dummy variables.
Until recently, there has been no ground for conjecturing the an-

swer to Martio’s and some other questions about p-harmonic measures.
A sequence of papers [CFPR], [KW], [ARY] and [KLW], is devoted
to studying p-harmonic measure and Fatou theorem for bounded p-
harmonic functions in an overly simplified model – forward directed
regular κ-branching trees. On such trees, Theorem 1 is proved and for
each fixed p the exact value of the minimum of Hausdorff dimension of
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Fatou sets over all bounded p-harmonic functions is given in [KW] and
[KLW].

In [KLW] the construction of the sets in Theorem 1 for trees starts
with a basic p-harmonic function u that does not satisfy the mean
value property, follows with a Riesz product and then a stopping time
argument. It is really quite simple. In R2

+ we follow the same proce-
dures. The basic p-harmonic function is infinitely more complicated
and is provided by remarkable examples of Wolff for 2 < p < ∞, and
of Lewis for 1 < p < 2 ([Wo1], [Wo2] and [L2]). On a tree there
is a perfect independence among branches and the Riesz product in-
cludes all generations; in R2

+ we obtain an approximate independence
by introducing large gaps in the Riesz product. Finally, instead of a
stopping time argument, we use an ingenious lemma of Wolff [Wo1] on
gap series of p-harmonic functions, to estimate the p-harmonic function
whose boundary values are given by an infinite product.

2. Preliminaries

In this section we recall several properties of p-harmonic functions
which are needed in the proofs.

If u(X) is p-harmonic and c ∈ R, then c+u(X), cu(X) and u(cX) are
p-harmonic. If u is a nonnegative p-harmonic function in Ω and B is a
ball such that 2B ⊆ Ω, then sup

B
u ≤ C inf

B
u for some C = C(n, p) > 0

(Harnack inequality). A nonconstant p-harmonic function in a domain
cannot attain its supremum or infimum (Strong Maximum Principle).
If a sequence of p-harmonic functions converges uniformly then the
limit is also p-harmonic.

We list now some basic properties of p-harmonic measure.

(1) If ωp(X, E, Ω) = 0 at some X ∈ Ω then ωp(Y,E, Ω) = 0 for any
other Y ∈ Ω by Harnack inequality.

(2) If E1 ⊆ E2 ⊆ ∂Ω then ωp(E1, Ω) ≤ ωp(E2, Ω) (monotonicity).
(3) If Ω1 ⊆ Ω2 and E ⊆ ∂Ω1 ∩ ∂Ω2 then ωp(E, Ω1) ≤ ωp(E, Ω2)

(Carleman’s principle).
(4) If E1 ⊇ E2 ⊇, . . . ,⊇ Ej ⊇ . . . are closed sets on ∂Ω, then

ωp(
∞⋂

j=1

Ej, Ω) = lim
j→∞

ωp(Ej)

(upper semicontinuity on closed sets).

See chapter 11 in [HKM] for these properties.
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We follow [Wo1] and set W p|λ be the class of all functions f : R2
+ → R

which are λ-periodic in the x variable (f(x+λ, y) = f(x, y)) and satisfy

‖f‖p
p|λ =

∫
[0,λ)×(0,∞)

|∇f(x, y)|p dx dy < ∞

where the gradient is taken in the sense of distributions. If f ∈ W p|λ

then the function f has a well-defined trace on R; and among the
functions g such that g − f ∈ W p|λ has trace 0 on R, there is a unique
g, denoted by f̂ , which minimizes ‖g‖p|λ. The function f̂ is the unique
p-harmonic function in R2

+ with boundary values f on R. Moreover,
there exists ξ ∈ R so that

|f̂(x, y)− ξ| ≤ 2e
−γy

λ ‖f‖∞

for some γ = γ(p) > 0 , [Wo1]. Extend then f̂ to R by its boundary
values. The comparison principle holds in this setting: let f, g ∈ W p|λ

satisfy f ≤ g in the Sobolev sense on R, then f̂ ≤ ĝ in R2
+ ([Ma],

[Wo1]).
The following lemma of Wolff ([Wo1]) is a substitute for a “local

comparison principle” (unknown for p 6= 2) for p-harmonic functions.
It is not difficult to prove (2.1) below for y < Aν−1 and (2.3) below for
y > 1. However, much deeper analysis is needed to obtain (2.1) and
(2.3) below on two opposite sides of y = Aν−α for some 0 < α < 1. We
shall need the full force of Wolff’s lemma.

Wolff’s Lemma ([Wo1]). Let 1 < p < ∞. Define α = 1 − 2/p if
p ≥ 2 and α = 1 − p/2 if p < 2. Let ε > 0 and 0 < M < ∞. Then
there are small A = A(p, ε, M) > 0 and large ν0 = ν0(p, ε,M) < ∞ so
that the following are true:

If ν > ν0 is an integer, f , g, q ∈ Lip1(R) are periodic with periods
1, 1, ν−1 respectively, and

max(‖f‖∞, ‖g‖∞, ‖q‖∞, ‖f ||Lip1 , ‖g‖Lip1 , ν
−1‖q‖Lip1) ≤ M,

then for (x, y) ∈ R2
+ we have

(2.1) | ̂(qf + g)(x, y)− (q̂(x, y)f(x) + g(x))| < ε if y < Aν−α

If, in addition to the above, hatq(x, y) → 0 as y →∞, then

(2.2) | ̂(qf + g)(x, Aν−α)− g(x)| < ε

(2.3) | ̂(qf + g)(x, y)− ĝ(x, y)| < ε if y > Aν−α
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The key to [Wo1] and [L2] is the existence of a basic function Φ which
shows the failure of the mean value property for periodic p-harmonic
functions in the class W p|λ(R2

+) when p 6= 2. The mean of Φ(x, 0) on
[0, 1] equals the limit of Φ at ∞ when p = 2.

Theorem A. (Wolff and Lewis [Wo1], [L2]) For 1 < p < ∞ and

p 6= 2 there exists a Lipschitz function Φ: R2
+ → R such that LpΦ = 0,

Φ has period 1 in the x variable Φ(x + 1, y) = Φ(x, y),∫
[0,1)×(0,∞)

|∇Φ|pdxdy < +∞,

∫ 1

0

Φ(x, 0)dx > 0, but Φ(x, y) → 0 as y →∞.

Note that in Rn \ {0}(n ≥ 2), the p-harmonic function |X|
p−n
p−1 if

p 6= n , or log |X| if p = n, fails to have the mean value property on
spheres when p 6= 2.

3. Proofs

Proof of Theorem 1: Fix p 6= 2, 1 < p < ∞. Let Φ be the basic
function of Wolff and Lewis. Note that Φ(x, 0) must take both posi-
tive and negative values by the comparison principle. Replacing Φ by
cΦ (c > 0 small constant), if necessary, we may assume

(3.1) ‖Φ‖∞ <
1

2

and ∫ 1

0

log(1 + Φ(x, 0))dx > 0.

Fix a positive integer κ such that

κ∑
k=1

ak > 0 and
κ∏

k=1

(1 + ak) > 1,

where

(3.2) ak = min

{
Φ(x, 0) : x ∈

[
k − 1

κ
,
k

κ

]}
Let

L = ‖Φ‖Lip1 ,
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and fix Λ > 1 and an integer n0 > 5 so that

(3.3) 1 < Λ <

κ∏
k=1

(1 + ak)
1
κ

and

(3.4) 3−n0 < min

{
1 + max{ak} − Λ,

L

κ

}
.

For convenience we write f(x) for f(x, 0) and ωp(E) for ωp(E, R2
+) from

now on.
We shall choose inductively an increasing sequence of positive powers

of the integer κ

1 < ν1 < ν2 < . . .

and shall define for each k ∈ [1, κ] two sequences of functions on R

(3.5) qk
1(x) = Φ

(
x +

k − 1

κ

)
, fk

1 (x) = 1 + qk
1(x)

and

(3.6) qk
j (x) = Φ

(
νjx +

k − 1

κ

)
, fk

j (x) = fk
j−1(x)(1 + qk

j (x)).

After these are defined, we observe from (3.2), (3.3) and the period-
icity of Φ(x) that

(3.7)
κ∏

k=1

fk
j (x) =

j∏
i=1

κ∏
k=1

(
1 + Φ

(
νix +

k − 1

κ

))
> Λκj for all x.

Next, it follows from (3.1) that for j ≥ 1

(3.8) ‖qk
j ‖ <

1

2
,

(3.9) 2−j < fk
j <

(
3

2

)j

,

(3.10) ‖qk
j ‖Lip1 ≤ Lνj,

and

(3.11) ‖fk
j ‖Lip1 ≤ Lνj2

j

We then define for each k ∈ [1, κ] a set

Ek = {x ∈ R : fk
j (x) > Λj for infinitely many j′s}
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Observe that (3.7) implies

κ⋃
k=1

Ek = R.

To finish the proof we need to establish

ωp(Ek) = 0 and |R \ Ek| = 0

for each k.
We start by discussing the choice of {νj} and two other sequences

{rj} and {tj}; we always assume {νj} are positive powers of κ, and
{rj} and {tj} are negative powers of κ.

Set r0 = t0 = 1 and ν1 = 1. After {ν1, ν2, . . . , νj}, {r0, r1, . . . , rj−1}
and {t0, t1, . . . , tj−1} are chosen, the functions

{qk
1 , q

k
2 , . . . , q

k
j }

and

{fk
1 , fk

2 , . . . , fk
j }

are then defined by (3.5) and (3.6) for each k ∈ [1, κ]. We then choose
rj > 0 so that

(3.12) rj < min{tj−1, (Lνj6
j+1)−1}

and that

(3.13) |f̂k
j (x, y)− fk

j (x)| < 3−j−1 if 0 ≤ y ≤ rj

for all k ∈ [1, κ].
Let f = g = fk

j , q = qk
j+1, M = Lνj2

j and ε = 3−j−1 in Wolff’s
lemma; then νj+1 and tj can be chosen from (2.1) and (2.3) so that

(3.14) ν−1
j+1 < tj < rj

(3.15) |f̂k
j+1(x, y)− fk

j (x)(1 + q̂k
j+1(x, y))| < 3−j−1 if 0 < y ≤ tj

and

(3.16) |f̂k
j+1(x, y)− f̂k

j (x, y)| < 3−j−1 if y ≥ tj

for all k ∈ [1, κ]. The fact that 0 < α < 1 in Wolff’s lemma is needed
here to insure that we can always find a tj such that ν−1

j+1 < tj < rj.

We also need the fact that q̂k
j+1(x, y) → 0 as y → ∞ to obtain (3.16).

This ends the induction procedure.
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For each k ∈ [1, κ] the sequence {f̂k
j } converges to a p-harmonic func-

tion fk on R2
+ uniformly on compact subsets. Since {tj} is decreasing,

it follows from (3.16) that

(3.17) |f̂k
N(x, y)− f̂k

j (x, y)| < 3−j if y ≥ tj

for all N ≥ j and k ∈ [1, κ]; and from (3.15) and (3.17) that

(3.18) f̂k
N(x, y) >

1

2
fk

j (x)− 3−j if tj+1 ≤ y ≤ tj

for all N ≥ j + 1 and k ∈ [1, κ]. To see (3.18), observe that, since
y ≥ tj+1, we get by (3.17),

|f̂k
N(x, y)− f̂k

j+1(x, y)| < 3−j−1.

On the other hand, since y ≤ tj, by (3.15) and (3.1) we have

f̂k
j+1(x, y) >

1

2
fk

j (x)− 3−j−1.

We are now ready to prove ωp(Ek) = 0 for all k ∈ [1, κ]. In view of
the Harnack inequality it is enough to prove ωp(X0, Ek, R2

+) = 0 for a
fixed point X0 ∈ R2

+. We take X0 = (0, 1). We fix k and from now
on, we omit k in the subscripts and superscripts of Ek, qk

j and fk
j . Let

Gj = {x : fj(x) > Λj}, so that we have

E =
∞⋂

n=1

∞⋃
j=n

Gj.

By monotonicity we get ωp(E) ≤ ωp

(
∞⋃

j=n

Gj

)
. Therefore it suffices to

prove that for some C > 0,

(3.19) ωp

(
X0,

∞⋃
j=n

Gj

)
≤ CΛ−n for all n > n0.

In fact it is enough to show that for some C > 0,

(3.20) ωp

(
X0,

N⋃
j=n

Gj

)
< CΛ−n for all N > n > n0

Let us see how (3.20) implies (3.19). Observe that R \
⋃N

j=n Gj,
N ≥ n is a decreasing sequence of closed sets on R. Since the charac-
teristic function of an open set is bounded and lower semicontinous, it
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is resolutive so that

ωp

(
N⋃

j=n

Gj

)
= 1− ωp

(
R \

N⋃
j=n

Gj

)
.

(See (9.31) and (11.4) of [HKM].) By the upper semicontinuity of
p-harmonic measure on closed sets, we can let N go to ∞ to get

lim
N→∞

ωp

(
N⋃

j=n

Gj

)
= 1− ωp

(
R \

∞⋃
j=n

Gj

)
.

Therefore we conclude

lim
N→∞

ωp

(
N⋃

j=n

Gj

)
= ωp

(
∞⋃

j=n

Gj

)
.

We need to establish (3.20). Define for each j > n0 a set

Hj =
⋃{

I : κ-adic closed interval of length tj, max
x∈I

fj(x) ≥ Λj − 3−j−1

}
and let

Tj = Hj × [0, tj].

Observe that from the definition of Hj we have

(3.21) fj(x) < Λj − 3−j−1 on Hj\
o

Hj

where
o

Hj is the relative interior of Hj. Hence, it follows that

Gj ⊆ Gj ⊆
o

Hj⊆ Hj.

Note from (3.8),(3.9), (3.10), (3.11), (3.12), and (3.14) that we have

(3.22) |fj(x)− fj(x
′)| ≤ Lνj2

jtj < 3−j6−1 if |x− x′| ≤ tj.

Therefore the inequality

(3.23) min
Hj

fj ≥ Λj − 3−j2−1

holds. Finally, from (3.13) and (3.14) we deduce

(3.24) f̂j(x, y) > Λj − 3−j on Tj

We pause for a remark. If the statement

(3.25) f̂N(x, y) > CΛj on ∂Tj\
o

Hj for all N ≥ j > n0
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were true, then it would follow from the comparison principle applied

on the domain R2
+ \ ∪N

j=1Tj and the convergence of {f̂j} that

ωp

(
X0,

N⋃
j=n

Gj

)
≤ ωp

(
X0,

N⋃
j=n

∂Tj\
o

Hj

)
≤ C−1Λ−nf̂N(X0) < C(X0)Λ

−n.

This would give (3.20) and thus ωp(E) = 0. Since (3.25) need not be
true on vertical edges in ∂Tj, we need to modify the sets Tj.

The connected components of Tj are mutually disjoint rectangles Q
of height tj and of widths integer multiples of tj. This class of rectangles
is mapped to itself by the family of mappings (x, y) 7→ (mν−1

j + x, y),
m ∈ Z.

Suppose Q = [a, b]× [0, tj] is such a component. Then

(3.26) fj(a), fj(b) < Λj − 3−j−1

by (3.21). There are two possibilities.

Case I: max
[a,b]

fj ≤ Λj.

In this case define Q∗ to be the empty set ∅, and note from (3.26)
and the definition of Gj that

(3.27) Gj ∩ [a, b] = ∅
Case II: max

[a,b]
fj > Λj.

In this case let IQ
j = [a, a + tj] and JQ

j = [b − tj, b], and note from
(3.22), (3.23), and (3.26) that

Λj − 3−j < fj(x) < Λj − 3−j−2 on IQ
j ∪ JQ

j ,

so that we have

(3.28) Gj ∩ (IQ
j ∪ JQ

j ) = ∅
To modify Q in Case II, we need the following fact.

Fact. If I is a κ-adic closed interval of length t` (` > n0) on which
f`(x) ≥ Λ` − 3−`, then I contains a κ-adic closed subinterval of length
t`+1 on which f`+1(x) > Λ`+1.

To see this, we write f`+1 = (1 + q`+1)f` and note that I contains
t`ν`+1 periods of q`+1. So from (3.2), the interval I has at least t`ν`+1

κ-adic subintervals of length κ−1ν−1
`+1 on which q`+1 ≥ max{ak}. Let I ′′

be any one of such subintervals and let I ′ be any κ-adic subinterval of
I ′′ of length t`+1. Then

f`+1 ≥ (Λ` − 3−`)(1 + max{ak}) > Λ`+1 on I ′

by (3.4).
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Therefore, we may choose two sequences of κ-adic closed intervals:

IQ
j ⊇ IQ

j+1 ⊇ IQ
j+2 ⊇ . . .

and
JQ

j ⊇ JQ
j+1 ⊇ JQ

j+2 ⊇ . . .

such that |IQ
` | = |JQ

` | = t` and

(3.29) f`(x) > Λ` − 3−` on IQ
` ∪ JQ

`

for all ` ≥ j. Let

(3.30) a∗ =
∞⋂

`=j

IQ
` and b∗ =

∞⋂
`=j

JQ
`

Clearly we have the inclusioin [a + tj, b− tj] ⊆ [a∗, b∗] ⊆ [a, b]. Finally
replace Q by

Q∗ = [a∗, b∗]× [0, tj]

in Case II.
Set

T ∗
j =

⋃
{Q∗ : Q a component of Tj},

and
H∗

j = T ∗
j ∩ {y = 0}.

Then it follows from (3.27) and (3.28) that

Gj ⊆ Gj ⊆
o

H∗
j⊆ H∗

j ⊆ T ∗
j ⊆ Tj.

Claim. f̂N(x, y) > Λj/3 on ∂T ∗
j \

o

H∗
j for all N ≥ j.

To establish the claim, note first that ∂T ∗
j \

o

H∗
j⊆ Tj, so that (3.24)

implies

f̂j(x, y) > Λj − 3−j >
Λj

3
on ∂T ∗

j \
o

H∗
j .

Next assume N ≥ j +1. On T ∗
j ∩{tj+1 ≤ y ≤ tj}, it follows from (3.18)

and (3.23) that

f̂N(x, y) >
1

2
fj(x)− 3−j >

1

2
(Λj − 3−j2−1)− 3−j >

Λj

3
.

The portion V = (∂T ∗
j \

o

H∗
j ) ∩ {0 ≤ y ≤ tj+1} consists of vertical line

segments only. Suppose (x, y) ∈ V , then x = a∗ or b∗, associated with
some component [a, b] × [0, tj] of Tj, as defined in (3.30). If (x, y) ∈
V ∩ {t`+1 ≤ y ≤ t`} for some ` ∈ [j + 1, N − 1], then

f̂N(x, y) >
1

2
f`(x)− 3−` >

1

2
(Λ` − 3−`)− 3−` >

Λj

3
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by (3.18) and (3.29). Finally, if (x, y) ∈ V ∩ {0 ≤ y ≤ tN}, then

f̂N(x, y) > fN(x)− 3−N−1 > ΛN − 3−N − 3−N−1 >
Λj

3

by (3.13), (3.14) and (3.29). This proves the claim.

From the claim we deduce that the function u(x, y) = 3Λ−nf̂N(x, y)
has values u(x, y) > 1 on

N⋃
j=n

∂T ∗
j ∩ {y > 0} =

N⋃
j=n

(∂T ∗
j \H∗o

j ).

We can now pass to a subset to conclude

u(x, y) > 1 on ∂

( N⋃
j=n

T ∗
j

)
∩ {y > 0},

for N ≥ n > n0.
Repeat now the argument after (3.25).The statement (3.20) follows

by applying the comparison principle to the functions u and ωp

(
∪N

j=nGj

)
on the domainR2

+\∪N
j=nT

∗
j . This completes the proof of ωp(Ek, R2

+) = 0.
It remains to prove |R \Ek| = 0 for all k ∈ [1, κ]. Define Ψ on [0, 1)

so that

Ψ(x) = log(1 + a`) on

[
`− 1

κ
,
`

κ

)
, 1 ≤ ` ≤ κ,

and extend Ψ periodically to R so that Ψ(x + 1) = Ψ(x) for all x.
Recall that a` = min

{
Φ(x) : x ∈ [ `−1

κ
, `

κ
]
}
. Define for each k ∈ [1, κ] a

sequence of functions hk
1, hk

2, hk
3, . . . so that

hk
j (x) = Ψ

(
νjx +

k − 1

κ

)
−m,

where m = 1
κ

κ∑
k=1

log(1 + a`).

Fix k in [1, κ]. Note that hk
j is constant on each interval

[
i−1
κνj

, i
κνj

)
, i

an integer, and has average zero with respect to the Lebesgue measure
µ on each interval [

i− 1

κνj−1

,
i

κνj−1

)
.

Here we have set ν−1 = κ−1. Therefore the functions hk
1, h

k
2, h

k
3, . . .

are orthogonal in L2. Since the sequence is uniformly bounded, it has
partial sums

hk
1 + hk

2 + · · ·+ hk
j = o(j3/4) µ− a.e.
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Since

log fk
j ≥

j∑
`=1

Ψ

(
ν`x +

k − 1

κ

)
= mj +

j∑
1

hk
` (x)

and 1 < Λ < em, therefore for µ-almost every x there exist an integer
j(x) > 0 so that

fk
j (x) > Λj for all j > j(x).

This says that |R1 \ Ek| = 0.

4. Questions and Comments

Many questions concerning p-harmonic measure and p-harmonic func-
tions remain unanswered.

4.1. Are there compact sets A ⊆ R and B ⊆ R so that we have

ωp(A, R2
+) = ωp(B, R2

+) = 0,

but ωp(A ∪B, R2
+) > 0?

4.2. Can the number κ of sets in Theorem 1 be as small as 2?

Based on a theorem of Baernstein [B], we conjecture that when p is
closed to 2 and p 6= 2, κ = 5 suffices. In the tree case, κ must be and
can be any integer ≥ 3 [KLW].

Theorem B. (Baernstein [B]) Let D be the unit disk in R2. For a
set S ⊆ ∂D let S∗ be the closed arc on ∂D centered at 1 of length |S|.
Suppose that E ⊆ ∂D is the union of two disjoint closed arcs of equal
positive length, and that the two components of ∂D \ E have unequal
length, then there exist p1 and p2 (depending on E) with 1 < p1 < 2 <
p2 < ∞ such that

(4.1) ωp(0, E, D) > ωp(0, E
∗, D) for p1 < p < 2

and

(4.2) ωp(0, E, D) < ωp(0, E
∗, D) for 2 < p < p2

If E ⊆ ∂D is the union of two disjoint closed arcs of unequal positive
length for which the components of ∂D \ E do have equal length, then
inequalities opposite to (4.1) and (4.2) are true.

According to Baernstein’s theorem, there exist 1 < p1 < 2 < p2 < ∞
so that for each p ∈ (p1, 2) ∪ (2, p2), there is one set J among the four
{eiθ : θ ∈ [0, 4π

5
]}, {eiθ : θ ∈ [0, 2π

5
] ∪ [4π

4
, 6π

5
]}, {eiθ : θ ∈ [0, 6π

5
]} and

{eiθ : θ ∈ [0, 4π
5

] ∪ [6π
5

, 8π
5

]}, which satisfies

(4.3) ωp(0, J, D) < |J |/2π.
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From this, a p-harmonic function Ψ̂ on D having Lipschitz continuous
boundary values Ψ may be constructed so that Ψ(0) = 0 and

(4.4)
5∑

k=1

Ψ(ei(θ+k2π/5)) > c > 0 for every θ ∈ [0, 2π];

consequently,

1

2π

∫ 2π

0

Ψ(eiθ)dθ > c > 0.

On the other hand, using p-capacity estimates we can show that if
1 < p < 3

2
and J is an arc of the unit circle then (4.3) holds provided

|J | < δ0(p). This implies that (4.4) holds for 1 < p < 3
2

with 5 replaced
by some κ = κ(p).

Let Ψn(eiθ) = Φ(einθ) for integers n ≥ 1. It is not clear, and probably

false, whether Ψ̂n(0) = 0. Therefore it is unclear how to adapt Wolff’s
lemma to disks. Unlike in the half plane, shortening the period of the
boundary function on ∂D complicates the p-harmonic solution in D.

4.3. Given any Lipschitz function Ψ on ∂D, let Ψ̂ be the p-harmonic
function in D with boundary values Ψ, and let Ψn(eiθ) = Ψ(einθ).

Suppose Ψ̂(0) ≤ 1
2π

∫ 2π

0
Ψ(eiθ)dθ. We ask whether

Ψ̂(0) ≤ Ψ̂n(0) ≤ 1

2π

∫ 2π

0

Ψ(eiθ)dθ for n ≥ 2;

and whether lim
n→∞

Ψ̂n(0) might take the value Ψ̂(0) or 1
2π

∫ 2π

0
Ψ(eiθ)dθ.

4.4. Not much is known about the structure of the sets having p-
harmonic measure zero. Sets E ⊆ Rn of absolute p-harmonic measure
zero, ωp(E ∩ ∂Ω, Ω) = 0 for all bounded domains Ω, are exactly those
of p-capacity zero. There exist sets on ∂Rn

+ of Hausdorff dimension
n − 1 that have zero p-harmonic measure with respect to Rn

+ when
p 6= 2. There are also sufficient conditions on sets E ⊆ ∂Rn

+ in terms
of porosity, that imply ωp(E, Rn

+) = 0. For these and more, see [HM],
[M2] and [W].

Further questions and discussions on p-harmonic measures can be
found in [B] and [HKM]

4.5. Given a function u in Rn
+, denote by F(u) the Fatou set{

x ∈ Rn−1 : lim
y→0

u(x, y) exists and it is finite

}
.
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Fatou’s Theorem states that Rn−1 \ F(u) has zero (n− 1)-dimensional
measure for any bounded 2-harmonic function u in Rn

+. When 1 <
p < ∞ and p 6= 2, the Hausdorff dimension of the Fatou set of any
bounded p-harmonic function in Rn

+ is bounded below by a positive
number c(n, p) independent of the function [FGMS], [MW].

Deep and unexpected examples in [Wo1], [Wo2] and [L2] show that
Fatou Theorem relative to the Lebesgue measure fails when p 6= 2.

Theorem C. (Wolff and Lewis [Wo1], [L2]) For 1 < p < ∞ and
p 6= 2, there exists a bounded p-harmonic function u on R2

+ such that
the Fatou set F(u) has zero length, and there exists a bounded positive
p-harmonic function v on R2

+ such that the set

{x ∈ R : lim
y→0

sup v(x, y) > 0}

has zero length.

Define the infimum of the dimensions of Fatou sets to be

dimF(p) = inf{dimF(u) : u bounded p-harmonic in R2
+},

and the dimension of the p-harmonic measure to be

dim ωp = inf{dim E : E ⊆ R1, ωp(E, R2
+) = 1}.

We ask what the values of dimF(p) and dim ωp are, and conjecture that
dim ωp = dimF(p) < 1 when p 6= 2.

The question and the conjecture are based on results in [KW]. In
the case of forward directed regular κ-branching trees (κ > 1) whose
boundary is normalized to have dimension 1, the infimum of the di-
mensions of Fatou sets dimF(κ, p) is attained and is given by

dimF(κ, p) = min

{ log
κ∑
1

exj

log κ
:

κ∑
1

xj|xj|p−2 = 0

}
;

furthermore 0 < dimF(κ, p) < 1 except when p = 2 or κ = 2, and in
the exceptional case dimF(κ, p) = 1.
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