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Abstract. The main objective of this course is to present an exten-
sion of Jensen’s uniqueness theorem for viscosity solutions of second
order uniformly elliptic equations to Carnot groups. This is done via
an extension of the comparison principle for semicontinuous functions
of Crandall-Ishii-Lions. We first present the details for the Heisenberg
group, where the ideas and the calculations are easier to appreciate. We
then consider the general case of Carnot groups and present applications
to the theory of convex functions and to minimal Lipschitz extensions.
The last lecture is devoted to Cordes estimates in the Heisenberg group.
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Special Note:

The analysis of non-linear subelliptic equations is going through a burst
of activity! During the preparation of these notes at least three preprints
have appeared that contain substantial improvements in the field.

• Changyou Wang [W1] has found a new approach to Jensen’s theo-
rem on Carnot groups that is more powerful than ours. He extends
also Jensen’s uniqueness theorem for infinite harmonic functions to
general Carnot groups, previously known only for the Heisenberg
group [Bi].

• Cristian Gutiérrez and Anna Maria Montanari [GM1], [GM2] have
recently identified the Monge-Ampère measure of a convex function
on the Heisenberg group and proved the twice pointwise differentia-
bility a. e. of convex functions (subelliptic Aleksandrov theorem).
Another presentation of similar results has been given by Nicola
Garofalo and Federico Tournier [GTo].

It is a pleasure to thank Thomas Bieske and András Domokos who read
a preliminary version of these notes and made valuable suggestions. I
have benefited from many discussions with Zoltan Balogh, Matthew Rickley,
Roberto Monti, Jeremy Tyson and Martin Riemann while visiting the Uni-
versity of Bern and revising these notes. While at Trento, Bianca Stroffolini
and Petri Juutinen made numerous suggestions. Finally, I would like to
thank Andrea Caruso and Francesco Borrell form the University of Catania
for their invaluable help in the preparation of the final version of these notes.
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Nevertheless, the responsibility for any mistakes and omissions is solely the
author’s.

1. Lecture I: The Euclidean case

We first present an elementary discussion in Rn starting at the maximum
principle for smooth functions and arriving to the notion of viscosity solu-
tions. This notion is based on using jets or pointwise generalized derivatives
obtained from considering expansions for semi-continuous functions similar
to Taylor expansions for smooth functions.

1.1. Calculus. Let Ω be a (bounded, smooth) domain in Rn. Let f : Ω → R
be a C2-function that has a local maximum at a point x0 ∈ Ω. It follows
from Taylor’s theorem that:

Df(x0) = 0

and the second derivative is negative semi-definite

D2f(x0) ≤ 0.

This last inequality must be interpreted in the matrix sense: for every ξ ∈ Rn

we have
〈D2f(x0)ξ, ξ〉 ≤ 0.

Our first version of the maximum principle is just a restatement of this result
for the difference of two functions.

Theorem 1. Maximum Principle, First version: If the difference u−v
has a local maximum at a point x0, then

(1.1) Du(x0) = Dv(x0)

and

(1.2) D2u(x0) ≤ D2v(x0).

Let us see how to use this theorem to prove a uniqueness principle for
smooth solutions of elliptic partial differential equations. Consider the equa-
tion

(1.3) −∆u+ f(Du) + u = 0,

where f is a smooth function. Suppose that u and v are smooth solutions of
(1.3) on Ω having identical boundary values. Consider the function (u−v)+.
If it is positive at a point, the u−v has a positive interior local maximum, say
at the point x0. From Theorem 1 and (1.3) we get the following relations:

Du(x0) = Dv(x0),(1.4)

D2u(x0) ≤ D2v(x0),(1.5)

0 = −∆u(x0) + f(Du(x0)) + u(x0)(1.6)

0 = −∆v(x0) + f(Dv(x0)) + v(x0)(1.7)
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Subtracting (1.7) from (1.6) we get

0 = −∆u(x0) + ∆v(x0) + u(x0)− v(x0).

From (1.5) if follows that −∆u(x0) + ∆v(x0) ≥ 0. Since we clearly have
u(x0) − v(x0) > 0 we get a contradiction. Therefore (u − v)+ ≤ 0, or
equivalently u ≤ v. A symmetric argument gives v ≤ u.

Therefore, we have proved uniqueness for the Dirichlet problem for the
equation (1.3).

Note however that the above argument does not apply directly to the
Laplace equation −∆u = 0. A careful examination of the previous argument
shows that we can, in fact, prove the following:

Theorem 2. Comparison Principle, Early Version: Assume that u ≤
v on ∂Ω, that u is a subsolution of (1.3)

−∆u+ f(Du) + u ≤ 0

and that v is a supersolution of (1.3)

−∆v + f(Dv) + v ≥ 0,

then we have
u ≤ v

in Ω.

Note that the first order terms play no essential role in the maximum or
comparison principles in this section.

The more flexible Theorem 2 allows us to expand the class of equations
for which we can prove uniqueness for the Dirichlet problem. In the case of
the Laplace equation, we can proceed as follows. Let u and v be harmonic
functions (−∆u = 0, −∆v = 0) on a bounded domain Ω, continuous on
Ω, and with the same boundary values on ∂Ω. For ε > 0 small define
uε = u+ εx2

1 and vε = v− εx2
1. Here is the basis of the argument. For ε > 0

we can always find λ > 0 small enough so that uε is a subsolution and vε is a
supersolution of the equation −∆u+ λu = 0. Therefore, by the comparison
principle Theorem (2), the difference uε − vε attains its maximum in Ω at a
point in ∂Ω. Next, compute the maximum

max
∂Ω

(uε − vε) ≤ max
∂Ω

(2εx2
1) ≤ Constant ε

and observe that
uε − vε ≤ Constant ε

in Ω. Letting ε→ 0 we obtain u ≤ v.
Modifications of these simple ideas can be used to prove comparison prin-

ciples for many elliptic equations of the form

F (x, u,Du,D2u) = 0

as long as F is increasing in u and decreasing in D2u, but the hypothesis of
C2 regularity seems quite necessary. The main purpose of this introduction
is to present a version of theorems 1 and 2 for non-smooth functions in Rn.
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We need a notion of generalized derivative in order to find the analogue of
(1.1) and (1.2) for non-smooth functions. Of course, there is already an
extensive theory of generalized derivatives or distributions that has proven
extremely useful for understanding linear and quasilinear equations. How-
ever, distributions are not always useful in nonlinear problems. Take as an
example the ∞-Laplace equation

n∑
i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
= 0.

It is not clear at all what a distributional solution should be.

1.2. Jets. The notion of generalized derivative that we shall use is based
on the Taylor theorem. Suppose that u : Rn 7→ R is a C2-function. Taylor
at 0 says:

u(x) = u(0) + 〈Du(0), x〉+
1
2
〈D2u(0)x, x〉+ o(|x|2)

as x→ 0. If u is not necessarily smooth, we could define a generalized first
derivative as the vector η and a generalized second derivative as an n × n
symmetric matrix X if

(1.8) u(x) = u(0) + 〈η, x〉+
1
2
〈X · x, x〉+ o(|x|2)

as x → 0. This turns out to be very strict for non-smooth functions.
The key idea is to split (1.8) in two parts. Since we still need to evalu-
ate functions pointwise, the class of semicontinuous functions (upper and
lower) is the natural class of non-smooth functions to be consider. Recall
that upper-semicontinuous functions are locally bounded above and lower-
semicontinuous functions are locally bounded below.

Definition 1. A pair (η,X), where η ∈ Rn and X is an n × n symmetric
matrix, belongs to the second order superjet of an upper semicontinuous
function u at the point x0 if

u(x0 + h) ≤ u(x0) + 〈η, h〉+
1
2
〈X · h, h〉+ o

(
|h|2
)

as h → 0. The collection of all of these pairs, is denoted by J2,+u(x0).
(Later on, when we need to emphasize the Euclidean structure we will write
J2,+
euclu(x0).)

There is no apriori reason why the set J2,+u(x0) should be non-empty
for an arbitrary upper-semicontinuous function. However, a simple argu-
ment translating paraboloids shows that indeed J2,+u(x0) is non-empty for
a dense set of points x0. For lower semi-continuous functions, we consider
subjets:
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Definition 2. A pair (η,X), where η ∈ Rn and X is an n × n symmetric
matrix, belongs to the second order subjet of a lower semicontinuous function
v at the point x0 if

v(x0 + h) ≥ v(x0) + 〈η, h〉+
1
2
〈X · h, h〉+ o

(
|h|2
)

as h → 0. The collection of all of these pairs, is denoted by J2,−v(x0).
(Later on, when we need to emphasize the Euclidean structure we will write
J2,−
euclv(x0).)

If u is continuous and J2,+(u, x0) ∩ J2,−(u, x0) 6= ∅, then it contains only
one pair (η,X). Moreover, the function u is differentiable at x0, the vector
η = Du(x0) and we say that u is twice pointwise differentiable at x0 and
write D2u(x0) = X.

A special class of jets is determined by smooth functions ϕ that touch a
function u from above or below at a point x0. Denote by K2,−(u, x0) the
collection of pairs (

∇ϕ(x0), D2ϕ(x0)
)

where ϕ ∈ C2(Ω) touches u from below at x0; that is, ϕ(x0) = u(x0) and
ϕ(x) < u(x) for x 6= x0. Similarly, we define K2,+(u, x0) using smooth test
functions that touch a function u from above. In fact, all jets come from
test functions.

Theorem 3. (Crandall, Ishii, [C]) We always have

K2,+(u, x0) = J2,+(u, x0)

and
K2,−(u, x0) = J2,−(u, x0).

1.3. Viscosity Solutions. Consider equations of the form

F (x, u,Du,D2u) = 0

for a continuous F increasing in u and decreasing in D2u. We say that an
upper-semicontinuous function u is a viscosity subsolution of the above
equation, if whenever x0 ∈ Ω and (η,X) ∈ J2,+u(x0) we have

F (x0, u(x0), η,X) ≤ 0.

Similarly, we define viscosity supersolutions by using second order subjets
of lower-semicontinuos functions. A viscosity solution is both a viscosity
subsolution and a viscosity supersolution. With this notion of weak solution,
we have increased enormously the class of functions possibly qualifying as
solutions. However, a remarkable result of Jensen [J1] states that for second
order uniformly elliptic equations there is at most one viscosity solution.

The proof of this fundamental uniqueness result is based on a powerful
non-linear regularization technique from Control Theory involving first order
Hamilton-Jacobi equations - see [E] for an enlightening discussion. Once you
have the comparison principle, one can also adapt techniques from classical
potential theory to prove existence (Perron’s method).
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1.4. The Maximum Principle for Semicontinuous Functions.

Theorem 4. (Crandall-Ishii-Jensen-Lions, 1992, [CIL]): Let the func-
tion u be upper semicontinuous in a bounded domain Ω. Let the function v
be lower semi-continuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u−v has an interior
local maximum

sup
Ω

(u− v) > 0

then we have:
For τ > 0 we can find points pτ , qτ ∈ Ω such that

i)
lim
τ→∞

τψ(pτ − qτ ) = 0,

where ψ(p) = |p|2,
ii) there exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i))

and
sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

iii) there exist n× n symmetric matrices Xτ , Yτ and vectors ητ so that

(ητ , Xτ ) ∈ J
2,+(u, pτ ),

iv)
(ητ , Yτ ) ∈ J

2,−(u, qτ ),
and

v)
Xτ 5 Yτ .

The last statement means that if ξ ∈ Rn we have

〈Xτξ, ξ〉 ≤ 〈Yτξ, ξ〉.
In fact, a stronger statement than (v) holds, which we shall need later on.
Set

A = D2
p,q(φ(p− q))

and
C = τ(A2 +A).

Then for all ξ, γ ∈ Rn we have

(1.9) 〈Xτγ, γ〉 − 〈Yτχ, χ〉 ≤ 〈Cγ ⊕ χ, γ ⊕ χ〉.
Statement (v) follows from 1.9 by setting γ = χ and noting that 〈Aξ, ξ〉 = 0
for ξ ∈ R2n.

A minor technical detail: we have used the closures of the second order
super and subjets, J̄2,+(u, pτ ) and J̄2,−(v, pτ ). These are defined by taking
pointwise limits as follows: A pair (η,X) ∈ J̄2,+(u, p) if there exist sequences
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of points pm → p, vectors ηm → η and matrices Xm → X as m → ∞ such
that u(pm) → u(p) and (ηm, Xm) ∈ J2,+(u, pm).

1.5. Extensions and generalizations. The notion of viscosity solution is
so robust that it makes sense on Lie groups, Riemannian and sub-Riemannian
manifolds and even more general structures generated by vector fields. The
extension of the Crandall-Ishii-Lions-Jensen machinery to these more gen-
eral structures is the objective of this course.

2. Lecture II: The Heisenberg group

In this section we consider the simplest Carnot group, the Heisenberg
group H = (R3, ·), where · is the group operation given by

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1
2
(xy′ − yx′)).

H is a Lie group with Lie algebra h generated by the left-invariant vector
fields

X1 =
∂

∂x
− y

2
∂

∂z

X2 =
∂

∂y
+
x

2
∂

∂z

X3 =
∂

∂z

The only non-trivial commuting relation is X3 = [X1, X2]. Thus H is a
nilpotent Lie group of step 2. The horizontal tangent space at a point
p = (x, y, z) is Th(p) = linear span{X1(p), X2(p)}. A piecewise smooth
curve t → γ(t) ∈ H is horizontal if γ′(t) ∈ Th(γ(t)) whenever γ′(t) exists.
Given two points p, q ∈ H denote by

Γ(p, q) = {horizontal curves joining p and q}.

There are plenty of horizontal curves. We have the classical:

Theorem 5. (Chow) Γ(p, q) 6= φ.

For convenience, fix an ambient Riemannian metric in R3 so that

{X1, X2, X3}

is an orthonormal frame and

Riemannian vol. element = Haar measure of H = Lebesgue meas. in R3.

The Carnot-Carathèodory metric is then defined by

dcc(p, q) = inf{length(γ) : γ ∈ Γ(p, q)}.

It depends only on the restriction of the ambient Riemannian metric to the
horizontal distribution generated by the horizontal tangent spaces.
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Since horizontal curves are preserved by left translations dcc is left-invariant.
The exponential mapping exp : h → H is a global diffeomorphism. We use
exponential coordinates of the first kind:

p = (x, y, z) = exp(xX1 + yX2 + zX3).

There is a family of non-isotropic dilations δt, parametrized by t > 0

δt(x, y, z) = (tx, ty, t2z)

that are group homomorphisms.
References for Carnot groups and Carnot-Carathéodory spaces include:

[B], [FS], [H], [G], [GN], and [Lu].

2.1. Calculus in H. Given a function u : H 7→ R we consider

Du = (X1u,X2u,X3u) ∈ R3,

the (full) gradient of u. As a vector field, this is written

Du = (X1u)X1 + (X2u)X2 + (X3u)X3.

The horizontal gradient of u is

D0u = (X1u,X2u) ∈ R2,

or as a vector field D0u = (X1u)X1 + (X2u)X2.

Theorem 6. Ball-Box Theorem (simple version):(See [B], [G], [NSW])
Set |p| = dcc(p, 0), the Carnot-Carathéodory gauge and

|p|H = ((x2 + y2)2 + z2)1/4

the Heisenberg gauge. We have

dcc(p, 0) ≈ |p|H ≈ |x|+ |y|+ |z|1/2

and

Vol(B(0, r)) ≈ r4,

where B(0, r) is the Carnot-Carathèdory ball centered at 0 of radius r.

Remark 1. With our choice of vector fields we have

|(0, 0, z)|cc =
√

4π |z|1/2

2.2. Taylor Formula. Suppose that u : H 7→ R is a smooth function.
Euclidean Taylor at 0 says:

u(x, y, z) = u(0, 0, 0)
+ ux · x+ uy · y + uz · z

+
1
2
{
uxx · x2 + uyy · y2 + uzz · z2

+2uxyxy + 2uxzxz + 2uyzyz}
+ o(x2 + y2 + z2)
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Using the fact that |p|2 ≈ x2 + y2 + |z|, we obtain the horizontal Taylor
expansion

u(x, y, z) = u(0, 0, 0)
+ ux · x+ uy · y + uz · z

+
1
2
{
uxxx

2 + uyy · y2 + 2uxyxy
}

+ o(|p|2).

At another point p0 = (x0, y0, z0), we get the horizontal Taylor formula by
left-translation:

u(p) = u(p0) + 〈Du(p0), p−1
0 · p〉+

1
2
〈(D2

0u(p0))∗h, h〉+ o(|p−1
0 · p|2),

where Du(p0) is the full gradient of u at p0, the matrix

(D2
0u)

∗ =
(

X2
1u

1
2(X1X2u+X2X1u)

1
2(X1X2u+X2X1u) X2

2u

)
is the horizontal symmetrized second derivative and the vector and h =
(x − x0, y − y0) is the horizontal projection of p−1

0 · p. We could also have
used the non-symmetrized second derivative

D2
0u =

(
X2

1u X1X2u
X2X1u X2

2u

)
.

We prefer to use the symmetrized version since the quadratic form associated
to a matrix A is determined by its symmetric part 1

2

(
A+At

)
. Here At

denotes the transpose of A.

2.3. Subelliptic Jets. Let u be an upper-semicontinuous real function in
H. The second order superjet of u at p0 is defined as

J2,+(u, p0) =
{

(η,X ) ∈ R3 × S2(R) such that

u(p) 5 u(p0) + 〈η, p−1
0 · p〉+

1
2
〈Xh, h〉+ o(|p−1

0 p|2)
}

Similarly, for lower-semincontinuous u, we define the second order subjet

J2,−(u, p0) =
{

(η,Y) ∈ R3 × S2(R) such that

u(p) ≥ u(p0) + 〈η, p−1
0 p〉+

1
2
〈Yh, h〉+ o(|p−1

0 p|2)
}
.
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One easy way to get jets is by using smooth functions that touch u from
above or below.

K2,+(u, p0) =
{

(Dϕ(p0),(D2ϕ(p0))∗) : ϕ ∈ C2 in X1, X2, ϕ ∈ C1 in X3,

ϕ(p0) = u(p0)

ϕ(p) ≥ u(p), p 6= p0 in a neighborhood of p0

}
As in the Euclidean case every jet can be obtained by this method.

Lemma 1. ([C] for the Euclidean case and [Bi] for the subelliptic case) We
always have

K2,+(u, p0) = J2,+(u, p0)

and
K2,−(u, p0) = J2,−(u, p0)

We also define the closure of the second order superjet of an upper-
semicontinuous function u at p0, denoted by J̄2,+(u, p0), as the set of pairs
(η,X ) ∈ R3 × S2(R) such that there exist sequences of points pm and pairs
(ηm,Xm) ∈ J2,+(u, pm) such that

(pm, u(pm), ηm,Xm) → (p0, u(p0), η,X )

as m→∞. The closure of the second order subjet of a lower-semicontinuous
function v at p0, denoted by J̄2,−(u, p0) is defined in an analogous manner.

2.4. Fully Non-Linear Equations. Consider a continuous function

F :H× R× h× S(R2) −→ R
(p, u, η,X ) −→ F (p, u, η,X ).

We will assume that F is proper; that is, F is increasing in u and F is
decreasing in X .

Definition 3. A lower semicontinuous function u is a viscosity supersolu-
tion of the equation

F (p, u(p), Du(p), (D2u(p))∗) = 0

if whenever (η,X ) ∈ J2,−(u, p0) we have

F (p0, u(p0), η,X ) ≥ 0.

Equivalently, if ϕ touches u from below, is C2 in X1, X2 and C1 in X3, then
we must have

F (p0, u(p0), Dϕ(p0), (D2ϕ(p0))∗) ≥ 0.
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Definition 4. An upper semicontinuous function u is a viscosity subsolution
of the equation

F (p, u(p), Du(p), (D2u(p))∗) = 0
if whenever (η,X ) ∈ J2,+(u, p0) we have

F (p0, u(p0), η,X ) ≤ 0.

Equivalently, if ϕ touches u from above, is C2 in X1, X2 and C1 in X3, then
we must have

F (p0, u(p0), Dϕ(p0), (D2ϕ(p0))∗) 5 0.

Note that if u is a viscosity subsolution and (η,X ) ∈ J̄2,+(u, p0) then, by
the continuity of F , we still have

F (p0, u(p0), η,X ) ≤ 0.

A similar remark applies to viscosity supersolutions and the closure of second
order subjets.

A viscosity solution is defined as being both a viscosity subsolution and
a viscosity supersolution. Observe that since F is proper, it follows easily
that if u is a smooth classical solution then u is a viscosity solution.

Examples of F :

• Subelliptic Laplace equation (the Hörmander-Kohn operator):

−∆0u = −
(
X2

1u+X2
2u
)

= 0

• Subelliptic p-Laplace equation, 2 ≤ p <∞:

−∆pu = −
[
|D0u|p−2∆0u+ (p− 2)|D0u|p−4∆0,∞u

]
= −div (|D0u|p−2D0u) = 0

Strictly speaking we need p ≥ 2 for the continuity of the corresponding
F . In the Euclidean case it is possible to extend the definition to the full
range p > 1. This is a non-trivial matter not yet studied in the case of
the Heisenberg group (to the best of my knowledge.) See [JLM] for the
Euclidean case.
• Subelliptic ∞-Laplace equation ([Bi]):

−∆0,∞u = −

 2∑
i,j

(Xiu)(Xju)XiXju

 = −〈(D2
0u)

∗D0u,D0u〉

• “Naive” subelliptic Monge-Ampère

−det(D2
0u)

∗ = f

Here the corresponding F (X ) = −detX is only proper in the cone of positive
semidefinite matrices. As mentioned in the introduction, Gutiérrez and
Montanari have considered the Monge-Ampère operator

−
{

det(D2
0u)

∗ +
3
4
(Tu)2

}
.
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They show, among other things, that it can always be defined in the sense
of measures for a convex function. See [GM1] and [GM2].

In order to have a reasonable theory we need a comparison principle,
since it implies uniqueness. It also implies existence (under some additional
hypothesis) via Perron’s method (See [C] and [IL]).

The comparison principle for viscosity solutions is based on the “max-
imum principle for semicontinuous functions”(Crandall-Ishii-Lions, [CIL],
in Rn). This principle gives a substitute for the “maximum principle” for
smooth functions easily obtained from the subelliptic Taylor formula.

If u, v ∈ C2(Ω) and u− v has a local maximum at p ∈ Ω, we have

Du(p) = Dv(p)

and
(D2

0u(p))
∗ 5 (D2

0v(p))
∗

2.5. The Subelliptic Maximum Principle. The subelliptic version of
the maximum principle for semicontinuous functions was proved by Bieske
[Bi] for the case of the Heisenberg group.

Theorem 7. Maximum principle for semicontinuous functions: Let
u be upper semi-continuous in a bounded domain Ω ⊂ H. Let v be lower
semi-continuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u−v has an interior
local maximum

sup
Ω

(u− v) > 0

then we have:
For τ > 0 we can find points pτ , qτ ∈ H such that

i)
lim
τ→∞

τψ(pτ · q−1
τ ) = 0,

where
ψ(x, y, z) = x4 + y4 + z2,

ii) There exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i))
and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

iii) there exist symmetric matrices

Xτ ,Yτ ∈ S(R2)

and vectors
ητ ∈ R3

so that
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iv)
(ητ ,Xτ ) ∈ J

2,+(u, pτ ),
v)

(ητ ,Yτ ) ∈ J
2,−(v, qτ ),

and
vi)

Xτ 5 Yτ + o(1)
as τ →∞.

The last statement means that if ξ ∈ R2 we have

〈Xτξ, ξ〉 − 〈Yτ , ξ, ξ〉 ≤ a(τ)|ξ|2,
where a(τ) → 0 as τ →∞.

Proof. For τ > 0 set

Mτ = sup
Ω×Ω

{u(p)− v(q)− τψ(p · q−1)}.

By semi-continuity Mτ < ∞ and Mτ is attained at a point (pτ , qτ ). Note
that Mτ is decreasing in τ and uniform bounded. We have

Mτ/2 ≥ u(pτ )− v(qτ )−
τ

2
ψ(pτ · q−1

τ )

Mτ/2 −
τ

2
ψ(pτ · q−1

τ ) ≥Mτ

Mτ/2 −Mτ ≥
1
2
τψ(pτ · q−1

τ )

Conclude first that
lim
τ→∞

τψ(pτ · q−1
τ ) = 0.

Next we observe,

sup
Ω

(u(p)− v(p)) ≤Mτ = u(pτ )− v(qτ )− τψ(pτ · q−1
τ )

Since pτ → p̂ as well as qτ → p̂ (for a subsequence of τ ’s tending to ∞) we
get

sup
Ω

(u(p)− v(p)) = lim
τ→∞

Mτ = u(p̂)− v(p̂).

We apply now the Euclidean maximum principle for semicontinuous
functions of Crandall-Ishii-Lions [CIL]. There exist 3×3 symmetric matrices
Xτ , Yτ so that (

τDp(ψ(p · q−1)), Xτ

)
∈ J2,+

eucl. (u, pτ )
and (

−τDq(ψ(p · q−1)), Yτ
)
∈ J2,−

eucl. (v, qτ )
with the property

〈Xτγ, γ〉 − 〈Yτχ, χ〉 5 〈Cγ ⊕ χ, γ ⊕ χ〉
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where the vectors γ, χ ∈ R3, and

C = τ(A2 +A)

and
A = D2

p,q(ψ(p · q−1))
are 6× 6 matrices.

We need now a way to get subelliptic jets from euclidean jets.

Lemma 2. Subelliptic jets from Euclidean jets: Let (η,X) ∈ J2,+
eucl.(u, p)

be a second order Euclidean superjet. Then, we have

(DLp · η, (DLp ·X · (DLp)t)2×2) ∈ J2,+(u, p)

In the lemma the subindex 2 × 2 indicates the principal 2 × 2 minor of
a 3× 3 matrix. The mapping Lp is just left multiplication by p in H. One
can easily see that its differential is given by

DLp =

 1 0 −y/2
0 1 x/2
0 0 1

 .

Proof. Easy when p = 0. Left translate for general p. �

Using this lemma we conclude that(
τDLpτ ·Dpψ(p · q−1), (DLpτ ·Xτ · (DLpτ )t)2×2

)
∈ J2,+(u, pτ )

and(
−τDLqτ ·Dqψ(p · q−1), (DLqτ · Yτ · (DLqτ )t)2×2

)
∈ J2,−(v, qτ ).

Our choice of ψ(p · q−1) implies that

DLpτ ·Dpψ(p · q−1) = −DLqτ ·Dqψ(p · q−1).

We call this common value ητ . Let ξ = (ξ1, ξ2) ∈ R2. Write

ξpτ = (ξ1, ξ2,
1
2
(ξ2xτ1 − ξ1y

τ
1 )),

where we have set pτ = (xτ1 , y
τ
1 , z

τ
1 ).

The vector ξpτ is chosen so that

((DLpτ )t)−1 ξpτ = (ξ1, ξ2, 0)

Similarly set

ξqτ = (ξ1, ξ2,
1
2
(ξ2xτ2 − ξ1y

τ
2 )),

where we have set qτ = (xτ2 , y
τ
2 , z

τ
2 ). It satisfies

((DLqτ )t)−1 ξqτ = (ξ1, ξ2, 0).
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Set
Xτ = (DLpτ ·Xτ · (DLpτ )t)2×2

and
Yτ = (DLqτ · Yτ · (DLqτ )t)2×2.

With these choices we have

〈Xτξ, ξ〉 − 〈Yτξ, ξ〉 =

= 〈Xτξpτ , ξpτ 〉 − 〈Yτξqτ , ξqτ 〉
5 〈C(ξpτ ⊕ ξqτ ), ξpτ ⊕ ξqτ 〉 =

= |ξ|2
(
xτ2y

τ
1 − xτ1y

τ
2

2
+ zτ1 − zτ2

)2

τ

5 o(1) |ξ|2. by (i).

�

Remark 2. Bieske [Bi] has considered more general functions ψ of the form

ψ(x, y, z) = x2n + y2n + z2m

Estimate (vi) in this case is more complicated. It takes the form

〈Xτξ, ξ〉 − Yτξ, ξ〉 5 2m2|ξ|2 τ(zτ1 − zτ2 +
1
2
(zτ2y

τ
1 − zτ1y

τ
1 ))−2+4m

5 2m2|ξ|2 τψ2− 1
m (pτ · q−1

τ )

5 2m2|ξ|2 (τψ(pτ · q−1
τ )) ψ1− 1

m (pτ · q−1
τ ).

This improvement is necessary to prove uniqueness for the subelliptic ∞-
Laplacian, [Bi].

2.6. Examples of Comparison Principles. We have included a couple
of examples where the comparison principle holds. As explained in [CIL],
once we have the subelliptic version of the maximum principle, many more
cases can be analyzed. See also [IL] for more examples.

2.7. Degenerate Elliptic Equations, Constant Coefficients.

Theorem 8. Let F be continuous and independent of p. Suppose that F
satisfies

∂F

∂u
≥ γ > 0,

F is decreasing in X , and

|F (u, η,X )− F (u, η,Y)| 5 w(X − Y),

where w → 0 as X − Y → 0. Let u be an upper semicontinuous subsolution
and v a lower semicontinuous supersolution of

F (u,Du, (D2
0u)

∗) = 0
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in a domain Ω such that

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y), x ∈ ∂Ω,

where both sides are not +∞ or −∞ simultaneously. Then

u(x) 5 v(x) for all x ∈ Ω.

Proof. Let us proceed by contradiction. Suppose that supΩ(u− v) > 0 and
apply the subelliptic maximum principle from §2.5. For τ large enough we
have:

0 < γ(u(pτ )− v(qτ )) ≤ F (u(pτ ), ητ ,Xτ )− F (v(qτ ), ητ ,Xτ )
+ F (v(qτ ), ητ ,Yτ )− F (v(qτ ), ητ ,Yτ )

5 F (v(qτ ), ητ ,Yτ )− F (v(qτ ), ητ ,Xτ )
5 F (v(qτ ), ητ ,Yτ )− F (v(qτ ), ητ ,Yτ +Rτ )

≤ w(Rτ ) → 0 as τ →∞,

where we have used the facts that u is a subsolution, that v is a supersolution,
the inequality

Xτ ≤ Yτ +Rτ ,

the fact that F is proper and the continuity of F .
�

2.8. Uniformly Elliptic Equations with no First Derivatives De-
pendence.

Theorem 9. Let F be continuous, proper, independent of η and satisfying

|F (p, u,X )− F (q, u,X )| 5 w(p, q),

where w(p, q) → 0 as q−1 · p → 0. Suppose that F uniformly elliptic in the
following sense. There exists a constant γ > 0 such that

F (p, u,X )− F (p, u,Y) 5 −γ trace (X − Y)

whenever X ≥ Y. Let u be an upper semicontinuous subsolution of

F (p, u, (D2
0u)

∗) = 0

in a domain Ω, v a lower semicontinuous supersolution, u 5 v on ∂Ω as in
2.7. Then

u(x) 5 v(x) for all x ∈ Ω.

Proof. Suppose this is not the case. Then supΩ (u − v) > 0. Let ϕ be a
non-negative smooth function such that

(D2
0ϕ)∗ < 0

everywhere in the bounded domain Ω (ϕ could be a quadratic polynomial).
Note that for δ > 0 small enough, the function u− vδ has an interior maxi-
mum, where vδ = v + δϕ.
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Claim. The function vδ is a strict supersolution of

F (p, u, (D2
0u)

∗) = 0.

Proof. Let ψ be a smooth test function touching vδ from below at p0

ψ(p0) = vδ(p0)

ψ(p) < vδ(p), p 6= p0.

Then ψ(p) − δϕ(p) is a smooth test function that touches v from below at
p0. Thus, we have

F (p0, ψ(p0)− δϕ(p0), (D2
0ψ)∗ − δ(D2

0ϕ)∗) ≥ 0,

which implies
F (p0, ψ(p0), (D2

0ψ)∗ − δ(D2
0ϕ)∗) ≥ 0.

Using the uniform ellipticity we get

F (p0, ψ(p0), (D2
0ψ)∗)− F (p0, ψ(p0), (D2

0ψ)∗−δ(D2
0ϕ)∗)

≥ γ trace (−δ(D2
0ϕ)∗(p0)).

We conclude that

F (p0, ψ(p0), (D2
0ψ)∗) ≥ δγ trace (−(D2

0ϕ)∗)(p0) > 0

thereby proving the claim. �

Apply the subelliptic maximum principle to u− vδ. Since F is increasing
in u:

0 < F (pτ , u(pτ ),Xτ )− F (pτ , vδ(qτ ),Xτ )
+F (qτ , v(qτ ),Xτ )− F (qτ , vδ(qτ ),Xτ )

5 0 + w(pτ , qτ ))

getting a contradiction for τ large enough. �

3. Lecture III: The Maximum Principle for Riemannian Vector
Fields

Consider a frame X = {X1, X2, . . . , Xn} in Rn consisting of n linearly
independent smooth vector fields. Write

Xi(x) =
n∑

i,j=1

aij(x)
∂

∂xj

for some smooth functions aij(x). Denote by A(x) the matrix whose (i, j)-
entry is aij(x). We always assume that det(A(x)) 6= 0 in Rn.

We need to write down an appropriate Taylor theorem. We will use
exponential coordinates as done in [NSW]. Fix a point p ∈ Rn and let
t = (t1, t2, . . . , tn) denote a vector close to zero. We define the exponential
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based at p of t, denoted by Θp(t), as follows: Let γ be the unique solution
to the system of ordinary differential equations

γ′(s) =
n∑
i=1

tiXi(γ(s))

satisfying the initial condition γ(0) = p. We set Θp(t) = γ(1) and note this
is defined in a a neighborhood of zero. In fact we have the following Calculus
lemma.

Lemma 3. Write Θp(t) =
(
Θ1
p(t),Θ

2
p(t), . . . ,Θ

n
p (t)

)
. Note that we can think

of Xi(x) as the i-th row of A(x). Similarly DΘk
p(0) is the k-th column of

A(p) so that
DΘp(0) = A(p).

For the second derivative we get

〈D2Θk
p(0)h, h〉 = 〈At(p)h,D(At(p)h)k〉

for all vectors h ∈ Rn.

In particular, the mapping t 7→ Θp(t) is a diffeomorphism taking a a
neighborhood of 0 into a neighborhood of p.

The gradient of a function u relative to the frame X is

DXu = (X1(u), X2(u), . . . , Xn(u)).

The second derivative matrix D2
Xu is an n × n - not necessarily symmetric

matrix with entries Xi(Xj(u)). We shall be interested in the quadratic
form determined by this matrix, which is the same as the quadratic form
determined by the symmetrized second derivative

(D2
Xu)

∗ =
1
2
(
D2

Xu+ (D2
Xu)

t
)
.

The Taylor expansion from [NSW] can be stated as follows:

Lemma 4. Let u be a smooth function in a neighborhood of p. We have:

u (Θp(t)) = u(p) + 〈DXu(p), t〉+
1
2
〈
(
D2

Xu(p)
)∗
t, t〉+ o(|t|2)

as t→ 0.

A natural question is how DXu and (D2
Xu)

∗ change if we change frames.
We could write down a long (and uninteresting) formula for the change
between two general frames. Here is how to go from the canonical frame
{ ∂
∂x1

, ∂
∂x2

, . . . ∂
∂xn

} to the frame X. The gradient relative to the canonical
frame is denoted ∇.

Lemma 5. For smooth functions u we have

DXu = A · ∇u
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and for all t ∈ Rn

〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉+

n∑
k=1

〈At· t,∇
(
At· t

)
k
〉 ∂u
∂xk

.

The Taylor series gives the following counterpart of theorem 1.

Lemma 6. Let u and v be smooth functions such that u− v has an interior
local maximum at p. Then we have

(3.1) DXu(p) = DXv(p)

and

(3.2)
(
D2

Xu(p)
)∗ ≤ (D2

Xv(p)
)∗
.

For the purposes of illustrations let us consider some examples:

Example 1. The canonical frame

This is just { ∂
∂x1

, ∂
∂x2

, . . . ∂
∂xn

}. The first and second derivatives are just the
usual ones and the exponential mapping is just addition

Θp(t) = p+ t.

Example 2. The Heisenberg group

The frame is given by the left invariant vector fields {X1, X2, X3}. For
p = (x, y, z) the matrix A is just

A(p) =

 1 0 −y/2
0 1 x/2
0 0 1

 .

A simple calculation shows that

〈At· t,D
(
At· t

)
k
〉 = 0

not only for k = 1 and k = 2 but also for k = 3. That is, although A is not
constant, we have that Lemma 5 simplifies to

(3.3) 〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉.

The exponential mapping is just the group multiplication

Θp(t) = p ·Θ0(t) = (x+ t1, y + t2, z + t3 + (1/2)(xt2 − yt1)).

From Lemma 5 we see that the additional simplification of (3.3) occurs
whenever D2Θk

p(0) = 0. This is true for all step 2 groups as it can be seen
from the Campbell-Hausdorff formula.

Example 3. The Engel group
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This is a step 3 group for which the analogue of (3.3) does not work. Denote
by p = (x, y, z, w) a point in R4. The frame is given by the vector fields:

X1 = ∂
∂x −

y
2
∂
∂z +

(−xy
12 − z

2

)
∂
∂w

X2 = ∂
∂y + x

2
∂
∂z + x2

12
∂
∂w

X3 = ∂
∂z + x

2
∂
∂w

X4 = ∂
∂w

So that the matrix A is

A =


1 0 −y

2
−xy
12 − z

2

0 1 x
2

x2

12
0 0 1 x

2
0 0 0 1


Let t = (t1, t2, t3, t4). Direct calculations shows that

〈At· t,D
(
At· t

)
1
〉 = 0

〈At· t,D
(
At· t

)
2
〉 = 0

〈At· t,D
(
At· t

)
3
〉 = 0

but for k = 4 we get

〈At· t,D
(
At· t

)
k
〉 =

x

3
t1t2 −

y

3
t21 +

1
2
t1t3.

Therefore, for a smooth function u we have

DXu = A ·Du
and for all t ∈ Rn

〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉+

(
x

3
t1t2 −

y

3
t21 +

1
2
t1t3

)
∂u

∂w
.

3.1. Jets. To define second order superjets of an upper-semicontinuous func-
tion u, let us consider smooth functions ϕ touching u from above a a point
p.

K2,+(u, p) =
{
ϕ ∈ C2in a neighborhood of p, ϕ(p) = u(p),

ϕ(q) ≥ u(q), q 6= p in a neighborhood of p
}

Each function ϕ ∈ K2,+(u, p) determines a pair (η,A) by

(3.4)
η =

(
X1ϕ(p), X2ϕ(p), . . . , Xnϕ(p)

)
Aij = 1

2

(
Xi(Xj(ϕ))(p) +Xj(Xi(ϕ))(p)

)
.

This representation clearly depends on the frame X. Using the Taylor the-
orem for ϕ and the fact that ϕ touches u from above at p we get

(3.5) u (Θp(t)) ≤ u(p) + 〈η, t〉+
1
2
〈At, t〉+ o(|t|2)
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We may also consider J2,+
X (u, p) defined as the collections of pairs (η,X)

such that (3.5) holds. Using the identification given by (3.4) it is clear that

K2,+(u, p) ⊂ J2,+
X (u, p).

In fact, we have equality. This is the analogue of the Crandall-Ishii Lemma
of [C].

Lemma 7.
K2,+(u, p) = J2,+

X (u, p).

Proof. Given a pair (η,X) ∈ J2,+
X (u, p) we must find a C2 function ϕ so that

(3.4) holds. Given any pair (ξ, Y ) the version of the lemma for the canonical
frame in [C] gives a C2 function ϕ touching u from above at p such that
Dϕ(p) = ξ and D2ϕ(p) = Y. Using Lemma 5 we get

DXϕ(p) = A(p) · ξ
and

〈
(
D2

Xϕ
)∗· t, t〉 = 〈A · Y · At· t, t〉+

n∑
k=1

〈At· t,D
(
At· t

)
k
〉ξk.

Thus, it suffices to solve for (ξ, Y ) the equations

η = A(p) · ξ
and

〈X · t, t〉 = 〈A · Y · At· t, t〉+
n∑
k=1

〈At· t,D
(
At· t

)
k
〉ξk.

�

Theorem 10. [BBM] The maximum principle for semicontinuous
functions: Let u be upper semi-continuous in a bounded domain Ω ⊂ Rn.
Let v be lower semi-continuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u− v has a positive
interior local maximum

sup
Ω

(u− v) > 0

then we have:
For τ > 0 we can find points pτ , qτ ∈ Rn such that

i)
lim
τ→∞

τ |pτ − qτ |2 = 0,

ii) there exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i))
and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

iii) there exist symmetric matrices Xτ ,Yτ and vectors η+
τ , η−τ so that
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iv)
(η+
τ ,Xτ ) ∈ J

2,+
X (u, pτ ),

v)
(η−τ ,Yτ ) ∈ J

2,−
X (v, qτ ),

vi)
η+
τ − η−τ = o(1)

and
vi)

Xτ 5 Yτ + o(1)
as τ →∞.

Proof. The idea of the proof as in the case of theorem 7 is to use the Eu-
clidean theorem to get the jets and then twist them into position. As in the
proof of theorem 7, for τ > 0 we get points pτ and qτ so that (i) and (ii)
hold. We apply now the Euclidean maximum principle for semicontin-
uous functions of Crandall-Ishii-Lions [CIL]. There exist n × n symmetric
matrices Xτ , Yτ so that

(τDp(ψ(pτ , qτ )), Xτ ) ∈ J
2,+
eucl. (u, pτ )

and
(−τDq(ψ(pτ , qτ )), Yτ ) ∈ J

2,−
eucl. (v, qτ )

with the property

(3.6) 〈Xτγ, γ〉 − 〈Yτχ, χ〉 5 〈Cγ ⊕ χ, γ ⊕ χ〉
where the vectors γ, χ ∈ Rn, and

C = τ(A2 +A)

and
A = D2

p,q(ψ(pτ , qτ ))
are 2n× 2n matrices.

Let us now twist the jets according to Lemma 5. Call ξ+τ = τDp(ψ(pτ , qτ ))
and ξ−τ = −τDq(ψ(pτ , qτ )). By our choice of ψ we get ξ+τ = ξ−τ . Set

η+
τ = A(pτ ) · ξ+τ

and
η−τ = A(qτ ) · ξ−τ .

We see that

|η+
τ − η−τ | = |A(pτ )− A(qτ )||ξ+τ |

≤ Cτ |pτ − qτ ||Dp(ψ(pτ , qτ ))|
≤ Cτψ(pτ , qτ )
= o(1),

where we have used the fact that |p− q||Dpψ(p, q)| ≤ Cψ(p, q), property (i)
and the smoothness, in the form of a Lispchitz condition, of A(p).
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The second order parts of the jets are given by

〈Xτ · t, t〉 = 〈A(pτ )XτAt(pτ )· t, t〉+
n∑
k=1

〈At(pτ )· t,D(At(p)· t)k[pτ ]〉(ξ+τ )k

and

〈Yτ · t, t〉 = 〈A(qτ )YτAt(qτ )· t, t〉+
n∑
k=1

〈At(qτ )· t,D(At(p)· t)k[qτ ]〉(ξ−τ )k.

In order to estimate their difference we write
〈Xτ · t, t〉 − 〈Yτ · t, t〉 = 〈XτAt(pτ )· t,At(pτ )· t〉 − 〈YτAt(qτ )· t,At(qτ )· t〉

+
∑n

k=1〈At(pτ )· t,D(At(p)· t)k[pτ ]〉(ξ+τ )k
−
∑n

k=1〈At(qτ )· t,D(At(p)· t)k[qτ ]〉(ξ−τ )k.

Using inequality 3.6, we get

〈Xτ · t, t〉 − 〈Yτ · t, t〉 ≤ 〈C (A(pτ )· t⊕ A(qτ )· t) ,A(pτ )· t⊕ A(qτ )· t〉
+τ
{∑n

k=1〈At(pτ )· t,D(At(p)· t)k[pτ ]〉 ∂ψ∂pk
(pτ , qτ )

}
−τ
{∑n

k=1〈At(qτ )· t,D(At(p)· t)k[qτ ]〉 ∂ψ∂pk
(pτ , qτ )

}
To estimate the first term in the right hand side we note that symmetries
of ψ give a block structure to D2

p,qψ so that we have

〈C(γ ⊕ δ), (γ ⊕ δ)〉 ≤ Cτ |γ − δ|2.
Replacing γ by A(pτ ) · t and δ by A(qτ ) · t, using the smoothness of A,
and property (i) we get that this first term is o(1). The second and third
term together are also o(1) since their difference is estimated by τ |pτ −
qτ ||Dpψ(pτ , qτ )|.

�

Once we have the maximum principle (Theorem 10) we get easily com-
parison theorems for viscosity solutions for fully nonlinear equations of the
general form

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0
where F is continuous and proper (increasing in u and decreasing in (D2

Xu(x))
∗).)

as it is done in [CIL]. Here is an example:

Corollary 1. Suppose F (p, z, η,X) satisfies

σ(r − s) ≤ F (p, r, η,X)− F (p, s, η,X),
|F (p, r, η,X)− F (q, r, η,X)| ≤ ω1(|p− q|),
|F (p, r, η,X)− F (p, r, η, Y )| ≤ ω2(|X − Y |) an
|F (p, r, η,X)− F (p, r, ξ,X)| ≤ ω3(|η − ξ|),

where the constant σ > 0 and the functions ωi : [0,∞) 7→ [0,∞) satisfy
ωi(0+) = 0 for i = 1, 2, 3. Let u be an upper-continuous viscosity solution
and v a lower semi-continuous viscosity supersolution to

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0
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in a domain Ω so that for all p ∈ ∂Ω we have

lim sup
q∈Ω,q→p

u(q) ≤ lim inf
q∈Ω,q→p

v(q)

and both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.

4. Lecture IV: The Maximum Principle in Carnot Groups

A Carnot group G of step r ≥ 1 is a simply connected nilpotent Lie group
whose Lie algebra g is stratified. This means that g admits a decomposition
as a vector space sum

g = g1 ⊕ g2 ⊕ · · · ⊕ gr

such that
[g1, gj ] = gj+1

for j = 1, . . . , r with gk = {0} for k > j. Note that g is generated as a Lie
algebra by g1.

Let mj = dim(gj) and choose a basis of gj formed by left-invariant vector
fields Xi,j , i = 1, . . . ,mj . The dimension of G as a manifold is m = m1 +
m2 + . . .+mr. The horizontal tangent space at a point p ∈ G is

Th(p) = linear span{X1,1(p), X2,1(p), . . . , Xm1,1(p)}.
As in the Heisenberg group case, we say that a piecewise smooth curve
t 7→ γ(t) is horizontal if γ′(t) ∈ Th(γ(t)) whenever γ′(t) exists. Given two
points p, q ∈ G denote by

Γ(p, q) = {horizontal curves joining p and q}.
Chow’s theorem states that Γ(p, q) 6= φ.

For convenience, fix an ambient Riemannian metric in G so that X =
{Xi,j}1≤mj ,j=1≤r is a left invariant orthonormal frame and

Riemannian vol. element = Haar measure of G = Lebesgue meas. in Rm.

The Carnot-Carathèodory metric is then defined by

dcc(p, q) = inf{length(γ) : γ ∈ Γ(p, q)}.
It depends only on the restriction of the ambient Riemannian metric to
the horizontal distribution generated by the horizontal tangent spaces. The
exponential mapping exp: g 7→ G is a global diffeomorphism.

A point p ∈ G has exponential coordinates (pi,j)1≤i≤mj ,1≤j≤r if

p = exp

 r∑
j=1

mj∑
i=1

pi,jXi,j

 .

Denoting by · the group operation in G, the mapping (p, q) 7→ p · q has
polynomial entries when written in exponential coordinates.
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The non-isotropic dilations are the group homorphisms given by

δt

 r∑
j=1

mj∑
i=1

pi,jXi,j

 =
r∑
j=1

mj∑
i=1

tjpi,jXi,j ,

where t > 0.
Recall that references for Carnot groups and Carnot-Carathéodory spaces

include: [B], [FS], [H], [G], [GN], and [Lu].

4.1. Calculus in G. Given a function u : G 7→ R we consider

DXu = (Xi,ju)1≤i≤mj ,1≤j≤r ∈ Rm,

the (full) gradient of u. As a vector field, this is written

DXu =
r∑
j=1

mj∑
i=1

(Xi,ju)Xi,j

The horizontal gradient of u is

D0u = (Xi,1u)1≤i≤m1 ∈ Rm1 ,

or as a vector field D0u =
∑m1

i=1(Xi,1u)Xi,1.

Theorem 11. Ball-Box Theorem:(See [B], [G], [NSW]) Set |p| = dcc(p, 0),
the Carnot-Carathéodory gauge and let

|p|G =

 r∑
j=1

(mj∑
i=1

|pi,j |2
) r!

j


1

2r!

be a smooth gauge. Then:

dcc(p, 0) ≈ |p|G ≈
r∑
j=1

mj∑
i=1

|pi,j |
1
j

and

Vol(B(0, r)) ≈ rQ,

where B(0, r) is the Carnot-Carathéodory ball centered at 0 of radius r and
Q =

∑r
j=1 jmj is the homogeneous dimension of G.

4.2. Taylor Formula. Suppose that u : G 7→ R is a smooth function. Let
us write down the Taylor expansion with respect to the frame X at p = 0.
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Write P =
∑r

j=1

∑mj

i=1 pi,jXi,j so that p = (pi,j) = exp(P ).

u(exp(P )) = u(0)

+
r∑
j=1

mj∑
i=1

(Xi,ju)(0)pi,j

+
1
2

∑
i,j,k,l

(Xk,lXi,ju)(0)pk,lpi,j


+ o

 r∑
j=1

mj∑
i=1

|pi,j |2


as p→ 0. We want to replace the quadratic norm in the error term by

|p|2G ≈
r∑
j=1

mj∑
i=1

|pi,j |
2
j .

For j ≥ 3 it is clear that pi,j = o(|pi,j |
2
j ) and for j, k ≥ 2 it is also clear that

pi,jpl,k = o(|pi,j |
2
j ). Throwing all these terms into the reminder we obtain

the subriemannian Taylor formula

u(exp(P )) = u(0)

+
2∑
j=1

mj∑
i=1

(Xi,ju)(0)pi,j

+
1
2

 m1∑
k,i=1

(Xk,1Xi,1u)(0)pk,1pi,1


+ o|p|2G

We already had defined the horizontal gradient of u as

D0u = (Xi,1u)1≤i≤m1 .

This is the part of the gradient corresponding to g1. It is clear from the
second order Taylor formula that the part corresponding to g2, which we
call second order horizontal gradient for lack of a better name,

D1u = (Xi,2u)1≤i≤m2

will also play a role in theory of second order subelliptic equations. We also
write

D2
0u = (Xi,1Xj,1u)m1

i,j=1

for the second order derivatives corresponding to g1 and (D2
0u)

∗ for its sym-
metric part 1

2(D2
0u+ (D2

0u)
t). With these notations the Taylor formula at 0
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reads

u(p) = u(0)

+ 〈D0u(0), p1〉+ 〈D1u(0), p2〉

+
1
2
〈(D2

0u(0))∗ · p1, p1〉

+ o|p|2G ,
where we have written p1 = (pi,1)1≤i≤m1 and p2 = (pi,2)1≤i≤m2 .

At another point p0, we get the horizontal Taylor formula by left-translation.

Lemma 8. If u : G 7→ R is a smooth function near p0 we have

u(p) = u(p0)+〈D0u(p0), (p−1
0 · p)1〉+ 〈D1u(p0), (p−1

0 · p)2〉

+
1
2
〈(D2

0u(p0))∗(p−1
0 · p)1, (p−1

0 · p)1〉+ o(|p−1
0 · p|2G)

as p→ p0.

We continue the development of the theory as we did in the Heisenberg
group case.

4.3. Subelliptic Jets. Let u be an upper-semicontinuous real function in
G. The second order superjet of u at p0 is defined as

J2,+(u, p0) =
{

(η, ξ,X ) ∈ Rm1 × Rm2 × Sm1(R) such that

u(p) 5 u(p0) + 〈η, (p−1
0 · p)1〉+ 〈ξ, (p−1

0 · p)2〉

+
1
2
〈X (p−1

0 · p)1, (p−1
0 · p)1〉+ o(|p−1

0 p|2G)
}

Similarly, for lower-semincontinuous v, we define the second order subjet

J2,−(v, p0) =
{

(η, ξ,Y) ∈ Rm1 × Rm2 × Sm1(R) such that

v(p) ≥ v(p0) + 〈η, (p−1
0 · p)1〉+ 〈ξ, (p−1

0 · p)2〉

+
1
2
〈Y(p−1

0 · p)1, (p−1
0 · p)1〉+ o(|p−1

0 p|2G)
}

As before, one way to get jets is by using smooth functions that touch u from
above or below. Let Γ2 denote the class of function φ such that D0φ,D1φ
and D2

0φ are continuous. We define

K2,+(u, p0) =
{

(D0ϕ(p0), D1ϕ(p0),(D2ϕ(p0))∗) : ϕ ∈ Γ2

ϕ(p0) = u(p0)

ϕ(p) ≥ u(p), p 6= p0 in a neighborhood of p0

}
.

The set K2,+(u, p0) is defined analogously.
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Lemma 9. (See [C] for the Euclidean case, [Bi] for the Heisenberg group
case, and [BM] for the Carnot case) We always have

K2,+(u, p0) = J2,+(u, p0)

and
K2,−(u, p0) = J2,−(u, p0)

We also define the closure of the second order superjet of an upper-
semicontinuous function u at p0, denoted by J̄2,+(u, p0), as the set of triples
(η, ξ,X ) ∈ Rm1 ×Rm2 ×S2(R) such that there exist sequences of points pm
and triples (ηm, ξmXm) ∈ J2,+(u, pm) such that

(pm, u(pm), ηm, ξm,Xm) → (p0, u(p0), η, ξ,X )

as m→∞. The closure of the second order subjet of a lower-semicontinuous
function v at p0, denoted by J̄2,−(u, p0) is defined in an analogous manner.

4.4. Fully Non-Linear Equations. Consider a continuous function

F :G × R× Rm1 × Rm2 × S(Rm1) −→ R
(p, u, η, ξ,X ) −→ F (p, u, η, ξ,X ).

We will always assume that F is proper; that is, F is increasing in u and F
is decreasing in X .

Definition 5. A lower semicontinuous function v is a viscosity supersolu-
tion of the equation

F (p, v(p), D0v(p), D1v(p), (D2v(p))∗) = 0

if whenever (η, ξ,Y) ∈ J2,−(v, p0) we have

F (p0, v(p0), η, ξ,Y) ≥ 0.

Equivalently, if ϕ touches v from below and is in Γ2, then we must have

F (p0, v(p0), D0ϕ(p0), D1ϕ(p0), (D2ϕ(p0))∗) ≥ 0.

Definition 6. An upper semicontinuous function u is a viscosity subsolution
of the equation

F (p, v(p), D0v(p), D0v(p), (D2v(p))∗) = 0

if whenever (η, ξ,X ) ∈ J2,+(u, p0) we have

F (p0, u(p0), η, ξ,X ) ≤ 0.

Equivalently, if ϕ touches u from above, is in Γ2, then we must have

F (p0, u(p0), D0ϕ(p0), D0ϕ(p0), (D2ϕ(p0))∗) 5 0.
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Note that if u is a viscosity subsolution and (η, ξ,X ) ∈ J̄2,+(u, p0) then, by
the continuity of F , we still have

F (p0, u(p0), η, ξ,X ) ≤ 0.

A similar remark applies to viscosity supersolutions and the closure of second
order subjets.

A viscosity solution is defined as being both a viscosity subsolution and
a viscosity supersolution. Observe that since F is proper, it follows easily
that if u is a smooth classical solution then u is a viscosity solution.

Examples of F :

• Subelliptic Laplace equation (the Hörmander-Kohn operator):

−∆0u = −

 ∑
1≤j≤m1

Xj,1Xj,1u

 = 0

• Subelliptic ∞-Laplace equation:

−∆0,∞u = −

 m1∑
i,j=1

(X1,iu)(X1,ju)X1,iX1,ju

 = −〈(D2
0u)

∗D0u,D0u〉

• Subelliptic p-Laplace equation, 2 ≤ p <∞:

−∆pu = −
[
|D0u|p−2∆0u+ (p− 2)|D0u|p−4∆0,∞u

]
= −div (|D0u|p−2D0u) = 0

Strictly speaking we need p ≥ 2 for the continuity of the corresponding
F . In the Euclidean case it is possible to extend the definition to the full
range p > 1. This is a non-trivial matter not yet studied in the case of
the Heisenberg group (to the best of my knowledge.) See [JLM] for the
Euclidean case.
• “Naive” subelliptic Monge-Ampère

−det(D2
0u)

∗ = f

Here the corresponding F (X ) = −detX is only proper in the cone of positive
semidefinite matrices.

The next step is to generalize to semi-continuous functions the “maximum
principle” for smooth functions easily obtained from the subelliptic Taylor
formula. If u, v ∈ Γ2(Ω) and u− v has a local maximum at p ∈ Ω, we have

D0u(p) = D0v(p),

D1u(p) = D1v(p),

and
(D2

0u(p))
∗ 5 (D2

0v(p))
∗
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Theorem 12. The maximum principle for semicontinuous func-
tions: Let u be upper semi-continuous in a bounded domain Ω ⊂ G. Let v
be lower semi-continuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u− v has a positive
interior local maximum

sup
Ω

(u− v) > 0

then we have:
For τ > 0 we can find points pτ , qτ ∈ G such that

i)
lim
τ→∞

τ |pτ − qτ |2 = 0,

ii) there exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i))
and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

iii) there exist m1 ×m1 symmetric matrices Xτ ,Yτ and vectors η+
τ , ξ+τ ,

η−τ and ξ−τ so that
iv)

(η+
τ , ξ

+
τ ,Xτ ) ∈ J

2,+(u, pτ ),
v)

(η−τ , ξ
−
τ ,Yτ ) ∈ J

2,−(v, qτ ),
vi)

η+
τ − η−τ = o(1),
ξ+τ − ξ−τ = o(1)

and
vi)

Xτ 5 Yτ + o(1)
as τ →∞.

Proof. Let us apply Theorem 10 to the Carnot group G endowed with the
left-invariant frame X. We get riemannian jets

(β+
τ , Xτ ) ∈ J

2,+
X (u, pτ )

and
(β−τ , Yτ ) ∈ J

2,−
X (v, qτ ),

satisfying
β+
τ − β−τ = o(1)

and
Xτ ≤ Yτ + o(1).

All we need to check is that by keeping the parts of β+
τ and β−τ in g1 ⊕ g2

and restricting Xτ and Yτ to g1 we get subelliptic jets.



32 JUAN J. MANFREDI

The following lemma follows from the Taylor theorem arguing as in section
4.2 regarding higher order derivatives as part of the error term.

Lemma 10. Subelliptic jets from Riemannian jets: Let (β,X) ∈
J2,+

X (u, p) be a second order superjet. Then, we have

(β1, β2, Xm1×m1) ∈ J2,+(u, p)

�

4.5. Absolutely Minimizing Lipschitz Extensions. Let Ω ⊂ Rn be a
domain. Consider m linearly independent vector fields

{X1, X2, . . . , Xm},

where m ≤ n. If there is an integer r ≥ 1 such that at any point x ∈ Ω, the
linear span of {X1, X2, . . . , Xm} and all their commutators up to order r has
dimension n, the systems of vector fields {X1, X2, . . . , Xm} is said to satisfy
Hörmander’s condition. In [Ho] Hörmander proved that if this condition is
satisfied the second order operator X2

1 +X2
2 + . . .+X2

m is hypoelliptic.
The control distance associated to {X1, X2, . . . , Xm} is defined using hor-

izontal curves as we did in Section §4. This control distance is a genuine
metric by the corresponding version of Chow’s theorem, see [NSW] and [B],
and it satisfies

1
cK
|x− y| ≤ dcc(x, y) ≤ cK |x− y|

1
r

for some constant cK > 0 for x, y ∈ K compact subset of Ω.
For a function u : Ω → R the horizontal gradient of u is

Xu = (X1u,X2u, . . . ,Xmu).

The Sobolev space HW 1,p(Ω), 1 ≤ p ≤ ∞, consists of functions u ∈ Lp(Ω)
whose distributional horizontal gradient is also in Lp(Ω). Endowed with the
norm

‖u‖p + ‖Xu‖p
the space HW 1,p(Ω) is a Banach space. As it is the case in the Euclidean
case, Lipschitz functions in a bounded domain Ω with respect to the Carnot-
Carathèodory metric dcc are precisely functions isHW 1,∞(Ω). See [FSS] and
[GN].

Definition 7. A function u ∈ HW 1,∞(Ω) is an absolute minimizing Lips-
chitz extension (AMLE) if whenever D ⊂ Ω is open, v ∈ HW 1,∞(D) and
u = v on ∂D we have

‖Xu‖L∞(D) ≤ ‖Xv‖L∞(D).

Given any Lipschitz function f : ∂Ω → R it can always be extended to
an AMLE in Ω. This existence result holds in very general metric spaces as
shown by Juutinen [Ju2].
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Jensen proved in [J2] that AMLE in Euclidean space are viscosity solu-
tions of the ∞-Laplace equation

n∑
i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
= 0,

and also proved a uniqueness theorem for solutions of the Dirichlet problem.
As a corollary, he therefore obtained that AMLEs are determined by their
boundary values.

For general Carnot groups Bieske and Capogna [BC] proved that AMLEs
are viscosity solutions of the corresponding ∞-Laplace equation

(4.1) ∆∞,0u =
m∑

i,j=1

XiuXiuXiXju = 0.

Changyou Wang has recently extended Bieske and Capogna theorem to
general Hörmander vector fields:

Theorem 13. [W1] Let {X1, X2, . . . , Xm} be system of Hörmander vector
fields and let u be an AMLE. Then u is a viscosity solution of the equation
4.1.

The natural question to consider is now the uniqueness of viscosity solu-
tions of 4.1. This was proven by Bieske [Bi] in the case of the Heisenberg
group by using the extension of the maximum principle mentioned in Re-
mark 2 of Section 2. Bieske has also considered the Grušin plane case in
[Bi2], [Bi3]. The case of general Carnot group has recently being settled by
Changyou Wang [W1], who introduced subelliptic sup-convolutions. To the
best of my knowledge, the case of general Hörmander vector fields is open.

5. Lecture V: Convex functions on Carnot groups

Let us recall the definition of convexity in the viscosity sense:

Definition 8. Let Ω ⊂ G be an open set and u : Ω → R be an upper-
semicontinuous function. We say that u is convex in Ω if

(D2
0u)

∗ ≥ 0

in the viscosity sense. That is, if p ∈ Ω and φ ∈ C2 touches u from above
at p (φ(p) = u(p) and φ(q) ≥ u(q) for q near p) we have (D2

0φ)∗(p) ≥ 0.

This definition is compatible with the stratified group structure since
convexity is preserved by left-translations and by dilations. Also, uniform
limits of convex functions are convex and the supremum of a family of convex
functions is convex, since these results hold for viscosity subsolutions in
general.

Note that we require the a-priori assumption of upper-semicontinuity as
it is done in the definition of sub-harmonic functions. This is not needed
when horizontally convex functions are considered. These are defined by
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requiring that whenever p ∈ Ω and the horizontal vector h ∈ G1 are such
that {p · δt(h) : t ∈ (−1, 1)} ⊂ Ω the function of one real variable

(5.1) t 7→ u(p · δt(h))
is convex for −1 < t < 1. A development of the theory based on the notion
of horizontal convexity can be found in [DGN].

It was established in [LMS] that upper-semicontinuous horizontally con-
vex functions are indeed convex in the sense of Definition 8. In this section
we will show that the reciprocal is also true (see Theorem 15 below.) This
equivalence has also been established independently by Wang [W2] and Mag-
nani [M].

In the Heisenberg group Balogh and Rickley [BR] proved that condition
(5.1) by itself, without requiring upper-semicontinuity, suffices to guarantee
that u is continuous - and therefore Lipschitz continuous - and also showed
that horizontally convex functions are convex in the sense of Definition 8.

5.1. Convexity in the Viscosity Sense in Rn. In order to illustrate our
approach in the case of general Carnot groups, we present here the Euclidean
version of Theorem 15 below.

Theorem 14. Let Ω ⊂ Rn be an open set and u : Ω → R be an upper-
semicontinuous function. The following statements are equivalent:

i) whenever x, y ∈ Ω and the segment joining x and y is also in Ω we
have

(5.2) u(λx+ (1− λ)y) ≤ λu(x) + (1− λ)u(y)

for all 0 ≤ λ ≤ 1.
ii) u is a viscosity subsolution of all equations

F (x, u(x), Du(x), D2u(x)) = 0,

where F (x, z, p,M) is a continuous function in Ω × R × Rn × Sn
satisfying the conditions in Section 4.4 and homogeneous; that is
F (x, z, p, 0) = 0.

iii) u is a viscosity subsolution of all linear equations with constant co-
efficients

F (x, u,Du,D2u) = − trace
(
A ·D2u

)
= 0,

where A ∈ Sn is positive definite.
iv) x→ u(Ax) is subharmonic for all A ∈ Sn positive definite;
v) u satisfies the inequality

D2u ≥ 0

in the viscosity sense;
vi) u satisfies − trace(A ·D2u) ≤ 0 in the sense of distributions for all

A ∈ Sn positive definite.
A function u is convex if one of the above equivalent statements holds.



NONLINEAR SUBELLIPTIC EQUATIONS 35

Proof. For the equivalence between i), ii), iii), and v) we refer to [LMS]. The
equivalence between vi) and iii) for any given matrix A is part of viscosity
folklore. This is just the simplest case of the theory of Hessian measures
of Trudinger and Wang [TW1]. To prove the equivalence between iv) and
iii) observe that x → u(Ax) is subharmonic for all A > 0 if and only if
trace(A · D2u(x)At) ≥ 0 in the sense of distributions for all A > 0. This
occurs precisely when trace(At ·A ·D2u(x)) ≥ 0 in the sense of distribution
for all A > 0. Since every positive definite matrix B has a positive definite
square root B = A2 = At ·A, we see that x→ u(Ax) is subharmonic for all
A > 0 if and only if trace(B ·D2u(x)) ≥ 0 in the sense of distribution for all
B > 0. �

5.2. Convexity in Carnot Groups. A key observation is that the notion
of convexity depends only on the horizontal distribution and not on the
particular choice of a basis of g1. More precisely, let us consider two linearly
independent horizontal frames

Xh = {X1, . . . , Xm1}, Yh = {Y1, . . . , Ym1}
and write Xi =

∑m1
j=1 aijYj , for some constants aij . Let A be the matrix

with entries aij . The matrix A is not singular and the following formula
holds for any smooth function φ

(D2
0,Xφ(p))∗ = A(D2

0,Yφ(p))∗At.

Thus the matrix (D2
h,Xφ(p))∗ is positive definite if and only if (D2

h,Yφ(p))∗

is positive definite.
Given a frame X we denote by

∆Xu =
m1∑
i=1

X2
i u

the corresponding Hörmander-Kohn Laplacian.
The main result of this lecture is the analogue to Theorem 14.

Theorem 15. Let Ω ⊂ G be an open set and u : Ω → R be an upper-
semicontinuous function. The following statements are equivalent:

i) whenever p ∈ Ω and h ∈ G1 are such that {p ·δt(h) : t ∈ (−1, 1)} ⊂ Ω
the function of one real variable

t 7→ u(p · δt(h))
is convex for −1 < t < 1.

ii) u is a viscosity subsolution of all equations

F (p, u(p), D0u(p), (D2
0u(p))

∗) = 0,

where F (x, z, p,M) is proper and homogeneous.
iii) u is a viscosity subsolution of all linear equations with constant co-

efficients

F (p, u,D0u, (D2
0u)

∗) = − trace
(
A · (D2

0u
)∗) = 0,
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where A ∈ Sm1 is positive definite.
iv) u satisfies the inequality −∆Yu ≤ 0 in the viscosity sense for all

frames Y such that Yh = AXh, where A ∈ Sm1 is positive definite.
v) u satisfies the inequality

(D2
0u)

∗ ≥ 0

in the viscosity sense.
vi) u satisfies − trace(A · (D2

0u)
∗) ≤ 0 in the sense of distributions for

all A ∈ Sm1 positive definite.

A few remarks are in order. Condition i) is called horizontal convexity in
[LMS] and H-convexity in [DGN]. Note that iv) is indeed the analogue of
iv) in Theorem 14. Condition v) is called v-convexity in [LMS] and in [W2].

The equivalence of the four viscosity related conditions ii), iii), iv), and v)
follows easily from elementary linear algebra facts as in theorem 14. More-
over if one of these conditions holds, then u is locally bounded. This is the
case because u is always a subsolution of the corresponding∞-Laplacian (see
5.3 below). The details in the case of the Heisenberg group are contained in
the proof of Lemma 3.1 in [LMS].

To show that iv) implies vi) we may do it one matrix A ∈ Sm1 at a
time. Thus, we may assume that A is the identity matrix. If u is a bounded
viscosity subsolution of the Hörmander-Kohn Laplacian, it follows using the
same proofs as in Lemma 2.2 and Lemma 2.3 from [LMS] that u is weak-
subsolution with first horizontal derivatives locally square integrable. If u
is not bounded below, we use the truncation uM (x) = max{−M,u(x)} and
standard limit theorems (see [TW2].)

To prove the equivalence of (i) with the other conditions we need to estab-
lish that convex functions can be approximated by smooth convex functions.
Note that this is relatively easy to do for horizontally convex functions since
the inequality (5.1) is preserved by convolution with a smooth mollifier (see
the proof of Theorem 4.2 in [LMS].) Fortunately, Bonfiglioli and Lanconelli
[BL] have characterized subharmonic functions by a sub-mean value prop-
erty and proved that subharmonic functions can be approximated by smooth
subharmonic functions. Moreover these approximations are frame indepen-
dent. If follows from these results that vi) implies iv) since the implication
holds for smooth functions, and viscosity subsolutions are preserved by lo-
cally uniform limits. The complete details are in [JLMS].

5.3. Regularity of Convex Functions. Convex functions are subsolu-
tions of all homogeneous ellliptic equations. In particular we consider the
Hörmander-Kohn Laplace equation

−∆hu = −(X2
1u+ · · ·X2

mu) = 0,

and the subelliptic ∞-Laplace equation

(5.3) −∆∞,hu = −
m∑

i,j=1

(Xiu)(Xju)(XiXju) = 0.
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These equations can certainly be written in the form

F (p, u(p), D0u(p), (D2
0u)

∗(p)) = 0.

The proof that a convex function u is bounded is done in two steps. To
control u+ we use the subelliptic version of the De Giorgi-Moser estimate
for subsolutions of linear elliptic equations

sup
BR

(u+) ≤ C −
∫
B4R

u+ dx.

To control u− we use comparison with cones defined using ∞-harmonic
functions. The details are in [LMS].

To prove that a convex funtion is Lipschitz, the key ingredient is that sub-
solutions of (5.3) are Lipschtiz continuous. This was established by Jensen
[J2] in the Euclidean case and Bieske [B] for the Heisenberg group. The case
of general Carnot groups follows from Wang [W1].

We collect these results in the following:

Theorem 16. Let Ω ⊂ G be an open set and u : Ω → R be a convex function.
Let BR be a ball such that B4R ⊂ Ω. Then u is locally bounded and we have.

(5.4) ‖u‖L∞(BR) ≤ C −
∫
B4R

|u| dx.

Moreover, u is locally Lipschitz and we have the bound

(5.5) ‖Dhu‖L∞(BR) ≤
C

R
‖u‖L∞(B2R).

Here C is a constant independent of u and R. If, in addition, u is C2, then
the symmetrized horizontal second derivatives are nonnegative

(5.6) (D2
hu)

∗ ≥ 0.

A different proof of this theorem for horizontally convex functions is in
[DGN].

6. Lecture VI: Subelliptic Cordes Estimates

The goal of this lecture is to present some estimates of Cordes type for
linear subelliptic partial differential operators in non-divergence form with
measurable coefficients in the Heisenberg group, including the linearized p-
Laplacian. The following regularity theorems follow from these techniques.

Theorem 17. Let
√

17−1
2 ≤ p < 5+

√
5

2 . Then any p-harmonic function in
the Heisenberg group H initially in HW 1,p

loc is in HW 2,2
loc .

Theorem 18. Given 0 < α < 1 there exists ε = ε(α) such for |p − 2| < ε,
p-harmonic functions in the Heisenberg group H have horizontal derivatives
that are Hölder continuous with exponent α.
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The results from this section are basend on the work of Marchi [Ma, Ma2]
extended by Domokos [D1], which give non-uniform bounds of the HW 2,2

(or HW 2,p) norm of approximate p-harmonic functions. Using the Cordes
condition [Co, T] and Strichartz’s spectral analysis [S] we establish HW 2,2

estimates for linear subelliptic partial differential operators with measurable
coefficients.

Let Ω ⊂ H be a domain in the Heisenberg group. Consider the following
Sobolev space with respect to the horizontal vector fields Xi as

HW 2,2(Ω) = {u ∈ L2(Ω) : XiXju ∈ L2(Ω) , for all i, j ∈ {1, 2}}

endowed with the inner-product

(u, v)HW 2,2(Ω) =
∫

Ω

(
u(x)v(x) +

2∑
i,j=1

XiXju(x) ·XiXjv(x)
)
dx .

HW 2,2(Ω) is a Hilbert space and let HW 2,2
0 (Ω) be the closure of C∞0 (Ω) in

this Hilbert space.
Recall that X 2u is the matrix of second order horizontal derivatives whose

entries are (X 2u)ij = Xj(Xiu), and ∆0u =
∑2

i=1XiXiu is the subelliptic
Laplacian associated to the horizontal vector fields Xi. The first step in
proving Cordes estimates is to control the L2-norm of all the second deriva-
tives by the L2-norm of the sublaplacian. For the symmetric part of the
second derivative, this follows easily by integration by parts but to con-
trol Tu we need a more refined argument based on Strichartz [S] spectral
analysis.

Lemma 11. For all u ∈ HW 2,2
0 (Ω) we have

‖X 2u‖L2(Ω) ≤
√

3 ‖∆0u‖L2(Ω).

The constant
√

3 is sharp when Ω = H.

Proof. Since −∆H and iT commute they share the same system of eigenvec-
tors. Strichartz [S] computed them explicitly as well as the corresponding
eigenvalues. Computing L2-norms is now a matter of adding eigenvalues.
Details can be found in [DM].

�

6.1. Cordes conditions. Let us consider now

Au =
2∑

i,j=1

aij(x)XiXju

where the functions aij ∈ L∞(Ω). Let us denote by A = (aij) the 2 × 2
matrix of coefficients.
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Definition 9. [Co, T] We say that A satisfies the Cordes condition Kε,σ if
there exists ε ∈ (0, 1] and σ > 0 such that

(6.1) 0 <
1
σ
≤

2∑
i,j=1

a2
ij(x) ≤

1
1 + ε

(
2∑
i=1

aii(x)

)2

, a.e. x ∈ Ω .

Theorem 19. Let 0 < ε ≤ 1, σ > 0 such that γ =
√

3
√

1− ε < 1 and A
satisfies the Cordes condition Kε,σ. Then for all u ∈ HW 2,2

0 (Ω) we have

(6.2) ‖X2u‖L2 ≤
√

3
1

1− γ
‖α‖L∞‖Au‖L2 ,

where

α(x) =
〈A(x), I〉
‖A(x)‖2

.

Proof. This is just Linear Algebra. See [DM] for the details. �

6.2. HW 2,2-interior regularity for p-harmonic functions in H. Let
Ω ⊂ H be a domain, h ∈ HW 1,p(Ω) and p > 1. Consider the problem of
minimizing the functional

Φ(u) =
∫

Ω
|Xu(x)|p dx

over all u ∈ HW 1,p(Ω) such that u − h ∈ HW 1,p
0 (Ω). The Euler equation

for this problem is the p-Laplace equation

(6.3)
2∑
i=1

Xi

(
|Xu|p−2Xiu

)
= 0 , in Ω .

A function u ∈ HW 1,p(Ω) is called a weak solution of (6.3) if

(6.4)
2∑
i=1

∫
Ω
|Xu(x)|p−2Xiu(x) ·Xiϕ(x)dx = 0 , for all ϕ ∈ HW 1,p

0 (Ω) .

Φ is a convex functional on HW 1,p, therefore weak solutions are minimiz-
ers for Φ. For m ∈ N define the approximating problems of minimizing
functionals

Φm(u) =
∫

Ω

(
1
m

+ |Xu(x)|2
) p

2

and the corresponding Euler equations

(6.5)
2∑
i=1

Xi

((
1
m

+ |Xu|2
) p−2

2

Xiu

)
= 0 , in Ω .

The differentiated version of this equation has the form

(6.6)
2∑

i,j=1

amij XiXju = 0 , in Ω
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where

amij (x) = δij + (p− 2)
Xiu(x)Xju(x)
1
m + |Xu(x)|2

.

Consider a weak solution um ∈ HW 1,p(Ω) of equation (6.5). Then coef-
ficients amij are bounded. Define the mapping Lm : HW 2,2

0 (Ω) → L2(Ω)
by

(6.7) Lm(v)(x) =
2∑

i,j=1

amij (x)XiXjv(x) .

The Cordes condition is satisfied precisely when

p− 2 ∈

(
1−

√
5

2
,

1 +
√

5
2

)
independently of m.

Theorem 20. The case p > 2: For 2 ≤ p < 2 + 1+
√

5
2 if u ∈W 1,p(Ω) is a

minimizer for the functional Φ, then u ∈ HW 2,2
loc (Ω).

Proof. The case p = 2 it is well known, so let us suppose p 6= 2. Let
u ∈ HW 1,p(Ω) be a minimizer for Φ. Consider x0 ∈ Ω and r > 0 such that
B4r = B(x0, 4r) ⊂⊂ Ω. Choose a cut-off function η ∈ C∞0 (B2r) such that
η = 1 on Br. Also consider minimizers um for Φm on HW 1,p(B2r) subject
to um − u ∈ HW 1,p

0 (B2r). Then um → u in HW 1,p(B2r) as m→∞.
By [D1, Ma] for 2 ≤ p < 4 we have um ∈ HW 2,2

loc (Ω), but with bounds
depending on m. Also that um satisfies equation Lm(um) = 0 a.e. in B2r.
So, in B2r we have a.e.

XiXj(η2um) = XiXj(η2)um +Xj(η2)Xium +Xi(η2)Xjum + η2XiXjum

and hence

Lm(η2um) = um Lm(η2) +
2∑

i,j=1

amij (x)
(
Xj(η2)Xium +Xi(η2)Xjum

)
.

From the Cordes estimate it follows that

‖X 2um‖L2(Br) ≤ ‖X 2(η2um)‖L2(B2r) ≤ c‖Lm(η2um)‖L2(B2r)

≤ c‖um‖W 1,p(B2r) ≤ c‖u‖HW 1,p(B2r)

where c is independent of m. Therefore, u ∈ HW 2,2(Br). �

For p < 2 a different argument is needed since we only get u ∈ HW 2,p
loc (Ω).

We finish by quoting the result obtained in [DM]:

Theorem 21. The case p < 2: For the range
√

17−1
2 ≤ p ≤ 2 if u ∈

HW 1,p(Ω) is a minimizer for the functional Φ, then u ∈W 2,2
loc (Ω).
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Vol. 8(3), 1992, pp. 367–439.

[Lu2] G. Lu, Polynomials, higher order Sobolev extension theorems and interpolation
inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math.
Sinica, English Series, 16(2000), 405-444.

[LMS] Lu, G., Manfredi, J., and Stroffolini, B., Convex functions on the Heisenberg
group, Calc. Var. Partial Differential Equations 19 (2004), no. 1, 1–22.

[M] Magnani, V. Lipschitz continuity, Aleksandrov theorem and characterizations
for H-convex functions, preprint.

[Ma] S. Marchi, C1,α local regularity for the solutions of the p-Laplacian on the Heisen-

berg group for 2 ≤ p ≤ 1+
√

5, Journal for Analysis and its Applications 20(2001),
617-636. See Erratum, to appear.

[Ma2] S. Marchi, C1,α local regularity for the solutions of the p-Laplacian on the Heisen-
berg group. The case 1+ 1√

5
< p ≤ 2 , Comment. Math. Univ. Carolinae 44(2003),

33-56. See Erratum, to appear.



NONLINEAR SUBELLIPTIC EQUATIONS 43

[MSc] Monti, R. and Serra Cassano, F., Surface measures in Carnot-Carathéodory
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