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Abstract. We prove regularity results for solutions to a class of quasilinear elliptic
equations in divergence form in the Heisenberg group Hn. The model case is the non-
degenerate p-Laplacean operator

2nX
i=1

Xi

„`
µ2 + |Xu|2

´ p−2
2 Xiu

«
= 0,

where µ > 0, and p is not too far from 2.
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Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/A, I-
43100 Parma, Italy
e-mail: giuseppe.mingione@unipr.it
URL: www.unipr.it/˜mingiu36



2 Juan J. Manfredi, Giuseppe Mingione

1. Introduction and Results

The aim of this paper is to prove the local smoothness of solutions for a
class of non-linear elliptic equations in the Heisenberg group Hn. The nov-
elty here is the consideration of equations with super-linear growth with
respect to the (horizontal) gradient. Indeed, a primary example covered
by our analysis is the non-degenerate p-Laplacean equation

2n∑
i=1

Xi

((
µ2 + |Xu|2

) p−2
2

Xiu

)
= 0, (1)

for a suitable, explicitly determined range of values of the growth expo-
nent p ≥ 2, and µ > 0. Here, denoting points x ∈ Hn with the usual
coordinates x = (x1, x2, . . . , xn, xn+1, . . . , x2n, t), we mean

Xi ≡ Xi(x) = ∂xi −
xn+i

2
∂t, Xn+i ≡ Xn+i(x) = ∂xn+i +

xi

2
∂t,

T ≡ T (x) = ∂t, Xu = (X1u, X2u, . . . , X2nu).

In section 2 we present more details about the Heisenberg group.
More generally, we shall consider elliptic equations in divergence form

of the type
2n∑
i=1

Xiai(Xu) = 0, (2)

where the vector field a = (ai) : R2n 7→ R2n is of class C1 and satisfies the
following growth and ellipticity conditions:

|Da(z)|(µ2 + |z|2)
1
2 + |a(z)| ≤ L(µ2 + |z|2)

p−1
2 , (3)

and

ν(µ2 + |z|2)
p−2
2 |λ|2 ≤

2n∑
i,j=1

Dzjai(z)λiλj , (4)

for every z, λ ∈ R2n, where 0 < 2ν ≤ L, µ and the growth exponent p,
are restricted by the non-degeneracy condition

0 < µ ≤ 1, (5)

and the following bound on the growth rate:

2 ≤ p < c(n), (6)
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where

c(n) =


4 if n = 1, 2

10
3 if n = 3

1 + n−
√

n2 − 2n− 3 if n ≥ 4.

(7)

When n = 3 the end point p = 10/3 is actually also included; see Remark
7 below. Observe that c(n) > 2 and limn→∞ c(n) = 2. The crucial point
in (5) is that µ 6= 0, while the limitation µ ≤ 1 is assumed here only as
an avoidable normalization condition. The choice

ai(z) = (µ2 + |z|2)
p−2
2 zi for i ∈ {1, . . . , 2n}

makes the equation (1) fall into the class considered in (2). Our results
also apply to minima of variational integrals of the type

u 7→
∫

Ω
f(Xu) dx, (8)

provided f : R2n → R is a differentiable function such that the vector
field (ai(z)) = (Dzif(z)) satisfies the assumptions specified in (3)–(6). In
this case, the regularity of minima is obtained by passing to the Euler-
Lagrange equation of the functional in (8) above

2n∑
i=1

Xi (Dzif(Xu)) = 0, (9)

which is of type (2). A typical example in this case is, of course,

u 7→
∫

Ω
(µ2 + |Xu|2)

p
2 dx, (10)

with µ and p satisfying (5) and (6) respectively.
Under the previous assumptions, we shall first prove Lipschitz con-

tinuity of weak solutions and related explicit, a priori estimates: this is
actually the focal point of the theory and the real hard part of our work.
After such a step we apply a technique of Capogna [2],[4] to conclude that
weak solutions are smooth. The C1,α-regularity of solutions for the case
p = 2 has been obtained by Capogna in [2],[3],[4]. We are not aware of any
result concerning the case p 6= 2, except from results obtained via Cordes
perturbation techniques, when p lies in a small, not explicitly determined,
neighborhood of 2; see [9] and [10]. On the other hand we note that in
these two papers (5) is not needed and the degenerate p-Laplacean, given
by (1) when µ = 0, is also included. As far as the lower order regular-
ity theory is concerned, that is C0,α-regularity, we mention the papers
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[5],[23],[24],[32] for sub-elliptic equations, and the paper [31], where vari-
ational integrals of the type in (8) are considered. See also Theorem 4
below. Regularity results for minima of general vectorial and strictly con-
vex functionals of the type (8), including the one in (9), have been proved
by Capogna & Garofalo [6], relying on explicit a priori estimates for solu-
tions to constant coefficients systems. A new and interesting approach to
such estimates, has been recently given by Föglein in [12], where the case
of elliptic systems with general p-growth is considered. Both in [6] and
[13] partial regularity results are proved i.e. regularity of the gradient of
solutions outside a closed negligible set, in fact called the singular set.

Our main result is the following:

Theorem 1. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(6). Then the Euclidean gradient Du is locally
Hölder continuous in Ω.

Once the Hölder continuity of the gradient is achieved, higher smooth-
ness of the vector field (ai) implies higher regularity of solutions. As an
example of such application of Theorem 1 we have

Theorem 2. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (1)
under the assumptions (5)-(6). Then u ∈ C∞(Ω).

A couple of words on the bound (6). We do not know if the number
c(n) determined in (7) is already optimal or not, but we feel that some
improvements can still be done. We think that a first important step
toward establishing the maximal regularity of solutions for more general
values of p would be to show that c(n) is actually independent of n. In this
respect, the value c(n) = 4 appears to be a natural threshold number to
investigate, see also [8]. Eventually proving results for all possible values
of p, that is proving or disproving regularity, still remains a very open
issue. We are planning to take up such issues in future work.

The proof of Theorem 1 is divided in various steps. Its focal point is,
as mentioned above, the proof of the boundedness of the full Euclidean
gradient Du of the solution u. In the standard, Euclidean case, this is
achieved using the fact that certain non-linear functions of the gradient
turn out to be a sub-solutions of a suitable, linear elliptic equation with
bounded and measurable coefficients, obtained by various manipulations
based on differentiating the starting equation. This is not the case in the
present setting. Indeed the horizontal differentiation of (2) leads to the
appearance of extra terms, containing the vertical part Tu, and needing
a new, suitable treatment. It is worthwhile remarking that proving the a
priori boundedness of Du is not needed when p = 2 [2],[3], since the dif-
ferentiated equation exhibits coefficients that are automatically bounded;
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see Remark 11 below. In order to prove that Du is bounded we use a
delicate boot-strap argument getting in turn regularity for the horizontal
derivatives from regularity of the vertical one and vice-versa. Note that in
all the previous approaches these two stages were separate [21],[2],[3],[4].
We begin with the results of Marchi [26] and Domokos [8], asserting that
Tu ∈ Lp, provided 2 ≤ p < 4. We use this regularity of the vertical deriva-
tive to show suitable higher integrability for Xu in certain Ls spaces, for
s > p. Using this last fact, we shall go back to Tu to prove its boundedness
via a suitable, anisotropic, application of the Moser’s iteration technique.
It is at this point that we need assumptions (5) and (6), essentially to
by-pass the fact that the equation does not control the Tu part. As a
side benefit we shall also obtain an explicit L∞-a priori estimate for Tu,
which reveals its precise dependence with respect to the parameter µ,
and also reflects the interplay between horizontal and vertical regularity
through the appearance of the Ls norm of Xu, see (41) below. With the
Tu boundedness in our hands, we can now estimate the horizontal gra-
dient Xu again. This needs, in turn, the horizontal differentiation of the
equation and the treatment of the right-side extra terms generated by
the non-commutativity of the vector fields Xi. At this stage we shall need
a careful integration-by-parts technique to put all the new terms in the
correct, ready-to-estimate form, taking now strong advantage that Tu is
bounded. We will also need a peculiar choice of suitable test functions
in order to overcome certain technical problems. At the end, once again
we run Moser’s iteration to obtain the a priori L∞- estimate for Xu in
(52), which extends the Euclidean ones, and depends on the L∞-norm of
Tu. Eventually, this will also lead us to establish a more precise form of
the L∞-a-priori estimate for Tu, revealing an interesting duality with the
estimates for Xu; see Remark 10 below. To highlight the interaction be-
tween the vertical and horizontal regularization procedures described up
to now, we summarize the various steps of our proof of the boundedness
of Du in the following scheme:

Tu ∈ Lp
loc =⇒ |Xu|

p
2 ∈ HW 1,2

loc =⇒

T
(
|Xu|

p
2

)
∈ L2

loc =⇒ Xu ∈ L
Np

N−2

loc =⇒

Xu ∈ L
Qp

Q−p
−ε

loc =⇒ Tu ∈ L∞loc =⇒ Xu ∈ L∞loc.

(11)

In the last line ε > 0 can be picked arbitrarily small. The starting infor-
mation, together with the first arrow, can be retrieved from the papers
[8],[26] of Domokos and Marchi, respectively, while all the other impli-
cations are actually the content of this paper. After obtaining the Lips-
chitz regularity of solutions a further differentiation of the equation and
a modification of Capogna’s technique [2],[3],[4] leads to C1,α regularity,
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and eventually to C∞-smoothness in the case of a smooth vector field
(ai). Some kind of explicit a priori estimates will be finally demonstrated
in Section 8.

2. Preliminaries

We adopt the convention of denoting by c a general constant, possibly
varying from line to line in the same chain of inequalities, while the rele-
vant dependence will be specified, and possibly denoted in a more pecu-
liar way; e.g.: c0, c1, and so on. In the following Ω will denote an open,
bounded subset of R2n+1, where n ∈ N. We also adopt the following con-
vention: when dealing with a measurable function f , by saying that f is
bounded, we usually mean that f is essentially bounded; in other words
we identify sup with esssup. Moreover, we dealing with functions spaces
of vector valued maps f : Ω → Rn, we shall make the usual identification
Ls(Ω, Rn) = Ls(Ω), W 1,s(Ω, Rn) = W 1,s(Ω) and so on.

2.1. The Heisenberg group; CC-distance, CC-balls.

We identify the Heisenberg group Hn with R2n+1, see also (14) below.
Points in Hn are denoted by

x = (x1, x2, . . . , xn, xn+1, . . . , x2n, t). (12)

The group multiplication is given by

(x1, ..., x2n, t) · (y1, ..., y2n, u)

= (x1 + y1, ..., x2n + y2n, t + u +
1
2

n∑
i=1

(xiyn+i − xn+iyi)).

For 1 ≤ i ≤ n we have the canonical left invariant vector fields

Xi = ∂xi −
xn+i

2
∂t, and Xn+i = ∂xn+i +

xi

2
∂t,

the only non-trivial commutator being

T = ∂t = [Xi, Xn+i].

We call X1, X2, . . . , X2n horizontal vector fields and T the vertical vector
field. The horizontal gradient of a function u : Hn 7→ R is the vector

Xu = (X1u, X2u, . . . , X2nu).
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The second horizontal derivatives are given by the 2n×2n matrix XXu =
X2u with entries

(X(Xu))i,j =
(
X2(u)

)
i,j

= Xi(Xj(u)).

Note that such a matrix is not symmetric due to the non-commutativity
of the horizontal vector fields Xi. The standard Euclidean gradient of a
function u will be denoted by

Du = (D1u, D2u, . . . , D2nu, D2n+1u).

The Euclidean dimension and the Homogeneous dimension of Hn will be
denoted by

N = 2n + 1, and Q = 2n + 2, (13)

respectively. For notational convenience we shall also denote

Ys = Xs+n, and ys = xs+n, for s ∈ {1, . . . , n}.

The Heisenberg Lie algebra hn is as step 2 nilpotent Lie algebra. This
means that hn admits a decomposition as a vector space sum

hn = h0 ⊕ h1

such that
[h0, h0] = h1.

The horizontal part h0 is generated by {X1, . . . , Xn, Y1, . . . , Yn} and the
vertical part h1 by T . Note that hn is generated as a Lie algebra by h0.

The exponential mapping exp: hn 7→ Hn is a global diffeomorphism.
A point x ∈ Hn has exponential coordinates (x1, . . . , xn, y1, . . . , yn, t) if

x = exp

 n∑
j=1

xiXi + yiYi

+ tT

 . (14)

The identification between Hn, hn, and R2n+1 is precisely the use of ex-
ponential coordinates in Hn, and it is already used in (12).

The horizontal tangent space at a point x ∈ Hn is the 2n-dimensional
subspace

Th(x) = linear span{X1(x), . . . , Xn(x), Y1(x), . . . , Yn(x)}.

A piecewise smooth curve t 7→ γ(t) is horizontal if γ′(t) ∈ Th(γ(t)) when-
ever γ′(t) exists. Given two points x, y ∈ Hn denote by

Γ (x, y) = {horizontal curves joining x and y}.

Chow’s accessibility theorem [7] implies that Γ (x, y) 6= ∅.
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For convenience, we fix an ambient Riemannian metric in Hn so that
h0 = {X1, . . . , Xn, Y1, . . . , Yn} is a left invariant orthonormal frame and
the Riemannian volume element and group Haar measure agree, and are
equal to the Lebesgue measure in R2n+1.

The Carnot-Carathèodory metric is then defined by

dcc(x, y) = inf{length(γ) : γ ∈ Γ (x, y)}.

It depends only on the restriction of the ambient Riemannian metric to
the horizontal distribution generated by the horizontal tangent space.

The Carnot gauge is |x|cc = dcc(x, 0). While explicit formulas are
available [1], sometimes it is more convenient to work with an equivalent
gauge, smooth away from the origin, called the Heisenberg gauge:

|x|Hn =

 n∑
j=1

x2
i + y2

i

2

+ t2


1
4

.

These gauges are indeed comparable [1]

|x|cc ≈ |x|Hn ≈

 n∑
j=1

|xi|+ |yi|

+ |t|
1
2 .

The non-isotropic dilations are the group homorphisms given by

δr (x1, . . . , xn, y1, . . . yn, t) =
(
rx1, . . . , rxn, ry1, . . . ryn, r2t

)
,

where r > 0. In this paper all the balls will be considered with respect to
the Carnot-Carathèodory distance (CC-distance):

B(x0, r) = {y ∈ Hn : dcc(x0, y) < r} = {y ∈ Hn : |y−1 · x0|cc < r},

but we could equally have used the smooth gauge to define equivalent
balls

B′(x0, r) = {y ∈ Hn : |y−1 · x0|Hn < r}.
The point is that in both cases we get the ball centered at the origin
of radius r > 0 by applying the nonisotropic dilation δr to the unit ball
centered at the origin

B(0, r) = δrB(0, 1).

In particular, the volume can be estimated by

|B(x0, r)| ≈ rQ. (15)

When clear, or not essential in the context, we will omit the center of the
ball Br = B(x0, r) and, if not otherwise stated, when considering several
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balls simultaneously, they will be concentric. The doubling property of the
balls Br now easily follows from (15). More precisely for every compact
subset K ⊂ R2n+1 there exist a constant C < ∞ and a radius R0 > 0,
both depending on K, such that

|B(x, λr)| ≤ C|B(x, r)|λQ whenever λr ≤ R0 and x ∈ K. (16)

In the rest of the paper we shall use this result with the choice K = Ω,
with C = C(Ω) and R0 = R0(Ω) denoting the respective quantities.

In the following, the average of a function u ∈ L1(B(x0, r)), over a
ball B(x0, r), is denoted by

(u)r = (u)x0,r =
1

|B(x0, r)|

∫
B(x0,r)

u dx = −
∫

B(x0,r)
u dx,

and once again, when clear from the context, we shall not specify the
center.

2.2. Sub-elliptic function spaces.

Let us now recall a few definitions of certain function spaces, that can
be retrieved, for instance, in [2],[3],[4]; in the following A will denote a
smooth open subset of Ω ⊂ Hn. The Folland-Stein class Γα(A) consists
of all Hölder continuous functions, with exponent α ∈ (0, 1], with respect
to the CC-distance. Therefore we say that f ∈ Γα(A) if and only if

[f ]α ≡ [f ]α,A := sup
x,y∈A,x 6=y

|f(x)− f(y)|
dcc(x, y)α

< ∞, α ∈ (0, 1]. (17)

A function f ∈ Lp(A) lies in the (Heisenberg) Morrey space Mp,λ(A) if
and only if

sup
x∈A,0<r<b

−
∫

B(x,r)∩A
|f |p dx ≤ Crp(λ−1) where b = min{R0,diam(A)},

(18)
for a fixed constant C < ∞. In the previous definition the radius R0 > 0 is
the one from (16), with the choice K ≡ Ω̄. The local variants Γα

loc(A) and
Mp,λ

loc (A) are defined saying that u ∈ Γα
loc(A) (resp. u ∈ Mp,λ

loc (A)) if and
only if u ∈ Γα(A′) (resp. u ∈ Mp,λ(A′)), for every smooth open subset
A′ ⊂⊂ A. Morrey spaces are useful when proving the Hölder continuity
of functions via integral estimates, see for instance the classical Morrey’s
embedding Theorem in Chapter 2 of [16]. This has been extended to the
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sub-elliptic setting by Capogna [4]. We shall use the following implication
from the results in [4]:

|Xu| ∈ M2,λ(A) =⇒ u ∈ Γα
loc(A) . (19)

We refer again to [2],[4] for more information on Folland-Stein classes and
Morrey type spaces.

The horizontal Sobolev space HW 1,p(Ω) consists of those functions
u in Lp(Ω) whose horizontal distributional derivatives are in turn in Lp,
that is Xu ∈ Lp(Ω). HW 1,p(Ω) is a Banach space with respect to the
norm

‖u‖HW 1,p(Ω) = ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω),

for p ≥ 1. The closure of C∞
0 (Ω) in HW 1,p(Ω) is denoted by HW 1,p

0 (Ω),
while the local variant HW 1,p

loc (Ω) is defined by saying that u ∈ HW 1,p
loc (Ω)

if and only if u ∈ HW 1,p(Ω′), for every open subset Ω′ ⊂⊂ Ω.
The Homogeneous dimension Q defined in (13) comes into the play also

when proving the sub-elliptic version of the classical Sobolev embedding
theorem. The following is a particular case of the more general results
available in [5],[23].

Theorem 3. Let u ∈ HW 1,q(Ω) with 1 < q < Q, and let Br ⊂⊂ Ω be a

ball of radius r. Then u ∈ L
qQ

Q−q (Br), and moreover there exists a constant
c, depending only on n and p, such that(

−
∫

Br

|u|
qQ

Q−q dx

)Q−q
qQ

≤ c

(
−
∫

Br

|Xu|q dx

) 1
q

.

The previous theorem will be repeatedly used in the rest of the paper
with the choice q = 2.

2.3. Difference quotients.

Now we shall recall a few basic properties of the difference quotient op-
erators in the Heisenberg group.

Definition 1. Let Z be a vector field in Hn. The difference quotient of u
at the point x is

DZ
h u(x) =

u(xehZ)− u(x)
h

,

where h 6= 0.

The relationship between difference quotients along vector fields and
derivatives along vector fields is given by the following lemma of Hörmander
[18], valid for general vector fields, not necessarily left-invariant.
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Lemma 1. Let K be a compact set included in Ω open set in Hn. Let Z
be vector field and u ∈ Lp

loc(Ω), p > 1. If there exist σ and C two positive
constants such that

sup
0<|h|<σ

∫
K

∣∣DZ
h u(x)

∣∣p dx ≤ Cp

then Zu ∈ Lp(K) and ‖Zu‖Lp(K) ≤ C. Conversely, if Zu ∈ Lp(K) then
for some σ > 0

sup
0<|h|<σ

∫
K

∣∣DZ
h u(x)

∣∣p dx ≤
(
2‖Zu‖Lp(K)

)p
.

Remark 1. Beside the previous result we shall repeatedly use in the fol-
lowing the fact that once Xiu ∈ Lq(Ω), for q > 1, then DXi

h u → Xiu
strongly in Lq

loc(Ω), as h → 0. The proof of this basic fact goes exactly
as in the standard Euclidean case, via a density and approximation ar-
gument whcih is still available in the Heisenberg group setting; see, for
instance [16], Chapter 8.

2.4. Sub-elliptic equations.

In the following we shall also need to consider more general vector fields
of the type a = (ai) : Ω × R2n 7→ R2n, which are measurable in the first
variable, and continuous in the second one. They shall satisfy a growth
condition of the type

|a(x, z)| ≤ L(1 + |z|2)
p−1
2 , L, p > 1, (20)

and a monotonicity condition of the type

2n∑
i=1

ai(x, z)zi ≥ ν|z|p − L, ν > 0, (21)

for every x ∈ Ω and z ∈ R2n. We observe that assumptions (3)-(4) imply
assumptions (20) and (21), eventually choosing a different value for the
constants ν and L.

Definition 2. A weak solution to the equation

2n∑
i=1

Xiai(x,Xu) = 0, (22)
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in the bounded open subset Ω ⊂ Hn, under the assumption (20), and with
p > 1, is a function u ∈ HW 1,p(Ω) such that∫

Ω

2n∑
i=1

ai(x,Xu)Xiϕ dx = 0, for all ϕ ∈ HW 1,p
0 (Ω).

We shall need a few known regularity result results for solutions of equa-
tions as in (2). The first can be found in [5],[23].

Theorem 4. Let p > 1, and let u ∈ HW 1,p(Ω) be a weak solution of
the equation (22), in a domain Ω ⊂ Hn, where the vector field a =
(ai) : Ω × R2n 7→ R2n satisfies the assumptions (20)–(21). Then for ev-
ery A ⊂⊂ Ω, there exists constants c ≡ c(n, p, L/ν,dist(A, ∂Ω)) < ∞,
α ≡ α(n, p, L/ν,dist(A, ∂Ω)) > 0, such that

||u||L∞(A) + [u]α,A ≤ c.

The previous theorem will be crucially used in the last section of the
paper, applied for the linear case i.e. ai(x, z) :=

∑2n
i=1 bi,j(x)zj , see (139)

below. We explicitly observe that Theorem 4 applies to solutions of the
equation (2), under the assumptions (3) and (4), as already explained
above. The second regularity result we shall need in the paper is the
following theorem, due to Domokos [8].

Theorem 5. Let 2 ≤ p < 4 and let u ∈ HW 1,p(Ω) be a weak solution of
equation (2) in a domain Ω ⊂ Hn. Then Tu ∈ Lp

loc(Ω), X2u ∈ L2
loc(Ω).

Moreover, if Br = B(x0, r) ⊂⊂ Ω, we have the estimates∫
Bαr

|Tu|p dx ≤ c

rp

∫
Br

(
µ2 + |Xu|2

) p
2 dx +

c

r2p

∫
Br

|u|p dx, (23)

and ∫
Bαr

(
µ2 + |Xu|2

) p−2
2 |X2u|2 dx

≤ c

r2

∫
Br

(
µ2 + |Xu|2

) p
2 dx +

c

rp+2

∫
Br

|u|p dx. (24)

Here α ∈ (0, 1) is a fixed constant depending only on p, and c > 0 is a
fixed constant depending only on p and n.

Domokos’ original statement is actually referred to solutions of (1). The
proof is written in such a way that it readily applies to solutions of (2).
The precise and explicit dependence of the constants upon r stated in
Theorem 5 can be obtained by Domokos’ proof via a scaling argument by
noticing the the constants in Domokos’ theorem are independent of the
non-degeneracy parameter µ.
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Remark 2. From Theorem 5 and estimate (24), or just from the estimates
in [8] and Lemma 3 below, we easily infer that

(µ2 + |Xu|2)
p−2
4 Xu ∈ HW 1,2

loc (Ω). (25)

In particular we have
Xu ∈ HW 1,2

loc (Ω). (26)

2.5. Algebraic results.

We finally conclude with three algebraic lemmata. The proof of the first
twos can be found, for instance, in [17].

Lemma 2. Let 1 < p < ∞. There exists a constant c = c(n, p) > 0,
independent of µ ∈ [0, 1], such that, for any z1, z2 ∈ Rn

c−1
(
µ2 + |z1|2 + |z2|2

) p−2
2 ≤

∫ 1

0
(µ2 + |z2 + τz1|2)

p−2
2 dτ

≤ c
(
µ2 + |z1|2 + |z2|2

) p−2
2

.

Lemma 3. Let 1 < p < ∞. There exists a constant c ≡ c(n, p) > 0,
independent of µ ∈ [0, 1], such that, for any z1, z2 ∈ Rn

c−1
(
µ2 + |z1|2 + |z2|2

) p−2
2 |z2 − z1|2

≤
∣∣∣(µ2 + |z2|2)

p−2
4 z2 − (µ2 + |z1|2)

p−2
4 z1

∣∣∣2
≤ c
(
1 + |z1|2 + |z2|2

) p−2
2 |z2 − z1|2.

The proof of the following iteration lemma can be found in [16], Chapter
6.

Lemma 4. Let r > 0 and I : [r/2, r] → R be a non-negative, bounded
function such that, for any r/2 ≤ t < s < r

I(t) ≤ θI(s) +
A

(s− t)q
+ B,

where A,B ≥ 0, and θ ∈ (0, 1), q ≥ 1 are fixed constants. Then there
exists a constant c ≡ c(θ) such that

I(r/2) ≤ cA

rq
+ cB.
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3. Basic higher integrability

From now on, and for the rest of the paper, we shall denote by u a weak
solution to the equation (2), that is a function u ∈ HW 1,p(Ω) such that∫

Ω

2n∑
i=1

ai(Xu)Xiϕ dx = 0, for all ϕ ∈ HW 1,p
0 (Ω). (27)

The main aim of this section is to prove the higher integrability of the
horizontal gradient of solutions. More precisely, we have:

Theorem 6. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)–(5), with p ∈ [2, 4). Then

Xu ∈ L
pN

N−2

loc (Ω). (28)

This will follow from the existence of vertical derivatives of certain non-
linear quantities involving Xu, according to the scheme outlined in (11).
We state the result in a way that makes it an extension of the standard
higher differentiability results in the Euclidean case. See for instance [16],
Chapter 8.

Theorem 7. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)–(5), and assume that 2 ≤ p < 4. Then

T ((µ2 + |Xu|2)
p−2
4 Xu) ∈ L2

loc(Ω) and Tu ∈ HW 1,2
loc (Ω). (29)

Moreover, let x0 ∈ Ω and r > 0 such that Br = B(x0, r) ⊂⊂ Ω. Then, we
have∫

B r
2

(µ2 + |Xu|2)
p−2
2 |TXu|2 dx ≤ c

r2

∫
Br

(µ2 + |Xu|p + |Tu|p) dx, (30)

for every Bρ = B(x0, ρ) ⊂ Br. Here the constant c only depends on n, L/ν
and p, being independent of the particular solution u, the constant µ, and
the vector field (ai).

Proof. The proof will be a bit more involved than necessary, since we
will eventually build on it for the proof of Theorem 8 below. From now
on, without loss of generality, we shall assume that ν = 1 via a standard
scaling argument that consists of in considering the vector field ν−1(ai)
instead of (ai). Therefore in the constant dependence the letter ν will
disappear, but at the end, when re-scaling back, it will reappear in the
form L/ν, as in the statement of Theorems 8 and 7. To begin the proof,
in the weak form of the equation (27), we take DT

−hϕ instead of ϕ. Here
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|h| > 0 is small enough, depending on the quantity dist(supp ϕ, ∂Ω)
to guarantee that DT

−hϕ has still compact support in Ω. Using discrete
integration by parts for difference quotients as in [2] and [8] we obtain∫

Ω

2n∑
i=1

DT
h (ai(Xu))Xiϕ dx = 0. (31)

Next, we write

DT
h (ai(Xu))(x) =

∫ 1

0

2n∑
j=1

Dzjai

(
Xu(x) + shDT

h Xu(x)
)
DT

h Xju(x) ds

=
2n∑

j=1

Ai,j(x)XjD
T
h u(x), (32)

where we have set

Ai,j(x) :=
∫ 1

0
Dzjai

(
Xu(x) + shDT

h Xu(x)
)

ds.

We have used the fact that Xi and T commute for every i ∈ {1, . . . , 2n},
to deduce that Xi and DT

h commute too. We can use the algebraic lemma
2, together with the ellipticity and growth assumptions (4) and (3), re-
spectively. This yields the following lower bound:

c1(n, p)(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 |XDT

h u(x)|2

≤
∫ 1

0
(µ2 + |Xu(x) + shDT

h Xu(x)|2)
p−2
2 ds |XDT

h u(x)|2

≤
2n∑

i,j=1

Ai,j(x)XjD
T
h u(x)XiD

T
h u(x), (33)

and the following upper bound:

|Ai,j(x)| ≤ c2(n, p, L)(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 . (34)

Using the identity (32), equation (31) can be rewritten as∫
Ω

2n∑
i,j=1

Ai,jXjD
T
h uXiϕ dx = 0.

In the previous equality we use the test function

ϕ = η2g((DT
h u)2)DT

h u, where g(t) ≡ gα(t) := tα α ≥ 0,
(35)
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and η ∈ C∞
0 (Ω) is a smooth cut-off function with compact support in Ω,

to be chosen later, and such that 0 ≤ η ≤ 1. This is an admissible test
function since u is locally bounded in Ω by Theorem 4. It would also be
possible to use another choice of test function here, in order to avoid the
use of such result, and give a self contained proof of the local boundedness
of Tu (see the choice of the function g in (65) below, the procedure fol-
lowed in the next section, and Remark 6 below). For simplicity, we prefer
to use the results of [5],[23]. Expanding terms in (35) we have∫

Ω

2n∑
i,j=1

Ai,jXjD
T
h u
[
2ηXiηg((DT

h u)2)DT
h u

+2η2g′((DT
h u)2)(DT

h u)2XiD
T
h u + η2g((DT

h u)2)XiD
T
h u
]

dx = 0.

We used again the fact that Xi and DT
h commute for every i ∈ {1, . . . , 2n}.

Using (33) we find

c

∫
Ω

η2(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α|XDT
h u|2 dx

≤
∫

Ω
η2
[
2g′((DT

h u)2)(DT
h u)2 + g((DT

h u)2)
] 2n∑

i,j=1

Ai,jXjD
T
h uXiD

T
h u dx

while making use of (34) and Young’s inequality we have, for any ε ∈ (0, 1)∣∣∣∣∣∣
∫

Ω
2η

 2n∑
i,j=1

Ai,jXjD
T
h uXiη

 g((DT
h u)2)DT

h u dx

∣∣∣∣∣∣
≤ c

∫
Ω

η|Xη|(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α|DT
h u||XDT

h u| dx

≤ ε

∫
Ω

η2(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α|XDT
h u|2 dx

+
cCη

ε

∫
supp η

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α+2 dx,

where we have set
Cη = ‖Xη‖2L∞(Ω), (36)

and used the standard identification

(DT
h u)2γ = ((DT

h u)2)γ , for all γ ≥ 0. (37)

Taking ε small enough, depending on n, p and L only and reabsorbing
terms we have∫

Ω
η2(µ2 + |Xu(x)|2 + |Xu(xehT )|2)

p−2
2 (DT

h u)2α|XDT
h u|2 dx
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≤ cCη

∫
supp η

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α+2 dx, (38)

where c = c(n, p, L). In the previous inequality we take now α = 0, and
we choose η ∈ C∞

0 (Br) to be such that η ≡ 1 on Br/2, 0 ≤ η ≤ 1, and
‖Xη‖L∞(Ω) ≤ c(n)/r; the existence of such a function can be inferred as
in [5]. Moreover we use again that XDT

h u = DT
h Xu, getting∫

B r
2

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 |DT

h Xu|2 dx

≤ cCη

∫
Br

(µ2 + |Xu(x)|2 + |Xu(xehT )|2 + (DT
h u)2)

p
2 dx, (39)

where we also applied Young’s inequality on the right hand side. Using
the fact that Tu ∈ Lp(Br), that p ≥ 2, and that µ > 0, we have that the
quantity

∫
|DT

h Xu|2 stays bounded uniformly with respect to h and then
Hörmander’s Lemma 1 on difference quotients tells us that TXu ∈ L2(Br),
and the second inclusion in (29) follows. Once the existence of TXu a.e. is
achieved, we can let h → 0 in the previous inequality, and a standard
application of Fatou’s lemma to treat the left hand side finally yields
(30). As for the first assertion in (29), it is sufficient to remark that using
Lemma 3 in combination with (39), we have that∫

B r
2

∣∣∣DT
h

(
(µ2 + |Xu|2)

p−2
4 Xu

)∣∣∣2 dx

≤ c(n, p)
∫

B r
2

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 |DT

h Xu|2 dx,

from which also the first assertion in (29) immediately follows.

A straightforward application of the standard, Euclidean Sobolev embed-
ding theorem now gives the desired higher integrability of Xu asserted by
Theorem 6.

Proof (of Theorem 6). It is a standard fact. Combining (29) with the
assertion in (25) yields

D((µ2 + |Xu|2)
p−2
4 Xu) ∈ L2

loc(Ω),

therefore by the standard Sobolev embedding theorem we have that

(µ2 + |Xu|2)
p−2
4 Xu ∈ L

2N
N−2

loc (Ω),

from which (28) immediately follows, again via Hormander’s Lemma 1.
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4. Vertical estimates

In this section we continue to follow the path outlined in (11). We consider
the fifth arrow. More precisely, we shall prove that the higher integrability
of the horizontal gradient Xu with a certain exponent s ≥ p, will force
the local boundedness of Tu, provided p is not far from 2, in a way that
is determined by the size of s itself, via (40) below. Eventually, using the
bound in (6), we shall apply such a fact with the choice s ≈ Qp/(Q− p).
In Section 7 we shall also let s → ∞ to get a certain a priori estimate
(135) for Tu. The main result of this section is therefore the following:

Theorem 8. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)–(5), with 2 ≤ p < 4. Assume also that Xu ∈
Ls

loc(Ω), where s ≥ p is such that

χ =
Q

Q− 2
s− p + 2

s
> 1. (40)

Then we have Tu ∈ L∞loc(Ω). Moreover, let x0 ∈ Ω and r > 0 be such that
Br = B(x0, r) ⊂⊂ Ω, then we have

‖Tu‖L∞(Bρ) ≤
(

c

r − ρ

) χ
χ−1

(‖µ + |Xu|‖Ls(Br)

µ

) (p−2)χ
2(χ−1)

‖Tu‖
L

2s
s−p+2 (Br)

,

(41)
for every Bρ = B(x0, ρ) ⊂ Br. Here the constant c only depends on n, L/ν
and p, being independent of the particular solution u, the constant µ, and
the vector field (ai), and s.

Remark 3. Estimate (41) exhibits a few interesting features. First of all
the rate of “blow-up” with respect to the parameters µ, χ and the Ls(Br)
norm of Xu is exactly quantified. In particular, the estimate worsens when
either µ → 0, that is the equation becomes degenerate, or when χ → 1,
that is the inequality in (6) becomes an equality. Moreover, in the non-
degenerate case p = 2 we notice the identities

s

s− p + 2
= 1

χ

χ− 1
=

Q

2
(42)

and (41) reduces to

‖Tu‖L∞(Bρ) ≤
c

(r − ρ)
Q
2

‖Tu‖L2(Br),

which is the analog of the usual estimates obtained in the Euclidean
case when considering uniformly elliptic equations. For instance, taking
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ρ = r/2 and taking into account that |Br| ≈ rQ, we get the weak-type
Harnack inequality

sup
B r

2

|Tu| ≤ c

(
−
∫

Br

|Tu|2 dx

) 1
2

. (43)

For another form of the a priori estimate (41) see (135) and (136) below,
where we shall use the fact that the constant c in (41) does not depend
on s. Anyway, we like to remark that even in the case p = 2, estimate
(43) is anyway new in this setting.

Proof (of Theorem 8). We restart from the proof of Theorem 7, and more
precisely go back to (38), valid for any α ≥ 0; using the fact that p ≥ 2,
and discarding terms on the left hand side we have∫

Ω
η2(DT

h u)2α|XDT
h u|2 dx

≤ cCη

µp−2

∫
supp η

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α+2 dx. (44)

We now observe∣∣∣X(η[(DT
h u)2]

α+1
2

)∣∣∣2 ≤ c|Xη|2(DT
h u)2α+2 + c(α + 1)2η2(DT

h u)2α|XDT
h u|2.
(45)

Merging this last inequality with (44), and using the sub-elliptic Sobolev
embedding Theorem 3 with q = 2, we obtain(∫

Ω
η

2Q
Q−2 (DT

h u)
(2α+2)Q

Q−2 dx

)Q−2
Q

(46)

≤ c(α + 1)2Cη

µp−2

∫
supp η

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α+2 dx.

Note that, referring to (45), we have estimated∫
Ω
|Xη|2(DT

h u)2α+2 dx

≤ cCη

µp−2

∫
supp η

(µ2 + |Xu(x)|2 + |Xu(xehT )|2)
p−2
2 (DT

h u)2α+2 dx,

since p ≥ 2, and then we have used this last estimate to obtain (46). We
recall that the number Cη has been defined in (36), and we are using
the convention in (37). In order to estimate the right hand side of (46)
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we first consider the case p > 2, when we apply Hölder’s inequality with
conjugate exponents s/(p− 2) and s/(s− p + 2), and obtain(∫

Ω
η

2Q
Q−2 (DT

h u)
(2α+2)Q

Q−2 dx

)Q−2
Q

≤ c(α + 1)2CηC̃h

µp−2

(∫
supp η

(DT
h u)

(2α+2)s
s−p+2 dx

) s−p+2
s

. (47)

We have set

C̃h :=
(∫

supp η
(µ2 + |Xu(x)|2 + |Xu(xehT )|2)

s
2 dx

) p−2
s

;

note that

lim
h→0

C̃h =
(∫

supp η
(µ2 + |Xu(x)|2)

s
2 dx

) p−2
s

. (48)

When p = 2 inequality (47) immediately follows by (46), taking into
account the first identity in (42). The point is that now (47) yields an
improvement of the integrability of DT

h u since (40) implies

(α + 1)Q
Q− 2

>
(α + 1)s
s− p + 2

for all α ≥ 0.

This is the starting point for running a suitable version of Moser’s iter-
ation technique. From now on all the balls considered will be concentric,
centered at the given, but arbitrary point x0 ∈ Ω. With ρ < R as in
the statement, we define the family of interpolating balls Bρ ⊂ Bρk+1

⊂
Bρk

⊂ BR accordingly to the following choice of the radii:

ρk = ρ +
R− ρ

2k
, k ≥ 0, (49)

and note that ρ0 = R, while ρk → ρ. We next take a family of smooth
cut-off functions {ηk}k ⊂ C∞

0 (Bρk
) in such a way that 0 ≤ ηk ≤ 1,

ηk ≡ 1 on Bρk+1
, and ‖Xηk‖L∞(Ω) ≤ γ(n)k(R−ρ)−1, for every k ∈ N, and

where γ(n) ≥ 2 is an absolute constant. The existence of such a family of
functions can be inferred from [5]. Now we inductively define the sequence
{αk} according to {

αk+1 = χαk + (χ− 1)
α0 = 0,

for the choice of χ done in (40). It follows that

αk = (χ− 1)
k−1∑
j=0

χj = χk − 1, for all k ≥ 1.
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Finally we set

Ak =

(∫
Bρk

(DT
h u)

2s(αk+1)

s−p+2 dx

) 1
αk+1

=

(∫
Bρk

(DT
h u)

2sχk

s−p+2 dx

) 1

χk

.

We now iterate inequality (47) with the choices α = αk and η = ηk. An
elementary calculation gives that

Ak+1 ≤

[
ck
1χ

2kC̃h

µp−2(r − ρ)2

] Q
Q−2

1

χk+1

Ak, for all k ≥ 0.

Here c1 ≥ 2 depends only on n, p, L/ν, and, in particular, is independent
of h and s. Using elementary induction, the previous inequality also gives

Ak ≤ (c1χ
2)

Q
Q−2

P∞
j=1

j

χj

[
C̃h

µp−2(r − ρ)2

] Q
Q−2

P∞
j=1

1

χj

A0

≤

[
c1

(
Q

Q− 2

)2
] Q

Q−2

P∞
j=1

j

χj
[

C̃h

µp−2(r − ρ)2

] Q
Q−2

P∞
j=1

1

χj

A0,

for all k ∈ N since, by the definition of χ = χ(s) in (40), we have that
χ ≤ Q/(Q− 2) when s ≥ p ≥ 2. Now we let k →∞, then αk →∞ since
χ > 1, and obtain

sup
Bρ

(DT
h u)

2s
s−p+2 ≤

(
c

r − ρ

) 2Q
Q−2

1
χ−1

(
C̃h

µp−2

) Q
Q−2

1
χ−1 ∫

Br

(DT
h u)

2s
s−p+2 dx,

and c here depends only on n, p, L, being independent of both h and
s. In the previous estimate the constant c only depends on the fixed
quantities n, p and L (by the initial scaling we are assuming ν = 1), and
is in particular independent of h. In order to pass h → 0 in the above
inequality, we recall now the following facts: s ≥ p ≥ 2 implies that

2s

s− p + 2
≤ p

and therefore, since Tu ∈ Lp
loc(Ω) by Theorem 5, then DT

h u → Tu,

strongly in L
2s

s−p+2

loc (Ω). Keeping into account (48), letting h → 0, a stan-
dard lower semicontinuity convergence argument yields

sup
Bρ

(Tu)
2s

s−p+2 ≤
(

c

r − ρ

) 2Q
Q−2

1
χ−1

(‖µ + |Xu|‖Ls(Br)

µ

) Q
Q−2

p−2
χ−1
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·
∫

Br

(Tu)
2s

s−p+2 dx.

Estimate (41) immediately follows from this last inequality after an el-
ementary manipulation, with the specified dependence upon the various
constants. Finally the fact that Tu ∈ L∞loc(Ω) follows via a standard cover-
ing argument, since the ball B(x0, r) ⊂⊂ Ω was arbitrary. This concludes
the proof of Theorem 8.

Remark 4. In order to clarify what comes next, we remark that previous
theorem immediately gives an application. Indeed, using it with s = p
and assuming that

p <
2Q

Q− 2
=

2n + 2
n

, (50)

in order to meet (40), we get the local boundedness of Tu. The bound in
(50) is worse than the one in (6), and therefore, as already mentioned at
the beginning of the section, we first obtain higher integrability of Xu, in
Theorems 6, and 10, and then apply Theorem 8 in a more efficient way,
that is with s > p. In other words, the higher the integrability exponent
of Xu is, the farer we are allowed to pick p away from 2 via (40).

5. Horizontal estimates

5.1. Main statement of the section

The aim of this section is to derive the local boundedness of horizontal
derivatives of solutions from that of Tu; we are actually concerned with
the last arrow in the scheme (11). The main result here is therefore

Theorem 9. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(5), with the exponent p ∈ [2, 4) satisfying also

p ≤ 2(N − 2)
N − 4

, when n ≥ 3. (51)

Finally, assume that Tu ∈ L∞loc(Ω). Then we have Xu ∈ L∞loc(Ω). More-
over, let x0 ∈ Ω and r > 0 be such that Br = B(x0, r) ⊂⊂ Ω, then we
also have

‖Xu‖L∞(Bρ) ≤
(

c

r − ρ

)Q
p

‖1 + |Tu|‖
Q
2

L∞(Br)

(∫
Br

(1 + |Xu|p) dx

) 1
p

(52)

for every Bρ = B(x0, ρ) ⊂ Br. Here the constant c only depends on n, L/ν
and p, being independent of the particular solution u, the constant µ, and
the vector field (ai).
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Remark 5. Taking ρ = r/2 in the previous estimate and observing that
|Br| ≈ rQ, we obtain

sup
B r

2

|Xu| ≤ c‖1 + |Tu|‖
Q
2

L∞(Br)

(
−
∫

Br

(1 + |Xu|p) dx

) 1
p

, (53)

is in some sense dual to the one in (43), and would be the classical L∞−Lp

reverse Harnack type inequality for solutions to standard elliptic equa-
tions, but for the presence of the L∞-norm of Tu. Also observe that
assuming ‖Tu‖L∞ finite, the previous estimates is stable when µ → 0,
while, in the general case, that is without assuming the a-priori bound-
edness of Tu, the dangerous dependence on µ is hidden in the presence
of ‖Tu‖L∞ via estimates of the type in (41). This is the reason why, in
the final statement of Theorem 1, we need to assume that µ > 0.

5.2. Some auxiliary functions.

We shall need the following family of auxiliary functions:

gα,k(t) =
k(1 + t)α

k + (1 + t)α
t, α ≥ 0 k ∈ N. (54)

We notice that
0 ≤ gα,k(t) ≤ min{k, (1 + t)α}, (55)

and moreover

0 ≤ gα,k(t) ≤ gα,k+1(t) for all k ∈ N, (56)

and
lim

k→∞
gα,k(t) = (1 + t)α. (57)

We have

g′α,k(t) =
[

k

k + (1 + t)α

]2

α(1 + t)α−1

and

g′′α,k(t) =
[

k

k + (1 + t)α

]2

α(α− 1)(1 + t)α−2

−2
[

k

k + (1 + t)α

]3 α2

k
(1 + t)2α−2

= h1
α,k(t) + h2

α,k(t).
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We are interested in the following properties of gα,k(t) and its derivatives:

g′α,k(t)(1 + t) ≤ αgα,k(t), (58)

and
|g′′α,k(t)|(1 + t) ≤ 3(α + 1)g′α,k(t). (59)

Estimate (58) is trivial since it immediately reduces to k ≤ k + (1 + t)α.
In order to prove (59) we observe

|h1
α,k(t)|(1 + t) ≤ (α + 1)g′α,k(t),

and

|h2
α,k(t)|(1 + t) ≤ 2α2

[
k

k + (1 + t)α

]2 (1 + t)2α−1

k + (1 + t)α

≤ 2α

[
(1 + t)α

k + (1 + t)α

]
g′α,k(t)

≤ 2(α + 1)g′α,k(t),

so that (59) follows from the last two estimates. We shall also deal with
the following family of functions:

Wα,k(t) := 2g′α,k(t)t + gα,k(t), t, α ≥ 0 k ∈ N. (60)

Using (58) and then (55), together with the fact that g′α,k(t) ≥ 0, we find

gα,k(t) ≤ Wα,k(t) ≤ (2α + 1)gα,k(t) ≤ (2α + 1)k. (61)

Moreover, taking into account (59), and then again (58), we also find

|W ′
α,k(t)|t ≤ |W ′

α,k(t)|(1 + t) ≤ 3(α + 1)Wα,k(t). (62)

Let us again notice that g′α,k(t) ≤ g′α,k+1(t) for every k, α and t and
therefore we also gain, taking into account (56)

Wα,k(t) ≤ Wα,k+1(t) for all k ∈ N. (63)

Moreover, by (57)

(1 + t)α ≤ lim
k→∞

Wα,k(t) = (1 + t)α−1[2αt + (1 + t)]

≤ 3(α + 1)(1 + t)α. (64)
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5.3. Identities for certain test functions.

Here we point out a few elementary identities for some test functions we
need to use later; these are essentially based on properties of difference
quotients in the Heisenberg group and we report them here in a certain
detail for future convenience. We adopt a natural notation. Any function
φ is usually meant to be evaluated at a point x ∈ Ω as in φ(x). If this is
not the case we will use a more explicit notation, for example: φ(xe−hXs),
φ(xehXs), and so on. With u denoting the fixed solution form Theorem
9, we let

φ1 ≡ φs
1 := DXs

−h(η2g((DXs
h u)2)DXs

h u) ∈ HW 1,p
0 (Ω) for s ∈ {1, . . . , n},

(65)
where g : R 7→ R is a C∞-function such that

|g′(t)t|+ |g(t)| ≤ M for t ≥ 0 (66)

for a certain constant M ≥ 0, and η ∈ C∞
0 (Ω) is a smooth function

with compact support in Ω. As usual here, in order to have φ1 to be an
admissible test function in (27), and in particular having compact sup-
port in Ω, we need to take |h| suitably small, depending on the quantity
dist(supp η, ∂Ω) > 0. The fact that φ1 ∈ HW 1,p

0 (Ω) is now basically a
consequence of two facts: the first is the bound in (66), the second be-
ing the fact that Tu ∈ Lp

loc(Ω); differently from the Euclidean setting,
for an arbitrary function f we have in fact that Xf ∈ Lp does not im-
ply automatically that XDXs

h f,XDYs
h f ∈ Lp, basically due to the lack

of commutativity of (Xs, Ys). See formulas (68) and (72) below. Now, if
i 6= s + n we have

Xiφ1 = DXs
−hXi(η2g((DXs

h u)2)DXs
h u)

= DXs
−h

[
2ηXiηg((DXs

h u)2)DXs
h u + 2η2g′((DXs

h u)2)(DXs
h u)2XiD

Xs
h u

+η2g((DXs
h u)2)XiD

Xs
h u

]
, (67)

and this last function is clearly in Lp(Ω), by (66). Here we essentially
used the fact that DXs

−hXi = XiD
Xs
−h whenever i 6= s+n. In order to treat

the case Xi = Xs+n = Ys we recall the following formula:

Ys(DXs
h u)(x) = DXs

h (Ysu)(x)− Tu(xehXs) h 6= 0, (68)

which is a consequence of the fact that XsYs−YsXs = T , and have instead

Ysφ1 = DXs
−h

[
Ys(η2g((DXs

h u)2)DXs
h u)

]
− T

[
η2g((DXs

h u)2)DXs
h u

]
(xe−hXs)

= DXs
−h

[
2ηYsηg((DXs

h u)2)DXs
h u + 2η2g′((DXs

h u)2)(DXs
h u)2YsD

Xs
h u
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+η2g((DXs
h u)2)YsD

Xs
h u

]
−
[
(2ηTηg((DXs

h u)2)DXs
h u)(xe−hXs)

+(2η2g′((DXs
h u)2)(DXs

h u)2DXs
h Tu)(xe−hXs)

+(η2g((DXs
h u)2)DXs

h Tu)(xe−hXs)
]

= DXs
−h

[
2ηYsηg((DXs

h u)2)DXs
h u + 2η2g′((DXs

h u)2)(DXs
h u)2DXs

h Ysu

+η2g((DXs
h u)2)DXs

h Ysu
]

−DXs
−h

[
2η2g′((DXs

h u)2)(DXs
h u)2Tu(xehXs)

+η2g((DXs
h u)2)Tu(xehXs)

]
−
[
(2ηTηg((DXs

h u)2)DXs
h u)(xe−hXs)

+(2η2g′((DXs
h u)2)(DXs

h u)2DXs
h Tu)(xe−hXs)

+(η2g((DXs
h u)2)DXs

h Tu)(xe−hXs)
]
, (69)

and we can see that all the terms on the right hand side of the previous
equality are in Lp(Ω) since Tu ∈ Lp

loc(Ω), η has compact support in Ω,
and (66) is in force. In a completely similar way we define

φ2 ≡ φs
2 := DYs

−h(η2g((DYs
h u)2)DYs

h u) ∈ HW 1,p
0 (Ω) for s ∈ {1, . . . , n}.

(70)
As above, if i 6= s we have

Xiφ2 = DYs
−hXi(η2g((DYs

h u)2)DYs
h u)

= DYs
−h

[
2ηXiηg((DYs

h u)2)DYs
h u + 2η2g′((DYs

h u)2)(DYs
h u)2XiD

Ys
h u

+η2g((DYs
h u)2)XiD

Ys
h u
]
, (71)

while in the case Xi ≡ Xs we recall that

Xs(DYs
h u)(x) = DYs

h (Xsu)(x) + Tu(xehYs) h 6= 0, (72)

and have

Xsφ2 = DYs
−h

[
Xs(η2g((DYs

h u)2)DYs
h u)

]
+ T

[
η2g((DYs

h u)2)DYs
h u
]
(xe−hYs)

= DYs
−h

[
2ηXsηg((DYs

h u)2)DYs
h u + 2η2g′((DYs

h u)2)(DYs
h u)2XsD

Ys
h u

+η2g((DYs
h u)2)XsD

Ys
h u
]
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+
[
(2ηTηg((DYs

h u)2)DYs
h u)(xe−hYs)

+(2η2g′((DYs
h u)2)(DYs

h u)2DYs
h Tu)(xe−hYs)

+(η2g((DYs
h u)2)DYs

h Tu)(xe−hYs)
]
.

Using (72) to develop the right hand side in a way similar to that for (69),
we can also check that Xsφ2 ∈ Lp(Ω). We conclude that both φ1 and φ2

are admissible test functions in (27).

5.4. The proof of Theorem 9

Step 1: Basic elliptic estimates. Select g to be always positive and non-
decreasing, and satisfying (66). Take ϕ = φ1 in the weak form (27), where
φ1 is defined in (65). Taking into consideration (67)-(69) we find, using
discrete integration by parts for difference quotients,∫

Ω

2n∑
i=1

DXs
h (ai(Xu))

[
2ηXiηg((DXs

h u)2)DXs
h u (73)

+η2W ((DXs
h u)2)XiD

Xs
h u

]
dx

= −
∫

Ω
as+n(Xu)

[
(2ηTηg((DXs

h u)2)DXs
h u)(xe−hXs)

+(η2W ((DXs
h u)2)DXs

h Tu)(xe−hXs)
]

dx. (74)

In the previous formula we have denoted

W (t) = 2g′(t)t + g(t).

In a similar way, testing (27) with ϕ = φ2, with φ2 being defined in (70),
we get∫

Ω

2n∑
i=1

DYs
h (ai(Xu))

[
2ηXiηg((DYs

h u)2)DYs
h u + η2W ((DYs

h u)2)XiD
Ys
h u
]

dx

=
∫

Ω
as(Xu)

[
(2ηTηg((DYs

h u)2)DYs
h u)(xe−hYs)

+(η2W ((DYs
h u)2)DYs

h Tu)(xe−hYs)
]

dx. (75)

We next define

As
i,j(x) :=

∫ 1

0
Dzjai

(
Xu(x) + τhDXs

h Xu(x)
)

dτ, (76)
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so that

DXs
h (ai(Xu))(x) =

∫ 1

0

2n∑
j=1

Dzjai

(
Xu(x) + τhDXs

h Xu(x)
)

DXs
h Xju(x) dτ

=
2n∑

j=1

As
i,j(x)DXs

h Xju(x).

The use of formula (68) yields

DXs
h (ai(Xu))(x) =

2n∑
j=1

As
i,j(x)XjD

Xs
h u(x) + As

i,s+n(x)Tu(xehXs). (77)

Exactly in the same way, via formula (72), we have

DYs
h (ai(Xu))(x) =

2n∑
j=1

As+n
i,j (x)XjD

Ys
h u(x)−As+n

i,s (x)Tu(xehYs), (78)

and this time, according to (76)

As+n
i,j (x) :=

∫ 1

0
Dzjai

(
Xu(x) + τhDYs

h Xu(x)
)

dτ.

We can again use Lemma 2, together with the ellipticity assumption (4),
as in (33). This yields the following lower bounds for every s ∈ {1, . . . , n}:

c(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 |XDXs

h u(x)|2

≤
2n∑

i,j=1

As
i,j(x)XjD

Xs
h u(x)XiD

Xs
h u(x), (79)

and

c(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 |XDYs

h u(x)|2

≤
2n∑

i,j=1

As+n
i,j (x)XjD

Ys
h u(x)XiD

Ys
h u(x), (80)

with c = c(n, p) > 0 being independent of µ. From above we have, via (3)
and Lemma 2 again,

|As
i,j(x)| ≤ c2(n, p, L)(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)

p−2
2 , (81)

and

|As+n
i,j (x)| ≤ c2(n, p, L)(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)

p−2
2 . (82)
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It is worthwhile remarking that in the inequalities (79)-(82) the constants
involved do not depend on µ. Now we use identities (77)-(78) in (74)-(75),
respectively. Summing up over s ∈ {1, . . . , n} finally yields

I1 + I2 := (83)∫
Ω

η2
n∑

s=1

2n∑
i,j=1

As
i,jXjD

Xs
h uXiD

Xs
h uW ((DXs

h u)2) dx

+
∫

Ω
η2

n∑
s=1

2n∑
i,j=1

As+n
i,j XjD

Ys
h uXiD

Ys
h uW ((DYs

h u)2) dx

= −
∫

Ω
2η

n∑
s=1

2n∑
i,j=1

As
i,jXjD

Xs
h uXiηg((DXs

h u)2)DXs
h u dx

−
∫

Ω
2η

n∑
s=1

2n∑
i,j=1

As+n
i,j XjD

Ys
h uXiηg((DYs

h u)2)DYs
h u dx

−
∫

Ω

n∑
s=1

2n∑
i=1

As
i,s+nTu(xehXs)

[
2ηXiηg((DXs

h u)2)DXs
h u

+η2W ((DXs
h u)2)XiD

Xs
h u

]
dx

+
∫

Ω

n∑
s=1

2n∑
i=1

As+n
i,s Tu(xehYs)

[
2ηXiηg((DYs

h u)2)DYs
h u

+η2W ((DYs
h u)2)XiD

Ys
h u
]

dx

−
∫

Ω

n∑
s=1

as+n(Xu)
[
(2ηTηg((DXs

h u)2)DXs
h u)(xe−hXs)

+(η2W ((DXs
h u)2)DXs

h Tu)(xe−hXs)
]

dx

+
∫

Ω

n∑
s=1

as(Xu)
[
(2ηTηg((DYs

h u)2)DYs
h u)(xe−hYs)

+(η2W ((DYs
h u)2)DYs

h Tu)(xe−hYs)
]

dx

=:
8∑

k=3

Ik. (84)

We shall now estimate integrals I1, I2, . . . , I8 separately.
Using (79)-(80) we have that

c−1I1 + I2 ≥
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∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u(x)|2 dx

+
∫

Ω
η2

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 W ((DYs

h u)2)|XDYs
h u(x)|2 dx.

While using the upper bounds in (81)-(82) and Young’s inequality twice
we have, for any ε ∈ (0, 1)

|I3|+ |I4|

≤ c

∫
Ω

η|Xη|
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 ·

·|DXs
h u|g((DXs

h u)2)|XDXs
h u| dx

+c

∫
Ω

η|Xη|
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 ·

·|DYs
h u|g((DYs

h u)2)|XDYs
h u| dx

≤ ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u|2 dx

+ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 W ((DYs

h u)2)|XDYs
h u|2 dx

+c(n, p, L)
Cη

ε

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 g((DXs

h u)2) dx

+c(n, p, L)
Cη

ε

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p
2 g((DYs

h u)2) dx

+c(n, p, L)
Cη

ε

∫
supp η

n∑
s=1

[
|DXs

h u|pg((DXs
h u)2) + |DYs

h u|pg((DYs
h u)2)

]
dx.

We observe that we have used the fact that g is non-decreasing to estimate
g ≤ W and we have set, similarly to (36)

Cη = ‖Xη‖2L∞(Ω) + ‖Tη‖L∞(Ω) + 1. (85)

We now estimate I5 by treating separately the two resulting integrals. We
have, using the bound in (81) and Young’s inequality twice∣∣∣∣∣
∫

Ω
2η

n∑
s=1

2n∑
i=1

As
i,s+nXiηTu(xehXs)g((DXs

h u)2)DXs
h u dx

∣∣∣∣∣
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≤ c(n, p, L)
∫

supp η
|Xη|

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2

·|Tu(xehXs)||DXs
h u|g((DXs

h u)2) dx

≤ c(n, p, L)‖Xη‖
p

p−1

L∞(Ω)

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2

p
p−1

·|DXs
h u|

p
p−1 g((DXs

h u)2) dx

+c(n, p, L)
∫

supp η

n∑
s=1

|Tu(xehXs)|pg((DXs
h u)2) dx

≤ cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 g((DXs

h u)2) dx

+cCη

∫
supp η

n∑
s=1

|DXs
h u|pg((DXs

h u)2) dx

+c

∫
supp η

n∑
s=1

|Tu(xehXs)|pg((DXs
h u)2) dx, (86)

where we estimated ‖Xη‖
p

p−1

L∞(Ω) ≤ cCη via Young’s inequality and the
very definition of Cη in (85), since p ≥ 2. As for the second integral
spreading from I5, again using (81) and Young’s inequality twice, with
ε ∈ (0, 1), we have

∣∣∣∣∣
∫

Ω
η2

n∑
s=1

2n∑
i=1

As
i,s+nXiD

Xs
h uTu(xehXs)W ((DXs

h u)2) dx

∣∣∣∣∣
≤ c

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 |XDXs

h u|

·|Tu(xehXs)|W ((DXs
h u)2) dx

≤ ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u|2 dx

+
c(n, p, L)

ε

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 W ((DXs

h u)2) dx

+
c(n, p, L)

ε

∫
supp η

n∑
s=1

|Tu(xehXs)|pW ((DXs
h u)2) dx. (87)
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Connecting the last two inequalities, and eventually changing ε, we find
the final estimate for I5, which is

|I5|

≤ ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u|2 dx

+c

(
1
ε

+ Cη

)∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 ·

·W ((DXs
h u)2) dx

+cCη

∫
supp η

n∑
s=1

|DXs
h u|pW ((DXs

h u)2) dx

+
c

ε

∫
supp η

n∑
s=1

|Tu(xehXs)|pW ((DXs
h u)2) dx,

where the constant c = c(n, p, L) does not depend on h, and ε ∈ (0, 1) is
arbitrary. We have also used the trivial inequality g ≤ W . The estimate
for I6 is entirely similar, more precisely

|I6|

≤ ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 W ((DYs

h u)2)|XDYs
h u|2 dx

+c

(
1
ε

+ Cη

)∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p
2 W ((DYs

h u)2) dx

+cCη

∫
supp η

n∑
s=1

|DYs
h u|pW ((DYs

h u)2) dx

+
c

ε

∫
supp η

n∑
s=1

|Tu(xehYs)|pW ((DYs
h u)2) dx,

with the same dependence upon the various constants for c and ε ∈ (0, 1).
The estimate of the remaining integrals in (83) requires greater care in
that we shall first need to let h → 0 in the estimates we have derived up to
now, and then estimate the resulting terms. We summarize the estimates
obtained for the integrals I1 − I6 in the following new inequality, which
is obtained choosing ε ≡ ε(n, p, L) small enough and re-absorbing terms
in (83):

II1 + II2 :=
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∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u|2 dx

+
∫

Ω
η2

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 W ((DYs

h u)2)|XDYs
h u|2 dx

≤ cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 W ((DXs

h u)2) dx

+cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p
2 W ((DYs

h u)2) dx

+cCη

∫
supp η

n∑
s=1

[
|DXs

h u|pW ((DXs
h u)2) + |DYs

h u|pW ((DYs
h u)2)

]
dx

+c

∫
supp η

n∑
s=1

[
|Tu(xehXs)|pW ((DXs

h u)2)

+|Tu(xehYs)|pW ((DYs
h u)2)

]
dx

+|I7|+ |I8|
=: II3 + II4 + II5 + II6 + |I7|+ |I8|. (88)

Observe that in the previous inequality we have once again used the fact
that g ≤ W .

Step 2: Letting h → 0. Here we make the function g explicit with the
choice

g(t) = gα,k(t) (89)

for fixed α ≥ 0 and k ∈ N. With this choice we also have W (t) = Wα,k(t).
Recall that the functions gα,k(t) and Wα,k(t) have been defined in (54)
and (60), respectively.

Remark 6. The choice of the function g in (89) can be also done in (35)
instead of taking the unbouded function g(t) = tα, and this does not
require the function u to be locally bounded in Ω. Therefore we can fully
avoid the use of the regularity result in Theorem 4 also in the proof of
vertical Lipschitz regularity from the previous section.

In the following, by “h → 0” we shall mean hk → 0, where {hk}k∈N is
a sequence chosen in such a way that, when k → ∞ and s ∈ {1, . . . , n},
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then
Xu(xehXs),Xu(xehYs) → Xu(x) in Lp

loc(Ω, R2n) and a.e.

Tu(xehXs), Tu(xehYs) → Tu(x) in Lp
loc(Ω) and a.e.

DXs
h X(x), DYs

h Xu(x) → XsXu(x), YsXu(x) in L2
loc(Ω, R2n) and a.e.

(90)
This is actually possible: indeed, (90)2 follows via Theorem 5, while (90)3
comes from (26). Let us observe that the following additional convergence
actually takes place:

XDXs
h u(x),XDYs

h u(x) → XXs(x),XYsu(x) in L2
loc(Ω, R2n) and a.e.

(91)
Indeed, it suffices to prove the first one, the same argumentation works
for the second; observe that when k 6= s + n then Xk(DXs

h u)(x) =
DXs

h (Xku)(x) and then the fact that Xk(DXs
h u)(x) → XkXsu(x) fol-

lows from (90)3. On the other hand, using (68) and (90)2,3 we have
Ys(DXs

h u)(x) = DXs
h (Ysu)(x) − Tu(xehXs) → XsYsu(x) − Tu(xehXs) =

YsXsu(x), and (91) finally follows. And now we wish to pass to the limit
in (88) for h → 0. Using (90)2,3, together with Fatou’s lemma, we find∫

Ω
η2

n∑
s=1

(µ2 + |Xu|2)
p−2
2
[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

≤ lim inf
h→0

(II1 + II2). (92)

Using the fact that W is bounded, given by (61), and a well-know variant
of Lebesgue’s dominated convergence theorem, we gain

lim sup
h→0

(II3 + II4)

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx. (93)

In the same way we have

lim sup
h→0

II5 ≤ cCη

∫
supp η

|Xu|p
n∑

s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx, (94)

and, since Tu ∈ Lp
loc(Ω),

lim sup
h→0

II6 ≤ c

∫
supp η

|Tu|p
n∑

s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx. (95)
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Letting h → 0 in the terms I7 and I8 requires greater care; in particular
we shall use the upper bound in (51) for p. We shall give the details for
I7, the case of I8 being completely analogous. Using growth conditions
(3), (55) and Young’s inequality we have that∣∣∣as+n(Xu)(2η Tη g((DXs

h u)2)DXs
h u)(xe−hXs)

∣∣∣
≤ c(n, p, L)k‖Tη‖L∞(Ω)

[
(µ2 + |Xu(x)|2)

p
2 + |(DXs

h u)(xe−hXs)|p
]
.

Therefore, since Xu ∈ Lp
loc(Ω), and η has compact support in Ω, again

applying a well-known variant of Lebesgue’s dominated convergence the-
orem we get

lim
h→0

∫
Ω

as+n(Xu)(2ηTηg((DXs
h u)2)DXs

h u)(xe−hXs) dx

=
∫

Ω
as+n(Xu)2ηTηg((Xsu)2)Xsu dx. (96)

As for the remaining term coming from I7, we shall use the fact that
XsTu ∈ L2

loc(Ω) and therefore DXs
h Tu → XsTu strongly in L2

loc(Ω). We
shall argue as follows: start by changing variables∫

Ω

n∑
s=1

as+n(Xu)(η2W ((DXs
h u)2)DXs

h Tu)(xe−hXs) dx

=
∫

Ω
η2

n∑
s=1

(as+n(Xu))(xehXs)W ((DXs
h u)2)DXs

h Tu dx.

Note that using again (3) and Young’s inequality we find∣∣∣(as+n(Xu))(xehXs)W ((DXs
h u)2)DXs

h Tu
∣∣∣

≤ c(α, k, L)
[
(µ2 + |Xu(xehXs)|2)

2p−2
2 + |DXs

h Tu|2
]
. (97)

Now we recall that Xu ∈ L
pN

N−2

loc (Ω) and observe that the bound in (51)
implies also

2p− 2 ≤ pN

N − 2
, for n ≥ 1. (98)

Indeed the last inequality is true for n = 1, 2 since p < 4, while for n ≥ 3
it is equivalent to require that p satisfies (51). Consequently we always
have

Xu ∈ L2p−2
loc (Ω). (99)
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Remark 7. When proving Thorem 1 the bound in (51) will be eventually
replaced by the one in (6), which is more restrictive. In fact, we observe
that

1 + n−
√

n2 − 2n− 3 <
2(N − 2)
(N − 4)

when n ≥ 4. (100)

While, when n = 3, we have

10/3 = 2(N − 2)/(N − 4) < 1 + n−
√

n2 − 2n− 3 = 4,

and this is the reason for the number 10/3 to appear in the definition
of c(n). For the same reason, when n = 3, we can allow to consider
p = 10/3. Compare with the proof of Theorem 11 below given that the
upper equality is allowed in (51).

By (99) we have that Xu(xehXs) → Xu(x) strongly in L2p−2
loc (Ω), while

by the second inclusion in (29) we have that DXs
h Tu → XsTu in L2

loc(Ω).
Therefore, with the help of (97) and the usual variant of Lebesgue’s dom-
inated convergence theorem, we gain

lim
h→0

∫
Ω

n∑
s=1

as+n(Xu)(η2W ((DXs
h u)2)DXs

h Tu)(xe−hXs) dx

= lim
h→0

∫
Ω

η2
n∑

s=1

(as+n(Xu))(xehXs)W ((DXs
h u)2)DXs

h Tu dx

=
∫

Ω
η2

n∑
s=1

as+n(Xu)W ((Xsu)2)XsTu dx. (101)

Summarizing the results in (96) and (101) we obtain

lim
h→0

I7 = −
∫

Ω
2ηTη

n∑
s=1

as+n(Xu)g((Xsu)2)Xsu dx

−
∫

Ω
η2

n∑
s=1

as+n(Xu)W ((Xsu)2)XsTu dx. (102)

And in a completely analogous way we find that

lim
h→0

I8 =
∫

Ω
2ηTη

n∑
s=1

as(Xu)g((Ysu)2)Ysu dx

+
∫

Ω
η2

n∑
s=1

as(Xu)W ((Ysu)2)YsTu dx. (103)
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In turn, using (92), (93), (94), (95) and (102)-(103) in (88), we easily get∫
Ω

η2
n∑

s=1

(µ2 + |Xu|2)
p−2
2
[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx

+c

∫
supp η

|Tu|p
n∑

s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx.

+

∣∣∣∣∣
∫

Ω
2η Tη

n∑
s=1

as+n(Xu)g((Xsu)2)Xsu dx

∣∣∣∣∣ (=: III1)

+

∣∣∣∣∣
∫

Ω
η2

n∑
s=1

as+n(Xu)W ((Xsu)2)XsTu dx

∣∣∣∣∣ (=: III2)

+

∣∣∣∣∣
∫

Ω
2η Tη

n∑
s=1

as(Xu)g((Ysu)2)Ysu dx

∣∣∣∣∣ (=: III3)

+

∣∣∣∣∣
∫

Ω
η2

n∑
s=1

as(Xu)W ((Ysu)2)YsTu dx

∣∣∣∣∣ (=: III4) (104)

and it remains to estimate the new defined quantities III1, . . . , III4.
Step 3: Further commutations and estimates. For III1 and III3 it

suffices to use (3) plus an elementary estimation involving g ≤ W . Indeed
we have

III1 + III3 (105)

≤ c‖Tη‖L∞(Ω)

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx.

The estimation of III2 and III4 requires additional integration by parts.
We shall give the details for III2 only, the case of III4 being completely
analogous. Integrating by parts (since X∗

i = −Xi) gives∫
Ω

η2
n∑

s=1

as+n(Xu)W ((Xsu)2)XsTu dx

= −
∫

Ω
η2

n∑
s=1

2n∑
j=1

Dzjas+n(Xu)XsXjuW ((Xsu)2)Tu dx

−
∫

Ω
2η

n∑
s=1

as+n(Xu)XsηW ((Xsu)2)Tu dx
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−
∫

Ω
2η2

n∑
s=1

as+n(Xu)W ′((Xsu)2)XsuXsXsuTu dx

=: IV1 + IV2 + IV3. (106)

Before continuing with the estimates of the last three integrals we actually
need to justify the previous integration by parts. This follows by first
showing that

η2as+n(Xu)W ((Xsu)2) ∈ HW
1, p

p−1

0 (Ω) ∩ L2(Ω) for s ∈ {1, . . . , n},
(107)

and then applying Lemma 5 below, with the obvious choice

f = η2as+n(Xu)W ((Xsu)2) and g = Tu.

Obviously, f has compact support in Ω since so has η. Using (3) and (61)
we have that∫

Ω
|η2as+n(Xu)W ((Xsu)2)|2 dx ≤ c(α, k, L)

∫
Ω

(µ2 + |Xu|2)
2p−2

2 dx

≤ c

∫
Ω

(µ2 + |Xu|)
pN

N−2 dx < ∞,

the last inequality being a consequence of (98). Next we prove that

η2as+n(Xu)W ((Xsu)2) ∈ HW
1, p

p−1

0 (Ω), (108)

taking into account that the derivatives of this expression have already
been calculated in (106); this will finally end the proof of (107) and the
justification of the integration by parts in (106). Using the fact that W
is bounded (61), and taking into consideration (3), we have∫

Ω
|η2Dzjas+n(Xu)XsXjuW ((Xsu)2)|

p
p−1 dx

≤ c(α, k, L)
∫

supp η
(µ2 + |Xu|2)

(p−2)p
2(p−1) |XXu|

p
p−1 dx

≤ c

∫
supp η

(µ2 + |Xu|2)
p−2
2 |XXu|2 + (µ2 + |Xu|2)

p
2 dx, (109)

the last integral being finite by (24). Note that in the case p > 2 we used
Young’s inequality with conjugate exponents 2(p−1)/p and 2(p−1)/(p−
2). Using (3) and (61), we have immediately∫

Ω
|2η

n∑
s=1

as+n(Xu)XsηW ((Xsu)2)|
p

p−1 dx
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≤ c(α, k, L)‖Xη‖L∞(Ω)

∫
supp η

(µ2 + |Xu|2)
p
2 dx.

Finally, using (62) and again estimating as for (109), we have∫
Ω
|2η2as+n(Xu)W ′((Xsu)2)XsuXsXsu|

p
p−1 dx

≤ c(α, k, L)
∫

supp η

[
(µ2 + |Xu|2)

p−1
2

W ((Xsu)2)
1 + (Xsu)2

|Xsu||XsXsu|
] p

p−1

dx

≤ c

∫
supp η

[
(µ2 + |Xu|2)

p−2
2 W ((Xsu)2)|XsXsu|

] p
p−1

dx

≤ c

∫
supp η

(µ2 + |Xu|2)
(p−2)p
2(p−1) |XXu|

p
p−1 dx

≤ c

∫
supp η

(µ2 + |Xu|2)
p−2
2 |XXu|2 + (µ2 + |Xu|2)

p
2 dx < ∞.

Now, once the previous inequalities have been established, using their
analogs at the level of finite difference quotients allows to prove (108)
with p/(p − 1) replaced by 1. Here we use the fact that as+n(Xu) ∈
HW

1, p
p−1

loc (Ω) (as in (109)), W ((Xsu)2) ∈ HW 1,2
loc (Ω) (as XXu ∈ L2

loc(Ω)),
and Xu ∈ Lp−2

loc (Ω). Then the previous inequalities alllows to get the
desired integrability. Thus, we have established (108), and therefore (107),
as well as (106).

Remark 8. Observe that when checking (107) and then (106), we did not
use the fact that Tu ∈ L∞(Br), but just used that Tu ∈ Lp(Br) together
with the bound in (51), the higher differentiability and integrability re-
sults of Theorems 5, and Theorem 6, respectively. This will turn out to be
crucial later, in the proof of Theorem 6.1 below. The fact that we use only

Tu ∈ Lp(Br) here is reflected in that we make estimates in HW
1, p

p−1

0 (Ω),
rather than in HW 1,1

0 (Ω), when considering (107).

Next we estimate the terms coming up from (106) starting with IV1.
Commuting again we find

IV1 = −
∫

Ω
η2

n∑
s=1

2n∑
j=1

Dzjas+n(Xu)XjXsuW ((Xsu)2)Tu dx

−
∫

Ω
η2

n∑
s=1

Dzs+nas+n(Xu)W ((Xsu)2)(Tu)2 dx

=: V1 + V2. (110)
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Then, using the growth conditions (3), and Young’s inequality twice, we
have

|V1| ≤ c

∫
Ω

η2(µ2 + |Xu|2)
p−2
2 |Tu|

n∑
s=1

W ((Xsu)2)|XXsu| dx

≤ ε

∫
Ω

η2(µ2 + |Xu|2)
p−2
2

n∑
s=1

W ((Xsu)2)|XXsu|2 dx

+
c

ε

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

W ((Xsu)2) dx

+
c

ε

∫
supp η

|Tu|p
n∑

s=1

W ((Xsu)2) dx,

with ε ∈ (0, 1). Similarly, using again that ‖Xη‖
p

p−1

L∞(Ω) ≤ cCη via Young’s
inequality, we also obtain

|V2|+ |IV2| ≤ c(1 + Cη)
∫

supp η
(µ2 + |Xu|2)

p
2

n∑
s=1

W ((Xsu)2) dx

+c

∫
supp η

|Tu|p
n∑

s=1

W ((Xsu)2) dx.

For IV3 we shall need to use the inequality (62). In particular the fact
that the constant involved there depends only on α in the explicit way
reported there, and is also independent of k. This will be crucial for the
subsequent iteration in Step 5 below. Using (3) and Young’s inequality,
we find

|IV3| ≤ c

∫
Ω

η2(µ2 + |Xu|2)
p−1
2

n∑
s=1

|W ′((Xsu)2)||Xsu||XsXsu||Tu| dx

≤ ε

3(α + 1)

∫
Ω

η2(µ2 + |Xu|2)
p−2
2

n∑
s=1

|W ′((Xsu)2)||Xsu|2|XXsu|2 dx

+
c(α + 1)

ε

∫
supp η

(µ2 + |Xu|2)
p
2 |Tu|2

n∑
s=1

|W ′((Xsu)2)| dx

≤ ε

∫
Ω

η2(µ2 + |Xu|2)
p−2
2

n∑
s=1

W ((Xsu)2)|XXsu|2 dx

+
c(α + 1)

ε

∫
supp η

(µ2 + |Xu|2)
p
2 |Tu|2

n∑
s=1

|W ′((Xsu)2)| dx.
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In the last estimate we made crucial use of (62). Combining the estimates
for IV1, IV2, IV3, V1 and V2 we recover the desired estimate for III2. A
completely analogous estimate can be worked out for III4 so that, at the
end we find

|III2|+ |III4|

≤ ε

∫
Ω

η2(µ2 + |Xu|2)
p−2
2 ·

·
n∑

s=1

[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

+
cCη

ε

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx

+
c

ε

∫
supp η

|Tu|p
n∑

s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx

+
c(α + 1)

ε

∫
supp η

(µ2 + |Xu|2)
p
2 |Tu|2 ·

·
n∑

s=1

[
|W ′((Xsu)2)|+ |W ′((Ysu)2)|

]
dx. (111)

We point out that the constant c in the above estimate depends only
on n, p and L. It is in particular independent of both α and k. The
dependence on α in the previous inequality has been explicitly calculated.

Step 4: Letting k →∞. Taking into consideration the estimates for the
quantities III1, . . . , III4, using them in (104), and taking ε ≡ ε(n, p, L)
small enough in order to re-absorb terms on the left hand side, we gain∫

Ω
η2(µ2 + |Xu|2)

p−2
2

n∑
s=1

[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx

+c

∫
supp η

|Tu|p
n∑

s=1

[
W ((Xsu)2) + W ((Ysu)2)

]
dx

+c(α + 1)2
∫

supp η
(µ2 + |Xu|2)

p
2 |Tu|2 ·

·
n∑

s=1

[
|W ((Xsu)2)|
1 + (Xsu)2

+
|W ((Ysu)2)|
1 + (Ysu)2

]
dx. (112)
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As already remarked in the previous step, the constants involved in the
former estimate are independent of k ∈ N. In particular, the constant c
only depends on n, p and L. Observe also that the last term has been
obtained using again (62) in order to estimate the last integral coming
from (111). We are now ready to pass to the limit in the above estimate,
using (63)-(64). The left hand side is treated via Fatou’s lemma, while,
thanks to (63) we can use monotone convergence theorem on the right
hand side, finally obtaining, after an elementary estimation based also on
(64) ∫

Ω
η2

n∑
s=1

[
|Xsu|p−2+2α|XXsu|2 + |Ysu|p−2+2α|XYsu|2

]
dx

≤ c(α + 1)3CT Cη

∫
supp η

n∑
s=1

1 +
[
|Xsu|p+2α + |Ysu|p+2α

]
dx. (113)

In the previous inequality we have denoted

CT =
(
1 + ‖Tu‖L∞(Br)

)p
. (114)

We observe that in order to get (113) we have used the following point-
wise inequality:

(µ2 + |Xu|2)
p
2

n∑
s=1

[
(Xsu)2α + (Ysu)2α

]
≤ c(n, p)

n∑
s=1

1 +
[
(Xsu)p+2α + (Ysu)p+2α

]
, (115)

valid for every α ≥ 0, which in turn elementary follows from a repeated
application of Young’s inequality. It is crucial that in the above inequal-
ity the constant involved is independent of α, as it will be clear in the
following computations.

Step 5: Final iteration. Inequality (113) is the starting point for run-
ning a Moser’s iteration procedure with a sequence of exponents α = αk,
that will implicitly lead to to conclude that each of the integrals we con-
sider with is finite. In the following, whenever we work with an integrand
containing α, we shall argue assuming that the corresponding integral is
finite. This fact can be checked, step by step, along the iteration proce-
dure. Let us first observe that∣∣∣X(η2|Xsu|

p+2α
2 + η2|Ysu|

p+2α
2

)∣∣∣2
≤ c α2η2

[
|Xsu|p−2+2α|XXsu|2 + |Ysu|p−2+2α|XYsu|2

]
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+cCη

[
|Xsu|p+2α + |Ysu|p+2α

]
. (116)

Combining the last inequality with (113), taking into account the depen-
dence on α in the inequalities (113) and (116), using Theorem 3 with
q = 2, and (113), we find that(∫

Ω
η

2Q
Q−2

n∑
s=1

[
|Xsu|p+2α + |Ysu|p+2α

] Q
Q−2 dx

)Q−2
Q

≤ c(α + 1)5CT Cη

∫
supp η

1 +
n∑

s=1

[
|Xsu|p+2α + |Ysu|p+2α

]
dx. (117)

As in Theorem 8, we consider concentric balls, centered at x0. As in
the previous section, whenever ρ < R we define the family of concentric
interpolating balls Bρ ⊂ Bρk+1

⊂ Bρk
⊂ BR, according to the choice of

the radii already made in (49). We next take a family of smooth cut-off
functions {ηk}k ⊂ C∞

0 (Bρk
) in such a way that 0 ≤ ηk ≤ 1, ηk ≡ 1 on

Bρk+1
, and

1 ≤ ‖Xηk‖2L∞(Ω) + ‖Tηk‖L∞(Ω) ≤
γ(n)k

(r − ρ)2
,

for every k ∈ N, and where γ(n) is an absolute constant. The existence of
such a family of functions can be inferred, once again, from [5]. Keeping
into account (85) this also yields

Cηk
= Cη ≤

ck

(r − ρ)2
. (118)

Now we inductively define the sequence {αk}k according to{
αk+1 = χ̃αk + p

Q−2

α0 = 0,
(119)

where this time we have set

χ̃ =
Q

Q− 2
> 1.

We notice the following relation

αk =
p

Q− 2

k−1∑
j=0

χ̃j =
p

2
(χ̃k − 1), for every k ≥ 1,

so that

p + 2αk+1 = χ̃(p + 2αk) p + 2αk = pχ̃k for k ≥ 0. (120)
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We let

Ak :=

(∫
Bρk

1 +
n∑

s=1

[
|Xsu|p+2αk + |Ysu|p+2αk

]
dx

) 1
p+2αk

,

so that, after a few elementary manipulations, taking into consideration
(118), (119), and (120), inequality (117) gives

Ak+1 ≤
[
c(n, p, L)χ̃5

] k

pχ̃k

[
CT

(r − ρ)2

] 1

pχ̃k

Ak, for k ≥ 0. (121)

The constant CT has been introduced in (114). Noticing that

∞∑
j=0

1
χ̃j

=
χ̃

χ̃− 1
=

Q

2
,

the iteration of (121) and further elementary estimates finally yield

Ak+1 ≤
[
c(n, p, L)χ̃5

] 1
p

P∞
j=0

j

χ̃j

[
CT

(r − ρ)2

] 1
p

P∞
j=0

1

χ̃j

A0

≤
(

c(n, p, L)
r − ρ

)Q
p (

1 + ‖Tu‖L∞(Br)

)Q
2

(∫
Br

(1 + |Xu|2)
p
2 dx

) 1
p

,

for every k ∈ N, so that (52) follows letting k → ∞ in the previous
relation. The local boundedness of the horizontal derivatives follows via
the standard covering argument. The proof is concluded. ut

The following integration by parts elementary lemma has been used
above, when checking the validity of (106). Its proof, based on an easy
approximation argument, is standard and therefore omitted.

Lemma 5. Let f ∈ HW
1, p

p−1

0 (Ω)∩L2(Ω) be such that supp f ⊂⊂ Ω, and
g ∈ HW 1,2

0 (Ω) ∩ Lp(Ω), where p > 1. Then∫
Ω

f (Xig) dx = −
∫

Ω
(Xif) g dx for i ∈ {1, . . . , 2n}.

6. Further higher integrability

Here we prove further higher integrability of the horizontal gradient of
solutions, concentrating on the case p 6= 2 for technical reasons. We are
here concerned with the fourth arrow in (11):
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Theorem 10. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(5), and assume that p ∈ (2, 4) also satisfies
the restriction in (51). Then

Xu ∈ Ls
loc(Ω) for every s <

Qp

Q− p
. (122)

Remark 9. Notice the fact that the previous result is not always an im-
provement of Theorem 6, indeed

Qp

Q− p
≥ Np

N − 2
if and only if p ≥ 2Q

N
, (123)

and this is due to the fact that here we are not using the existence of
vertical derivatives of Xu to get higher integrability, as we did for Theorem
6. Moreover, the previous result relies again on Theorem 6 itself that
provides the starting higher integrability of Xu needed to make rigorous
the integration by parts already encountered in (106), a fact that will also
come into the play in the proof of Theorem 10. The bound obtained in
(122) is therefore better than the one in (28) only if p is large enough,
according to (123). This fact goes in the “right direction”: indeed, it is
exactly what we need in the following, since we are trying to increase the
values of p for which regularity of solutions holds (compare with Remark
4.)

Proof (of Theorem 10). Up to a certain stage, the proof follows the one
for Theorem 9 in the previous section, and we shall indicate the main
modifications, keeping the notation and the terminology introduced there.
We re-start from (83) and estimate the integrals I1, . . . , I4 as in Theorem
9. The remaining terms will be estimated in a different way, using only
the fact that Tu ∈ Lp

loc(Ω), rather than in Tu ∈ L∞loc(Ω), which is not
available as an assumption here. We start with I5. For the integral in the
first line of (86) we have, using Young’s inequality twice∣∣∣∣∣
∫

Ω
2η

n∑
s=1

2n∑
i=1

As
i,s+nXiηTu(xehXs)g((DXs

h u)2)DXs
h u dx

∣∣∣∣∣
≤ c(n, p, L)‖Xη‖

p
p−1

L∞(Ω)

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2

p
p−1

·|DXs
h u|

p
p−1 g((DXs

h u)2)
p

p−1 dx

+c(n, p, L)
∫

supp η

n∑
s=1

|Tu(xehXs)|p dx
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≤ cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 g((DXs

h u)2)
p

p−2 dx

+c

∫
supp η

n∑
s=1

[
Cη|DXs

h u|p + |Tu(xehXs)|p
]

dx.

The quantity Cη is still the one introduced in (85). As for the second
integral spreading from I5, that is the one in the first line of (87), we
have, again by Young’s inequality with ε ∈ (0, 1)∣∣∣∣∣

∫
Ω

η2
n∑

s=1

2n∑
i=1

As
i,s+nXiD

Xs
h uTu(xehXs)W ((DXs

h u)2) dx

∣∣∣∣∣
≤ ε

∫
Ω

η2
n∑

s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 ·

·W ((DXs
h u)2)|XDXs

h u|2 dx

+
c(n, p, L)

ε

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 ·

·W ((DXs
h u)2)

p
p−2 dx

+
c(n, p, L)

ε

∫
supp η

n∑
s=1

|Tu(xehXs)|p dx.

The term I6 can be estimate in a completely similar fashion. Finally, com-
bining the newly found estimates for I5 and I6 to (83), and re-absorbing
terms as usually taking ε small enough, we obtain the following analog
to (88):∫

Ω
η2

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p−2
2 W ((DXs

h u)2)|XDXs
h u|2 dx

+
∫

Ω
η2

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p−2
2 W ((DYs

h u)2)|XDYs
h u|2 dx

≤ cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehXs)|2)
p
2 W ((DXs

h u)2)
p

p−2 dx

+cCη

∫
supp η

n∑
s=1

(µ2 + |Xu(x)|2 + |Xu(xehYs)|2)
p
2 W ((DYs

h u)2)
p

p−2 dx

+cCη

∫
supp η

n∑
s=1

[
|DXs

h u|pW ((DXs
h u)2)

p
p−2
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+|DYs
h u|pW ((DYs

h u)2)
p

p−2

]
dx

+c

∫
supp η

n∑
s=1

[
|Tu(xehXs)|p + |Tu(xehYs)|p

]
dx

+|I7|+ |I8|
=: II3 + II4 + II5 + II6 + |I7|+ |I8|.

Needless to say, I7 and I8 are the ones defined in (83). In the present
setting, this estimate replaces (88). We have used the following elementary
inequalities:

g ≤ W, W + W
p

p−1 ≤ (4W )
p

p−2 . (124)

Exactly as is Step 2 in the proof of Theorem 9, we are able to let h → 0.
This is possible since W is a globally bounded function by (61). Proceed-
ing exactly as in Step 2 in the proof of Theorem 9, in particular, in a
totally similar way for the terms I7 and I8, we arrive at the following
replacement of (104), which comes after a few routine estimations∫

Ω
η2

n∑
s=1

(µ2 + |Xu|2)
p−2
2
[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2)

p
p−2 + W ((Ysu)2)

p
p−2

]
dx

+c

∫
supp η

|Tu|p dx +
4∑

1=1

IIIi. (125)

Before going on, we recall that in the proof of Theorem 9, the convergence
of the terms I7 and I8, did not require the boundedness of Tu, but just
the fact XTu ∈ L2

loc(Ω), and the bound (51), together with the higher
integrability result from Theorem 6 (compare with (97)-(98)), as also
observe in Remark 8. All such ingredients are available here too.

The terms IIIi in (125), are the one specified in (104). These will
also be estimated in a different way. We have, again using the second
inequality contained in (124)

III1 + III3

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2 ·

·
n∑

s=1

[
W ((Xsu)2)

p
p−2 + W ((Ysu)2)

p
p−2

]
dx. (126)
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We now estimate III2. First we remark that the estimation of III2 goes
through the integration-by-parts procedure followed in (106). As already
stressed above, to be performed, this only requires the ingredients de-
scribed in Remark 8, which are available under the assumptions of the
present theorem. In particular, we do not need to use the local bounded-
ness of Tu here, it just suffices to have Tu ∈ Lp

loc(Ω), which is a conse-
quence of Theorem 5. Observe also that this is exactly the point where the
bound on p assumed in the statement comes into the play; in particular
this is assumed to meet condition (98). We can therefore start estimating
III2 using (106), treating the corresponding terms IV1, IV2, IV3, V1, V2,
taking into account the expansion in (110). We have, again by Young’s
inequality

|V1| ≤ ε

∫
Ω

η2(µ2 + |Xu|2)
p−2
2

n∑
s=1

W ((Xsu)2)|XXsu|2 dx

+
c

ε

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

W ((Xsu)2)
p

p−2 dx

+
c

ε

∫
supp η

|Tu|p dx,

and, again using the second inequality in (124)

|V2|+ |IV2| ≤ c

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

W ((Xsu)2)
p

p−2 dx

+c‖Xη‖
p

p−1

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

W ((Xsu)2)
p

p−1 dx

+c

∫
supp η

|Tu|p dx

≤ c(1 + Cη)
∫

supp η
(µ2 + |Xu|2)

p
2

n∑
s=1

W ((Xsu)2)
p

p−2 dx

+c

∫
supp η

|Tu|p dx.

Finally, again using Young’s inequality twice, we obtain

|IV3| ≤
ε

3(α + 1)

∫
Ω

η2(µ2 + |Xu|2)
p−2
2

n∑
s=1

|W ′((Xsu)2)||Xsu|2|XXsu|2 dx

+
c(α + 1)

ε

∫
supp η

(µ2 + |Xu|2)
p2

2(p−2)

n∑
s=1

|W ′((Xsu)2)|
p

p−2 dx
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+
c(α + 1)

ε

∫
supp η

|Tu|p dx.

Completely analogous considerations and estimates work for III4. Making
use of (62) we arrive at

|III2|+ |III4|

≤ ε

∫
Ω

η2(µ2 + |Xu|2)
p−2
2 ·

·
n∑

s=1

[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

+
cCη

ε

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2)

p
p−2 + W ((Ysu)2)

p
p−2

]
dx

+
c(α + 1)

ε

∫
supp η

(µ2 + |Xu|2)
p2

2(p−2) ·

·
n∑

s=1

[
|W ′((Xsu)2)|

p
p−2 + |W ′((Ysu)2)|

p
p−2

]
dx

+
c(α + 1)

ε

∫
supp η

|Tu|p dx.

Connecting this last inequality, (125), (126), taking ε small enough in the
standard way, and re-absorbing terms we obtain the following analog of
(112):∫

Ω
η2(µ2 + |Xu|2)

p−2
2

n∑
s=1

[
W ((Xsu)2)|XXsu|2 + W ((Ysu)2)|XYsu|2

]
dx

≤ cCη

∫
supp η

(µ2 + |Xu|2)
p
2

n∑
s=1

[
W ((Xsu)2)

p
p−2 + W ((Ysu)2)

p
p−2

]
dx

+c(α + 1)2
∫

supp η
(µ2 + |Xu|2)

p2

p−2 ·

·
n∑

s=1

[∣∣∣∣W ((Xsu)2)
1 + (Xsu)2

∣∣∣∣
p

p−2

+
∣∣∣∣W ((Ysu)2)
1 + (Ysu)2

∣∣∣∣
p

p−2

]
dx

+c(α + 1)
∫

supp η
|Tu|p dx,

where again we made use of (62) to treat the next to last integral. The
constant appearing in the last inequality is independent of k, and the
dependence on α is the one explicitly computed. Once again we recall
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that we are taking W = Wα,k; therefore, by virtue of (63), the monotone
convergence theorem applied on the right hand side, and of Fatou’s lemma
applied on the left one, we let k → ∞, getting, after an elementary
estimation∫

Ω
η2

n∑
s=1

[
|Xsu|p−2+2α|XXsu|2 + |Ysu|p−2+2α|XYsu|2

]
dx

≤ c(α, η)
∫

supp η

n∑
s=1

1 +
[
|Xsu|

p
p−2

(p−2+2α) + |Ysu|
p

p−2
(p−2+2α)

]
dx

+c(α)
∫

supp η
|Tu|p dx.

In the previous inequality, the constant c depends of course also on n, p
and L (we recall that by the initial re-scaling we are assuming ν = 1).
In turn, applying Sobolev embedding theorem in the sub-elliptic version
exactly in the case of Theorem 9, we end up with(∫

Ω
η

2Q
Q−2

n∑
s=1

[
|Xsu|p+2α + |Ysu|p+2α

] Q
Q−2 dx

)Q−2
Q

≤ c(α, η)
∫

supp η

n∑
s=1

1 +
[
|Xsu|

p
p−2

(p−2+2α) + |Ysu|
p

p−2
(p−2+2α)

]
dx

+c(α)
∫

supp η
|Tu|p dx. (127)

We would like to iterate (127) as we did for (117). Unfortunately this
is not possible, or, more precisely, the previous inequality would yield
an improvement in the integrability of Xu up to Ls, for every s < ∞,
provided

(p + 2α)Q
Q− 2

>
p(p− 2 + 2α)

p− 2
for α ≥ 0, (128)

which is satisfied if and only if p > Q, a case excluded by (51). On
the other hand (128) turns out to be true for certain, not arbitrarily
large, values of α ≥ 0, as for instance α = 0. We use this observation to
implement a non-divergent Moser-type iteration that will eventually lead
to establish the higher integrability of Xu in the range described in (122);
in other words, we shall use exponents α as long as (128) is satisfied. The
argument goes as follows: fix a ball B(x0, r) ⊂⊂ Ω and we use the same
sequences of cut-off functions {ηk}, and radii {ρk}, already emploied in
Theorems 8 and 9. We define the sequence {αk}k according to{

αk+1 = χ̄αk + p−2
Q−2

α0 = 0.
(129)
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This time we set
χ̄ =

Q

Q− 2
p− 2

p
< 1. (130)

Notice that the previous inequality is obvious for n = 1, 2, and it is a
consequence of (51) for n ≥ 3, which implies in particular p < Q. Also,
the fact that χ̄ < 1 makes {αk}k a non-divergent sequence. Indeed, we
have

αk =
p− 2
Q− 2

k−1∑
j=0

χ̃j ↗ p

2
p− 2
Q− p

, (131)

so that
(p + 2αk)Q

Q− 2
↗ Qp

Q− p
. (132)

Clearly, giving α the value of the limit quantity (131), we obtain equality
in (128), instead of strict inequality. Notice also that the choice in (129)
implies

(p + 2αk)Q
Q− 2

=
p(p− 2 + 2αk+1)

p− 2
for k ∈ N. (133)

Taking advantage of (133), and iteratively applying (127) with the choice
η = ηk, α = αk, we obtain∫

Bρk

n∑
s=1

[
|Xsu|p+2αk + |Ysu|p+2αk

] Q
Q−2 dx ≤ Ck for k ∈ N.

Here the constant Ck is finite and depends on k via the occurrence of the
cut-off functions η1, η2, . . . , ηk. It also depends on n, p, L and the norms
‖Xu‖Lp(Br) and ‖Tu‖Lp(Br). As for the former norm, observe that it ap-
pears at the first step of the iteration, taking α = 0, and it bounds,
modulo increasing constants, all the higher power norms of Xu; as for the
latter, observe that ‖Tu‖Lp(Br) appears on the right hand side of (127),
and therefore appears at each step of the iteration. Using at this point
(132) we easily obtain that for every s < Qp/(Q− p) there exists k̄ ∈ N,
depending on s but independent of the initial ball considered Br, such
that ‖Xu‖Ls(Bρk̄

) ≤ Ck̄. From this fact, the local Ls integrability of Xu as
claimed in (122) follows via a standard covering argument and the proof
is finished.

7. Regularity of solutions

In this section we prove the main result, Theorem 1, and then also The-
orem 2. First we prove that both Xu and Tu are locally bounded in Ω
and obtain various a priori estimates.
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Theorem 11. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(6). Then Du ∈ L∞loc(Ω).

Proof. We ask the reader to keep in mind the scheme in (11), and to
be patient enough to keep track of the various bounds assumed on p
through Sections 4-6. We shall first concentrate on the case p 6= 2. We
start obtaining the higher integrability result for the horizontal gradient of
Theorem 6. In turn this implies the higher integrability result of Theorem
10, which is an improvement of the previous one provided p is large enough

(compare with Remark 9). In any case we conclude with Xu ∈ L
Qp

Q−p
−ε

loc (Ω),
for every ε > 0. Observe that the applications of these two theorems is
possible since the bound (6) implies the one in (51), as noted in Remark
7. Again we observe that the assumption (6) implies

t

t− p + 2
<

Q

Q− 2
where t =

Qp

Q− p
. (134)

This is exactly the point where the quantity in (7) comes from. Consider
also Remark 7 for the case n = 3, where the case p = 10/3 can be achieved.
Therefore, by (134), using a continuity argument and Theorem 10, we can
select s < t such that Xu ∈ Ls

loc(Ω), with s close enough to t in order to
have also (40) satisfied. At this point we apply Theorem 8 to obtain that
Tu is (essentially) locally bounded in Ω. Then we apply Theorem 9 to
deduce that also Xu is locally bounded in Ω and the proof is complete in
the relevant case p 6= 2. The case p = 2 is already treated in the paper
[2], but follows from our results as well. Indeed, following for instance
Remark 4, we apply directly Theorem 8 with the choice s = p = 2, which
obviously satisfies (40), and we get the local boundedness of Tu. This
avoids the use of Theorem 10, which is the only point of the paper where
we need to assume that p 6= 2. The rest of the proof follows as for the
case p 6= 2.

Remark 10. The a priori estimate in (41) can be at this point improved
since Xu ∈ L∞loc(Ω), and we can obtain a “dual” version of the a priori
estimate (52). Indeed, thanks to the fact that the constant c appearing
in (41) is independent of s, we may let s →∞ in (41), and noticing that
χ/(χ− 1) → Q/2, we obtain

‖Tu‖L∞(Bρ) ≤
(

c

r − ρ

)Q
2
(‖µ + |Xu|‖L∞(Br)

µ

) (p−2)Q
4

‖Tu‖L2(Br)(135)

where once again the constant c only depends on n, L/ν and p, being
independent of the particular solution u, the constant µ, and the vector
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field (ai). Taking ρ = R/2 and using Hölder’s inequality we obtain

sup
B r

2

|Tu| ≤ c

(‖µ + |Xu|‖L∞(Br)

µ

) (p−2)Q
4

(
−
∫

Br

(1 + |Tu|p) dx

) 1
p

. (136)

Estimates (53) and (136) are dual each other, and reflect how, in our
approach, the regularity for the horizontal gradient is controlled by the
regularity of the vertical one and vice-versa. Keep in mind the diagram
(11).

Once the boundedness of both Xu and Tu has been established, we
can proceed to prove the local Hölder continuity of the full Euclidean
gradient Du, by adapting the techniques from [2],[3],[4], that in turn ex-
tend to the setting of the Heisenberg group the classical work of Morrey
[27],[28]. More precisely, while in the case p = 2 [2],[3],[4] the focal point
for regularity is the existence of the second horizontal derivatives of solu-
tions, here is their Lipschitz continuity (see Remark 11 below). Once this
is done, the higher regularity is obtained by passing to the differentiated
equation.

We prove the following result, from which Theorem 1 immediately
follows.

Theorem 12. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(6). Then for every open subset A ⊂⊂ Ω there
exists α = α(A) ∈ (0, 1) such that Xu, Tu ∈ Γα(A).

Proof. Since the result of the theorem is of a local nature, in the following
we shall assume without loss of generality that A is a smooth open subset,
compactly contained in Ω. To begin with the proof we start proving that

Tu ∈ Γα(A) XTu ∈ M2,α(A) (137)

for a certain α > 0, depending on the open subset A, n, p, and L/ν;
the definition of the spaces Γα(A), and M2,α(A), can be found in Sec-
tion 2, (17) and (18), respectively. Taking Tϕ instead of ϕ, in (27), and
integrating by parts, we have∫

Ω

2n∑
i,j=1

Dzjai(Xu)XjTuXiϕ dx = 0. (138)

Here ϕ is of course taken with compact support in Ω. The previous inte-
gration by parts and differentiation are justified in view of the results of
Sections 2 and 3. Equation (138) implies that setting

bi,j(x) := Dzjai(Xu(x)), (139)
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we have that w := Tu solves the following linear sub-elliptic equation in
(horizontal) divergence form:

2n∑
i,j=1

X∗
i (bi,j(x)Xjw) = 0, weakly in A. (140)

The coefficients are measurable, bounded and elliptic:

µp−2|λ|2 ≤
2n∑

i,j=1

bi,j(x)λiλj ≤ M(A)|λ|2, for x ∈ A and λ ∈ R2n,

(141)
where we have set

M(A) = L(µ2 + ‖Xu‖2L∞(A))
p−2
2 . (142)

Notice that w ∈ HW 1,2(A) by virtue of Theorem 7, therefore w is a real
energy solution to (138) in the same fashion of Definition 2. Therefore,
from the Hölder regularity result of Theorem 4 we deduce the existence
of

α = α

(
L

ν
· M(A)

µp−2

)
> 0 (143)

such that w ≡ Tu ∈ Γα
loc(A). Since A ⊂⊂ Ω is arbitrary, by passing to

a slight larger smooth open subset we conclude also the first inclusion in
(137).

Remark 11. At this point we can see the real difference between the case
p = 2, treated in [2],[3], and the one p 6= 2. Indeed when p = 2, referring
to (142), we just have that M = L, and we do not need to use the
boundedness of Xu to have (141). In the case p 6= 2 last information can be
obtained only when Xu is locally bounded, which has to be independently
proven.

In a standard way we can now obtain the usual Caccioppoli type
inequality for elliptic equations by testing (140) with η2(w − (w)x0,r),
where B(x0, r) ⊂⊂ A and η is a suitable, smooth cut-off function between
B(x0, r/2) and B(x0, r). After a few computations (see for instance [16],
Chapter 6) we come up with

−
∫

B(x0, r
2
)
|XTu|2 dx ≤ c

r2
−
∫

B(x0,r)
|Tu− (Tu)x0,r|2 dx

≤ cr2(α−1).

The last estimate is obtained using the fact that Tu ∈ Γα(A), while
the constant c depends on the ellipticity ratio (L/ν) · M(A)/µp−2 of
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the equation (140) appearing in (143). This immediately implies that
XTu ∈ M2,α

loc (A). Actually, since A ⊂⊂ Ω is arbitrary, passing to a slightly
larger subset, also this time we obtain that XTu ∈ M2,α(A), and (137)
is completely proved. We are now ready to prove that also Xu is Hölder
continuous in A, eventually with a different exponent β > 0, depending
on α, and therefore ultimately on the quantity (L/ν)·M(A)/µp−2 already
in (143). We shall achieve this by proving that Xsu is locally Hölder con-
tinuous in A for every s ∈ {1, . . . , n} - the same proof will work for Ysu.
Taking Xsϕ, instead of ϕ in (27), commuting and integrating by parts,
we obtain in a standard way that∫

Ω

2n∑
i,j=1

Dzjai(Xu)XjXsuXiϕ dx

= −
∫

Ω

2n∑
i=1

Dzs+nai(Xu)TuXiϕ dx−
∫

Ω
as+n(Xu)Tϕ dx.

Again integrating by parts the last integral we finally arrive at∫
Ω

2n∑
i,j=1

Dzjai(Xu)XjXsuXiϕ dx

= −
∫

Ω

2n∑
i=1

Dzs+nai(Xu)TuXiϕ dx

+
∫

Ω

2n∑
j=1

Dzjas+n(Xu)XjTuϕ dx. (144)

We remind the reader that the legality of the foregoing manipulations in
ensured by the differentiability results of Section 2 and 3. Fix a smooth,
open subset A ⊂⊂ Ω and this time set w = Xsu. We see that w ∈
HW 1,2(A) by (26), and that w solves the following linear sub-elliptic equa-
tion with bounded and elliptic coefficients, and with lower order terms:

2n∑
i,j=1

X∗
i (bi,j(x)Xjw + ci(x)) = d(x), weakly in A, (145)

where the matrix {bi,j(x)} as been already defined in (139), and we have
set 

ci(x) = Dzs+nai(Xu(x))Tu

d(x) = −
∑2n

i=1 Dzjas+n(Xu(x))XjTu(x).
(146)
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Theorem 11, and the first inclusion in (137), in particular the boundedness
of Tu, immediately allows us to conclude that ci ∈ M2,α(A), since

−
∫

B(x,r)∩A
|ci|2 dx ≤ c(M) ≤ cr2(α−1),

whenever x ∈ A, and r is suitably small. The second inclusion in (137),
and again Theorem 11, implies that

−
∫

B(x,r)∩A
|d| dx ≤

(
−
∫

B(x,r)∩A
|d|2 dx

) 1
2

≤ cr(α−1) ≤ cr(α−2), (147)

whenever x ∈ A, and r is suitably small. At this point, by (146) and
(147), we conclude by applying Theorem 6.32 from [3], or Theorem 4.6
from [2], that Xsu ∈ M2,β(A) for some β > 0 depending on α. This works
for all s ∈ {1, . . . , n}, and also the Ys: we get that |Xw| ∈ M2,β(A), and
therefore, using the inclusion (19), we obtain that w ≡ Xsu ∈ Γ β

loc(A).
Actually, as already noted in Remark 6.30 from [3], a careful re-adaptation
of original Morrey’s proofs lead to establish that in fact β = α. The proof
of Theorem 12 is concluded. The proof of Theorem 1 also follows.

Proof (of Theorem 2, and more). The higher regularity of solutions, ac-
cording to the higher regularity of the vector field (ai), is now a conse-
quence of the sub-elliptic Schauder estimates of Xu [32]. We refer to [2]
for a relevant discussion, in particular Section 4 of [2], from which we
could also deduce Theorem 2.

8. Further a priori estimates

In this final section we are going to report a few additional results, which
are not necessary to prove the regularity of solutions of (2), but that
show how, assuming an additional restriction on the distance between p
and 2, it is possible to prove some further a priori estimates allowing to
locally bound the full Euclidean gradient norm ||Du||L∞ , in terms of the
horizontal norm ||u||HW 1,p , which is the datum given by the problem. In
the whole section we shall argue under the additional bound

2 ≤ p < 2 +
2

(n + 1)2
, (148)

which is more restrictive than the one considered in (7), as a direct com-
putation reveals.
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Theorem 13. Let u ∈ HW 1,p(Ω) be a weak solution to the equation (2)
under the assumptions (3)-(5), and (148). If Br ⊂⊂ Ω then

sup
B r

2

|Tu| ≤ c

rq

[(‖1 + |Xu|‖Lp(Br)

µ

) (p−2)Q
4

·

·
(‖1 + |Xu|‖Lp(Br)

r
2+Q

2

+
‖u‖Lp(Br)

r
4+Q

2

)] 8
8−Q2(p−2)

,(149)

and

sup
B r

2

|Xu| ≤ c

r
Q
p

+Qq
2

‖1 + |Xu|‖Lp(Br)

[(‖1 + |Xu|‖Lp(Br)

µ

) (p−2)Q
4

·

·
(‖1 + |Xu|‖Lp(Br)

r
2+Q

2

+
‖u‖Lp(Br)

r
4+Q

2

)] 8
8−Q2(p−2)

Q
2

.(150)

Here the constant c depends only on n, p, and L/ν, and

q =
(

Q

2
+

Q2(p− 2)
4p

)
· 8
8−Q2(p− 2)

≥ 1. (151)

Proof. Let us take Br ⊂⊂ Ω as in the statement, and let us fix r/2 < t <
s < r. We start by estimate (135). Taking r ≡ (s + t)/2 and % ≡ t, and
using Hölder’s inequality and the fact that p ≥ 2, we gain

‖Tu‖L∞(Bt) ≤
(

c

s− t

)Q
2

(
‖µ + |Xu|‖L∞(B(s+t)/2)

µ

) (p−2)Q
4

‖Tu‖Lp(B(s+t)/2).

Now we use estimate (52) with the choice r ≡ s and % ≡ (s + t)/2, and
obtain

‖Xu‖L∞(B(s+t)/2) ≤
(

c

s− t

)Q
p

‖1 + |Tu|‖
Q
2

L∞(Bs)
‖1 + |Xu|‖Lp(Bs),

where the constant c only depends on n, p, and L/ν. Merging the previous
two inequalities, and performing routine estimations, we have

‖1 + |Tu|‖L∞(Bt) ≤
(

c

s− t

)Q
2

+
Q2(p−2)

4p

‖1 + |Tu|‖
Q2(p−2)

8

L∞(Bs)
·

·
(‖1 + |Xu|‖Lp(Br)

µ

) (p−2)Q
4

‖Tu‖Lp(Br)



58 Juan J. Manfredi, Giuseppe Mingione

+
(

c

s− t

)Q
2

‖1 + |Tu|‖Lp(Br).

Now the point is that (148) allows us to conclude that Q2(p− 2)/8 < 1,
and therefore we can use Young’s inequality to have

‖1 + |Tu|‖L∞(Bt) ≤
‖1 + |Tu|‖L∞(Bs)

2

+
c

(s− t)q

(‖µ + |Xu|‖Lp(Br)

µ

) (p−2)Q
4

8
8−Q2(p−2)

·

·‖1 + |Tu|‖
8

8−Q2(p−2)

Lp(Br) ,

where q is as in (151). Now we let I(s) := ‖1+|Tu|‖L∞(Bs) for s ∈ (r/2, r),
and apply Lemma 4 with θ = 1/2, q ≡ q, and the obvious choice of the
constants A,B, to get

‖1 + |Tu|‖L∞(B r
2
) ≤

c

rq

(‖µ + |Xu|‖Lp(Br)

µ

) (p−2)Q
4

8
8−Q2(p−2)

·

·‖1 + |Tu|‖
8

8−Q2(p−2)

Lp(Br) .

Note again that, with no surprise, when p = 2, then q = Q/2 and we get
back (43). Now observe that in Theorem 5, a simple covering argument
allows to take α = 1/2, modulo enlarging the constants involved in the
estimates. Therefore, merging estimate (23) with the previous one, and
changing repeatedly the values of r (3r/4 instead of r and so on), we
easily get (149). In order to get (150), it suffices to use (149) in (52), for
a suitable choice of r and %.
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