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Abstract. We apply subelliptic Cordes conditions and Talenti-Pucci
type inequalities to prove W 2,2 and C1,α regularities for p-harmonic
functions in the Grušin plane.

1. Introduction

The purpose of this paper is to prove interior regularity results for subel-
liptic p-harmonic functions in the case of the so-called Grušin vector fields
X1 = ∂

∂x and X2 = x ∂
∂t . Subelliptic p-harmonic functions are weak solutions

of the corresponding p-Laplace equation

(1) −∆p
X u = −X1

(
|Xu|p−2 X1u

)
−X2

(
|Xu|p−2 X2u

)
= 0 , in Ω .

Our goal is to obtain new Talenti-Pucci type inequalities (see Remark 3.2
and Theorem 3.4) and use them to obtain regularity for the weak solution
of the quasilinear equation (1). For example, we show that the following
sharp inequality holds:

(2)
∫∫

R2

(∂u

∂t

)2
dxdt ≤

∫∫
R2

(∂2u

∂x2
+ x2 ∂2u

∂t2

)2
dxdt , for all u ∈ C∞

0 (R2) .

When p = 2 the corresponding subelliptic Laplacian ∆X is hypoelliptic;
in particular u is a C∞ function on any open subset of Ω where ∆Xu is.
In [14] Hörmander proved this regularity result in the case of an arbitrary
number of vector fields satisfying the bracket generating (or Hörmander
type) condition. Another approach, valid in Rn for a system of Hörmander
type vector fields, can be found in the paper of Rothschild and Stein ([20])
where they apply a lifting process to the vector fields to get a new system of
free vector fields. This new system can be approximated by a system of left
invariant vector fields from the Lie algebra of a nilpotent Lie group. It is
then possible to use the results of Folland [9, 10] to get a parametrix for the
lifted subelliptic Laplacian, which inverts it modulo a smoothing operator.
Then a projection reverts the lifting process to obtain a parametrix for the
initial Laplacian.

Unfortunately, this process does not seem to work for the nonlinear case.
Thus, we are forced to try a direct approach to the regularity problem
obtained by the lifting method.

We briefly describe the content of the paper. In the second section we
introduce the lifting process and the approximation theorem by Rothschild
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and Stein about a system of Hörmander vector fields. In the third section we
prove the Talenti-Pucci type inequality for functions from the space W 2,p

0 (Ω).
In the fourth section we get a regularity result for solutions of a linear
equation in non-divergence form with measurable coefficients satisfying the
Cordes condition. In the fifth and sixth sections we obtain W 2,2 and C1,α

for the subelliptic p-Laplacian.

2. Carnot-Carathéodory metric spaces in Rn

Let us consider a system X = {X1, X2, · · · , Xq} of C∞ vector fields de-
fined in Rn, q ≤ n.

Definition 2.1 (Hörmander condition). We say that the system X satisfies
the Hörmander condition of step m at the point x0 ∈ Rn, if the vector fields
Xi together with their commutators of length at most m span Rn at x0.

Given the system X of vector fields we define a distance, which is usually
called the Carnot–Carathéodory distance, in Rn as follows.

An absolute continuous curve γ : [0, T ] → Rn is said to be X-subunitary
if there exists a measurable vector function h = (h1, . . . , hq) : [0, T ] → Rq

such that γ̇(t) =
∑q

i=1 hi(t)Xi(γ(t)) for a.e. t ∈ [0, T ] and ‖h‖∞ ≤ 1. It is
well known (see [4]) that, if the vector fields satisfy the Hörmander condition
in every point of Rn, the set of X-subunitary curves connecting two given
points x, y in Rn is not empty.

Definition 2.2. For x, y ∈ Rn we set the Carnot–Carathéodory distance
between x and y as

d(x, y) = inf
{

T ≥ 0 : ∃ an X-subunitary curve γ : [0, T ] → Rn,

such that γ(0) = x and γ(T ) = y
}

.

For x ∈ Rn and R > 0, we denote by

BR(x) = B(x, R) = {y ∈ Rn : d(x, y) < R}

the Carnot–Carathéodory metric ball centered at x with radius R. Next we
set |BR(x)| to be the Lebesgue measure of the ball.

Denote by Y1, ..., Yl the collection of Xj and of those commutators which
are needed to span Rn. For any i = 1, ..., l we denote by deg(Yi) the order of
the commutator Yi. If I = (i1, ..., in), 1 ≤ ij ≤ l, is a n-tuple of integers we
call d(I) =

∑n
j=1 deg(Yij ) and aI = det(Yi1 , ..., Yin). For a bounded E ⊂ Rn

we set Q = sup{d(I) : |aI(x)| 6= 0, x ∈ E}. The number Q is called the
local homogeneous dimension of E. The following result is a consequence of
a theorem due to Nagel, Stein and Wainger (see [18]).

Theorem 2.1. For any bounded E ⊂ Ω there exists a constant R0, depend-
ing on the system X of vector fields and E, such that for all x ∈ E and
R < R0 it results

|B2R(x)| ≤ 2Q|BR(x)| .

By the Rothschild-Stein Lifting Theorem (stated below) the vector fields
X1, X2, · · · , Xq satisfying the Hörmander condition, can be lifted to some
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new free vector fields X̃1, X̃2, · · · X̃q on RN , N > n, by adding extra vari-
ables. This means that, regarding the new set of vector fields, the only
relations between the commutators of order less than or equal to m are the
antisymmetric relation and the Jacobi identity.

Definition 2.3. We say that the vector fields X1, X2, · · · , Xq in Rn, which
satisfy the Hörmander condition of step m at some point x0, are free up to
order m at x0 if n is the dimension of the free Lie algebra g(q, m) of step m
on q generators.

Theorem 2.2 (Rothschild-Stein). Let X1, X2, · · · , Xq be C∞ vector fields
satisfying the Hörmander condition of step m at some point x0 ∈ Rn. Then
in terms of new variables tn+1, tn+2, · · · , tN , there exist smooth functions
λil(x, t) defined in a neighborhood Ũ of ξ0 = (x0, 0) ∈ RN such that the
vector fields X̃i given by

X̃i = Xi +
N∑

l=n+1

λil(x, t)
∂

∂tl
, i = 1, 2, · · · , q,

satisfy Hörmander condition of step m and are free up to step m at every
point in Ũ .

Next we define a local system of coordinates around a point ξ ∈ RN . Let
{X̃α(ξ)}α∈A (A is a set of multi-indices α) be a basis of RN for every ξ ∈ Ũ .
We denote by exp(

∑
α uαX̃α)(ξ) the solution of{

γ̇ =
∑

α uαX̃α(γ) ,

γ(0) = ξ

at time t = 1. Then we call (uα)α∈A a system of coordinates around ξ and
define θξ(η) = (uα)α∈A, where ξ, η ∈ Ũ and

η = exp(
∑
α

uαX̃α)ξ.

The following theorem is also from [20](see Theorem 5, §7.)

Theorem 2.3 (Rothschild-Stein). Let X̃1, · · · , X̃q be free up to step m in
ξ0. Then there exist neighborhoods Ṽ and W̃ of ξ0 in RN and U of 0, with
W̃ ⊂⊂ Ṽ such that

(a) θξ|Ṽ is a diffeomorphism onto the image, for every ξ ∈ Ṽ ,
(b) U ⊂ θξ(Ṽ ), for every ξ ∈ W̃ ,
(c) θ : Ṽ × Ṽ → RN , defined by θ(ξ, η) = θξ(η), is in C∞(Ṽ × Ṽ ), and
(d) in the coordinates given by θξ we can write X̃i = Yi + Rξ

i , where Yi

are left invariant vector fields and Rξ
i are vector fields depending smoothly

on ξ.

Let us consider the Lie algebra g(q, m). Then, through the exponen-
tial mapping we relate it to the corresponding simply connected Lie group
G(q, m). A natural group law is then defined by using the Campbell - Haus-
dorff formula. Namely(∑

α∈A

uαX̃α

)
◦

(∑
α∈A

vαX̃α

)
=
∑
α∈A

(uα+vα)X̃α+
1
2

[∑
α∈A

uαx̃α,
∑
α∈A

vαx̃α

]
+· · ·
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In this group we can naturally define the dilations by

δt((uα)α∈A) = (t|α|uα)α∈A.

These dilations are automorphisms of the group G(q, m).
A function k defined on G(q, m) \ {0}, smooth away from the origin, is

said to be of type λ > 0, if k(δt(ξ)) = tλ−Qk(ξ), for all t > 0. k is said to
be of type 0 if the last equality holds with λ = 0 and the mean value of k
vanishes, that is ∫

a≤|u|≤b
k(u)du = 0 for all a < b,

where | · | is a suitable homogeneous norm on the group G(q, m) (see (5.2)
in [20]).

Definition 2.4. A measurable function K is called to be a kernel of type
λ ≥ 0 if for any positive integer l we can write

K(ξ, η) =
s∑

i=1

ai(ξ)k
(i)
ξ (θ(η, ξ))bi(η) + El(ξ, η) ,

where El ∈ C l
0, ai, bi ∈ C∞

0 and the functions k
(i)
ξ are of type ≥ λ and depend

smoothly on ξ.

Definition 2.5. An operator T is said to be of type λ > 0, if

(Tf)(ξ) =
∫

K(ξ, η)f(η)dη ,

where K is a kernel of type λ. An operator T is said to be of type 0 if

(Tf)(ξ) =
∫

K(ξ, η)f(η)dη + a(ξ)f(ξ) ,

where K is a kernel of type 0 and a ∈ C∞
0 .

We refer the reader to [20] for a thorough explanation.

3. Second Derivative Estimates for sub-Laplacians

Let Ω be a bounded subset of Rn and X = (X1, ..., Xq) be a system of
Hörmander vector fields in Ω. We set, with k ∈ N,

W k,p(Ω) =
{

u : Ω → R : u , Xi1 ...Xiju ∈ Lp(Ω) , 1 ≤ j ≤ k
}

,

endowed with the norm

‖u‖W p,k = ‖u‖Lp +
k∑

h=1

q∑
ij=1

‖Xi1Xi2 ...Xih‖Lp ,

W k,p
loc (Ω) =

{
u : Ω → R : ηu ∈ W k,p(Ω) , for all η ∈ C∞

0 (Ω)
}

,

and W k,p
0 (Ω) as the closure of C∞

0 (Ω) in W k,p(Ω).
We denote by ∆X the sub-elliptic Laplacian operator

∑q
j=1 X2

j and by
∆X̃ the operator

∑q
j=1 X̃2

j , where X̃j is the lifted vector field related to Xj .
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Theorem 3.1. Let p ∈ (1,∞). For all u ∈ C∞
0 (RN ) we have

‖X̃2u‖Lp ≤ c{‖∆X̃u‖Lp + ‖X̃u‖Lp + ‖u‖Lp},

where the constant c does not depend on u.

Proof. In [20] (see also [1]) it has been proved that for every test function
a (for the existence of test functions the reader can consult e.g. [11]) there
exist an operator of type two P ∗ and q operators of type one S∗

j such that
for every u ∈ C∞

0 (Rn)

(3) P ∗∆X̃u = au +
∑

j

S∗
j u .

We apply X̃hX̃k, k, j = 1, ..., q, to both sides of (3), then

X̃hX̃k(P ∗∆X̃u) = X̃hX̃k(au) +
∑

j

X̃hX̃k(S∗
j u) .

Now, using Theorem 8 and Corollary of Theorem 9, §14 in [20] (see also
Lemma 2.9 and Theorem 2.10 in [1]) it follows

(4) X̃hX̃k(P ∗∆X̃u) = X̃hX̃k(au) +
∑

j

∑
l

(
T j

l X̃lu + T j
0

)
where T j

l and T j
0 are suitable operators of type 0. Denoting by T the oper-

ator T = X̃hX̃kP
∗ from (4) we get

‖X̃hX̃k(au)‖p ≤ ‖T∆X̃u‖p +
∑

j

∑
l

‖T j
l X̃lu‖p + ‖T j

0 u‖p .

Since all the operators are of type 0, by Theorem 11 (§16 in [20]), we
obtain that

‖X̃hX̃k(au)‖p ≤ c
(
‖∆X̃u‖p + ‖X̃u‖p + ‖u‖p

)
,

from which the theorem follows. �

Remark 3.1. We point out that the statement in our previous theorem is
contained in Theorem 3.2 in [1]. However we provided our proof to show
that in our (simpler) case there is no dependence on the constant c on the
radius of the support of u.

Theorem 3.2. Let p ∈ (1,+∞), for all u ∈ W 2,p
0 (Ω) we have

(5) ‖X2u‖Lp(Ω) ≤ c
(
‖∆Xu‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

Proof. Let u be a function in C∞
0 (Ω) and let η(t) be a function in C∞

0 (RN−n),
0 ≤ η ≤ 1, η ≡ 1 in Ir, η = 0 in I2r, |X̃η|2 + |X̃2η| ≤ c

r2 where Ir is a ball
with radius r and I2r is a ball with radius 2r. Hence ηu is in C∞

0 (RN ) and
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therefore

|Ir|
∫

B
|X2u|pdx ≤

∫
B×Ir

|X2u|pdxdt

=
∫

B×Ir

|X̃2(ηu)|pdxdt ≤
∫

B×I2r

|X̃2(ηu)|pdxdt

≤ c

(∫
B×I2r

|∆X̃(ηu)|pdxdt +
∫

B×I2r

|X̃(ηu)|pdxdt +
∫

B×I2r

|ηu|pdxdt

)
≤ c

(∫
B×I2r

|∆Xu|pdxdt +
∫

B×I2r

|Xu|pdxdt +
∫

B×I2r

|u|pdxdt

)
≤ c|I2r|

(∫
B
|∆Xu|pdx +

∫
B
|Xu|pdx +

∫
B
|u|pdx

)
.

This implies that

‖X2u‖Lp ≤ c{‖∆Xu‖Lp + ‖Xu‖Lp + ‖u‖Lp}
for all u ∈ C∞

0 (Ω). By interpolation and density arguments we obtain

‖X2u‖Lp ≤ c (‖∆Xu‖Lp + ‖u‖Lp) for all u ∈ W 2,p
0 (Ω) .

�

Now, we can get rid of the last term in (5) arguing as the Euclidean case
(see [12], Lemma 9.17).

Theorem 3.3. Let p ∈ (1,∞). Then there exists a constant Cp such that
for all u ∈ W 2,p

0 (Ω) we have

(6) ‖X2u‖Lp(Ω) ≤ Cp‖∆Xu‖Lp(Ω) .

Proof. If (6) is not true, then for all m ∈ N there exists vm ∈ W 2,p
0 (Ω) (that

we can suppose with Lp norm equal to 1) such that

‖X2vm‖Lp(Ω) > m‖∆Xvm‖Lp(Ω).

Since (5) holds, we have that ‖∆Xvm‖Lp → 0. Then, by (5) the sequence
vm is bounded in W 2,p

0 (Ω). By the weak compactness of bounded sets in
W 2,p(Ω), there exists a subsequence {vm} converging weakly to a function
v ∈ W 2,p

0 (Ω) satisfying ‖v‖Lp = 1. From the weak convergence and the
convergence to zero in Lp(Ω) of ∆Xvm, we must have∫

Ω
g∆Xv = 0 , ∀g ∈ L

p
p−1 (Ω) .

Hence ∆Xv = 0 and from the representation formula v = 0 which contradicts
‖v‖Lp = 1. �

Remark 3.2. Let us consider the Heisenberg group H which is R3 endowed
with the group multiplication(

µ1, ν1, τ1

)
·
(
µ2, ν2, τ2

)
=
(
µ1 + µ2, ν1 + ν2, τ1 + τ2 +

1
2
(ν1µ2 − µ1ν2)

)
.

The canonical horizontal vector fields are

X̂1 =
∂

∂µ
− ν

2
∂

∂τ



SUBELLIPTIC CORDES ESTIMATES 7

X̂2 =
∂

∂ν
+

µ

2
∂

∂τ
.

In this case the spectral theory of the sub-Laplacian ∆X̂ (see [6, 22, 23])
gives

(7)
∫∫∫

R3

(∂w

∂τ

)2
dµdνdτ ≤

∫∫∫
R3

(
∆X̂w

)2
dµdνdτ , for all w ∈ C∞

0 (R3)

which leads to C2 =
√

3 in the Heisenberg group.

The lifting method adds an extra variable to the Grušin vector fields (see
Section §5 below) leads to the the polarized Heisenberg group Hpol, which
is R3 endowed with the group multiplication(

x1, y1, t1
)
·
(
x2, y2, t2

)
=
(
x1 + x2, y1 + y2, t1 + t2 + x1y2

)
.

In this case the canonical horizontal vector fields are

X̃1 =
∂

∂x

X̃2 =
∂

∂y
+ x

∂

∂t
.

The two groups are isomorphic and the isomorphism Φ : H → Hpol is given
by

Φ(µ, ν, τ) =
(
µ, ν, τ +

1
2
µν
)

.

This induces a change of variables
x = µ
y = ν
t = τ + 1

2µν

that has its Jacobian equal to 1 and transforms X̂i to X̃i and . This shows
that we have

(8)
∫∫∫

R3

(∂w

∂t

)2
dxdydt ≤

∫∫∫
R3

(
∆X̃w

)2
dxdydt , for all w ∈ C∞

0 (R3)

which leads to C2 =
√

3 in the polarized Heisenberg group.
We consider now u(x, t) ∈ C∞

0 (R2) and for each n ∈ N the function
v(y) ∈ C∞

0 (R) defined by vn ≡ 1 on [−n, n], vn ≡ 0 on
(
−∞,−(n + 1)

]
and on

[
n + 1,+∞

)
, while for each n on the intervals

(
−(n + 1),−n

)
and(

n, n+1
)

we require similar behavior. In this way there exist three constants
c1,c2,c3 such that∫

R
v2
n(y) dy = 2n + c1 ,

∫
R

(
v′n(y)

)2
dy = c2 ,

∫
R

(
v′′n(y)

)2
dy = c3 .

Using inequality (8) for the function w(x, y, t) = u(x, t)vn(y) gives∫∫∫
R3

(∂u

∂t

)2
v2
n dxdydt

≤
∫∫∫

R3

((∂2u

∂x2
+ x2 ∂2u

∂t2

)
vn + u v′′n + 2x

∂u

∂t
v′n

)2

dxdydt .
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Dividing this last inequality by
∫

R v2
n(y) dy, using the facts that vn v′n =

1
2

(
v2
n

)′, v′n v′′n = 1
2

(
(v′n)2

)′, vn v′′n =
(
vn v′n

)′ − (v′n)2 and then letting n →∞
gives inequality (2). Integration by parts similar to that of [6] leads to the
following result:

Theorem 3.4. For the Grušin vector fields X = (X1, X2) we have

‖X2u‖L2(Ω) ≤
√

3 ‖∆Xu‖L2(Ω)

for all u ∈ W 2,2
0 (Ω).

4. Subelliptic linear operators in non-divergence form with
measurable coefficients

Under the assumptions listed at the beginning of Section §3, let us con-
sider the operator

Au =
q∑
i,j

aij(x)XiXju,

where aij ∈ L∞(Ω). We assume that A satisfies the Cordes condition Kε,σ,
which means that there exists ε ∈ (0, 1] and σ > 0 such that for a.e. x ∈ Ω

0 <
1
σ
≤

q∑
i,j=1

a2
ij(x) ≤ 1

q − 1 + ε

(
q∑

i=1

aii

)2

.

We denote by I the q × q identity matrix and let A(x) = {aij(x)}.

Theorem 4.1. Let 0 < ε ≤ 1, σ > 0 such that γ =
√

1− ε C < 1 ( C = C2 is
the constant of Theorem 3.3) and A satisfies the condition Kε,σ. Then for
all u ∈ W 2,2

0 (Ω) we have

‖X2u‖L2(Ω) ≤
C

1− γ
‖α‖L∞(Ω)‖Au‖L2(Ω),

where α(x) = 〈A(x),I〉
‖A(x)‖2 .

Proof. Since A satisfies the condition Kε,σ then A satisfies (see [6], Theorem
2.1) ∣∣∣∣∣∣

q∑
i=1

mii − α(x)
q∑

i,j=1

aij(x)mij

∣∣∣∣∣∣ ≤ √
1− ε

 q∑
i,j=1

m2
ij

1/2

for all M ∈Mq(R). It follows that∫
Ω
|∆Xu(x)− α(x)Au(x)|2dx ≤ (1− ε)

∫
Ω

q∑
i,j=1

(XiXju(x))2dx ≤

≤ (1− ε)C2

∫
Ω
|∆Xu(x)|2dx.

Then
‖∆Xu− αAu‖L2(Ω) ≤ γ‖∆Xu‖L2(Ω),

and, since γ < 1, we obtain

‖X2u‖L2(Ω) ≤
C

1− γ
‖α‖∞‖Au‖L2(Ω).
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�

As a corollary we have the following result in the Grušin plane:

Corollary 4.1. Let 0 < ε ≤ 1 and σ > 0 such that γ =
√

3(1− ε) < 1 and
A satisfies the Cordes condition Kε,σ. Then for all u ∈ W 2,2

0 (Ω) we have

‖X2u‖L2(Ω) ≤
√

3
1− γ

‖α‖L∞(Ω)‖Au‖L2(Ω),

where α(x) = 〈A(x),I〉
‖A(x)‖2 .

5. W 2,2
loc (Ω) regularity for quasilinear equations in the Grušin

plane

In this section we consider a non-degenerate quasilinear equation and
obtain W 2,2

loc estimates for its weak solutions. Let X1 = ∂
∂x , X2 = x ∂

∂t , and
denote their commutator by T = [X1, X2] = ∂

∂t .
Consider the non-degenerate p-laplacian equation

(9) −
2∑

i=1

Xi

((
λ + |Xu|2

) p−2
2 Xiu

)
= 0 , in Ω ⊂ R2

with λ > 0.
A weak solution of equation (9) is a function u belonging to the horizontal

Sobolev space W 1,p
loc (Ω) and satisfying

(10)
2∑

i=1

∫
Ω

(
λ + |Xu|2

) p−2
2 Xiu Xiϕ dxdt = 0 ,

for all ϕ ∈ W 1,p
0 (Ω) with compact support.

The lifting process to the Lie algebra of the polarized Heisenberg group
(see [23] and Remark 3.1 in this paper) is implemented by setting

X̃1 =
∂

∂x
, X̃2 = x

∂

∂t
+

∂

∂y
.

Denoting ũ(x, y, t) = u(x, t) it is simple to prove that ũ is a weak solution
of the lifted subelliptic p-Laplacian:

(11) −
2∑

i=1

X̃i

((
λ + |X̃u|2

) p−2
2 X̃iu

)
= 0 , in Ω̃ = Ω× (−a, a) .

Therefore we can use some of the methods and results valid in the Heisen-
berg group to obtain regularity properties for ũ and then get similar conclu-
sions for u. Observe that by Remark 3.2 and Theorem 3.4 the results from
[5, 6] regarding the second order differentiability of the p-harmonic func-
tions obtained in the regular Heisenberg group are valid in the polarized
Heisenberg group too. Therefore the following theorems hold in the Grušin
plane.
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Theorem 5.1. [5] Let 1 < p < 4, uλ ∈ W 1,p
loc (Ω) be a weak solution of (9),

(x0, t0) ∈ Ω and r > 0 such that B
(
(x0, t0), 3r

)
⊂ Ω. Then there exists a

number k ∈ N (depending only on p) such that∫
B
(
(x0,t0),r/2k+1

) |Tuλ|pdxdt ≤ c

∫
B
(
(x0,t0),2r

)((λ + |Xuλ|2)
p
2 + |uλ|p

)
dxdt,

which implies that Tuλ ∈ Lp
loc(Ω).

Theorem 5.2. [5] Let 2 ≤ p < 4 and uλ ∈ W 1,p
loc (Ω) be a weak solution of

(9). Then, if B
(
(x0, t0), 3r

)
⊂ Ω, there exists k ∈ N depending only on p

such that ∫
B
(
(x0,t0),r/2k+2

)(λ + |Xuλ|2)
p−2
2 |X2uλ|2dxdt

≤ c

∫
B
(
(x0,t0),2r

)((λ + |Xuλ|2)
p
2 + |uλ|p

)
dxdt,

from which it follows that uλ ∈ W 2,2
loc (Ω).

Theorem 5.3. [5] Let
√

17−1
2 ≤ p ≤ 2 and uλ ∈ W 1,p

loc (Ω) be a weak solution
of (9). If B

(
(x0, t0), 3r

)
⊂ Ω then there exists k ∈ N depending only on p

such that∫
B
(
(x0,t0),r/2k+3

) ∣∣X2uλ

∣∣p dxdt

≤ c

{
λ

p−2
2 ||u||2−p

Cδ(B
(
(x0,t0),r/2k+1

) ∫
B
(
(x0,t0),2r

) ((λ + |Xuλ|2
) p

2 + |uλ|p
)

dxdt

+λ
p−2
2 ||u||2

L2(B
(
(x0,t0),r/2k+1

)
)
+
∫

B
(
(x0,t0),2r

) ((λ + |Xuλ|2
) p

2 + |uλ|p
)

dxdt

}
,

and hence uλ ∈ W 2,p
loc (Ω).

Theorem 5.4. [6]
(1) For

√
17−1
2 ≤ p < 4 any weak solution of the nondegenerate subelliptic

p-Laplacian equation (6) belongs to W 2,2
loc (Ω).

(2) For
√

17−1
2 ≤ p < 5+

√
5

2 any weak solution of the subelliptic p-Laplacian
equation (1) belongs to HW 2,2

loc (Ω).

Remark 5.1. Observe that the intervals given by Theorem 5.4 contain p = 3,
which is the homogeneous dimension near the singular line x = 0.

6. C1,α estimates in the Grušin plane

In this section we prove C1,α regularity for the p-harmonic functions in
the Grušin plane. We list the following theorems that are useful in the proof
of our main result.
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Theorem 6.1. Let u ∈ W 2,p
loc (Ω), (x0, t0) ∈ Ω and r > 0 such that B

(
(x0, t0), r

)
⊂

Ω. Then for all δ > 0 there exists a constant c(δ) such that

‖Xu‖Lp(B((x0,t0),r)) ≤ δ‖X2u‖Lp(B((x0,t0),r)) + c(δ)‖u‖Lp(B((x0,t0),r)).

Proof. See Lemma 4 in [24]. �

Consider the operator

Au =
2∑
i,j

aij(x)XiXju

where aij ∈ L∞(Ω).

Theorem 6.2. Fix 1 < p < ∞ and let 0 < ε ≤ 1, such that ε Cp < 1.
Suppose that

(12) |∆Xu(x, t)−Au(x, t)| ≤ ε|X2u(x, t)|,

for a. e. (x, t) ∈ Ω and for all u ∈ W 2,p
0 (Ω). Then A : W 2,p

0 (Ω) → Lp(Ω) is
an isomorphism and there exists c > 0 such that

(13) ‖X2u‖Lp(Ω) ≤ c‖Au‖Lp(Ω)

for all u ∈ W 2,p
0 (Ω).

Proof. Since ‖∆Xu−Au‖Lp(Ω) ≤ εC‖∆Xu‖Lp(Ω) then A is near to ∆X from
which it follows that A is an isomorphism and that (13) is true (see [2]). �

Consider now the case when λ = 1
m . Then the corresponding non-

degenerate p-Laplace equation is

(14)
2∑

i=1

Xi

((
1
m

+ |Xu|2
) p−2

2

Xiu

)
= 0 .

Theorems 5.2 and 5.3 show that for the range
√

17−1
2 ≤ p < 4 weak

solutions um satisfy also the differentiated version of equation (14)

Lm(um) =
2∑

i=1

am
ij XiXjum = 0 ,

where

am
ij = δij + (p− 2)

Xium Xjum

1/m + |Xum|2
.

The homogeneous dimension of a compact E ⊂⊂ Ω is 2 if E does not
intersect the line x = 0, it is 3 if E intersects the line x = 0. In any case we
denote by Q the homogeneous dimension. For a fixed, but arbitrary small
positive constant γ denote

C̃ = sup{Cp , p ∈
[√17− 1

2
, Q + γ

]
} .

We remark that we have

|Lmv(x)−∆Xv(x)| ≤ |p− 2| |X2v(x)|
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for a.e. x ∈ Ω and for all v ∈ HW 2,s
0 (Ω), so the operator Lm satisfies the

condition (12) with ε ≤ min
{

1
C̃ , |p− 2|

}
.

Theorems 6.1 and 6.2 imply the following result.

Theorem 6.3. Let us suppose that the assumptions of Theorem 6.2 hold.
Let (x0, t0) ∈ Ω and r > 0 such that B

(
(x0, t0), 3r

)
⊂ Ω. Then for all

u ∈ W 2,p
loc (Ω) we have

‖X2u‖Lp(B((x0,t0),r)) ≤ c
(
‖Au‖Lp(B((x0,t0),2r)) + ‖u‖Lp(B((x0,t0),2r))

)
.

We are now able to prove our main result.

Theorem 6.4. Consider

max
{√17− 1

2
, 2− 1

C̃

}
≤ p ≤ 2 +

1
C̃

.

If u ∈ W 1,p(Ω) is a p-harmonic function, then there exists 0 < α < 1 such
that u ∈ C1,α

loc (Ω).

Proof. Consider (x0, t0) ∈ Ω and r > 0 such that B
(
(x0, t0), 4r

)
⊂ Ω. With-

out loss of generality we can suppose that Xum ∈ W 1,p(B
(
(x0, t0), 3r

)
⊂ Ω)

with uniform bounds in m. If Q = 2 and we choose 1 < β < 2 close enough
to 1 such that

2β

2− β
≤ 2 + γ ,

then we have
W 1,β

0 (Ω′) ↪→ L
2β

2−β (Ω′)
for any Ω′ ⊂⊂ Ω. Consider a cut-off function η between the balls B((x0, t0), r))
and B((x0, t0), 2r)). Then for q0 = 2β

2−β we have

‖Lm(η2um)‖Lq0 (B((x0,t0),2r))) ≤ c
(
‖um‖Lq0 (suppη) + ‖Xum‖Lq0 (suppη)

)
< +∞.

By Theorem 6.3 and the fact that the W 1,p norm of um is uniformly bounded
on suppη we get that ηum ∈ W 2,q0(B((x0, t0), 2r))) with uniform bounds.

Since W 1,q0
0 (B((x0, t0), 2r))) ↪→ C

2β−2
β (B((x0, t0), 2r))) we have that

um ∈ C1,α(B((x0, t0), 2r))) with α =
2β − 2

β
.

Since the estimates for um are uniform in m, we conclude that u ∈ C1,α
loc (Ω).

A similar proof can be applied in the case Q = 3. We use the embedding

W 1,2
0 (Ω′) ↪→ L6(Ω′)

to get u ∈ W 2,6
loc (Ω) and then u ∈ C

1,1/2
loc (Ω). �
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[14] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119
(1967), 147-171.
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