REARRANGEMENTS IN CARNOT GROUPS
JUAN J. MANFREDI AND VIRGINIA N. VERA DE SERIO

ABSTRACT. In this paper we extend the notion of rearrangement
of nonnegative functions to the setting of Carnot groups. We de-
fine rearrangement with respect to a given family of anisotropic
balls B,., or equivalently with respect to a gauge ||z||, and prove
basic regularity properties of this construction. If u is a bounded
nonnegative real function with compact support, we denote by u*
its rearrangement. Then, the radial function u* is of bounded vari-
ation. In addition, if u is continuous then u* is continuous, and
if u belongs to the horizontal Sobolev space W}}’p , then %
is in LP. Moreover, we found a generalization of the inequality of
Pélya and Szego

| Dnu* [P

Da (el = © LR

where p > 1.

1. INTRODUCTION

Let u: R* — R be a non-negative measurable real function with
compact support. The rearrangement of « is the radial function u* that
has the same distribution function as u with respect to the Lebesgue

measure L£". That is, for every A > 0 we have

L'{z: u*(x) > A}) = L"({z: u(z) > A}).

In particular, for any non-negative Borel measurable real function ¢ we

/ _o(w(z)) dL"(z) = (u(@)) dL"(x).

Rn™

Pélya and Szegd proved in [PS] that if u € WP(R"), where p > 1,

then so is v* and we have the inequality

/ Dut ()P L") < /IR Du(a) P AL (@)
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If the Lebesgue measure L£" is replaced by another measure we get a
different rearrangement. The motivation for this article originated from
a result of Schulz and Vera de Serio [SV] concerning rearrangements
in R? relative to an absolutely continuous measure with respect to £2
with a density p. The rearrangement v} of a non-negative function u
is determined by the condition

z)dL?(z) = ) dL? (x
/{u;»}/’” (2) /{Mp() ()

for every A > 0. One of the main results in [SV] states that if log p is a
nonnegative sub-harmonic function in R?, then for every non-negative
u € WH?(R?) the rearrangement v} € W*(R?) and we have the in-
equality

Du*(2) dL2 () / |\ Du(z) 2 dC2(x).
R2
In this paper we define rearrangements in general spaces that in-

clude Carnot-Carathéodory spaces, and prove inequalities of Pdlya-
Szego type in the case of Carnot groups.

2. REAL VARIABLE STRUCTURES FOR REARRANGEMENTS

We are given a family {B,} of non-empty bounded open sets, “balls
centered at 0”7, in R" indexed by r > 0 satisfying the following condi-
tions:

(2.1) r<s = B, C By,
(2.2) (5B, = {0},
r>0
(2.3) B =R, and
r>0
(2.4) U B =B..
0<r<s

We also set By = (). For x € R” we define the gauge
|z|| = inf{r > 0:2 € B,}

and assume that

(2.5) x ||z is a continuous function.

It follows easily that

(2.6) B, ={z: ||z|| < r}.
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We are also given a non-negative Borel measure p in R" such that
the volume function

V(r) = u(Br)
satisfies the following properties:
(2.7) V(0) =lim, ,o+ V(r) =0,
(2.8) V(o0) = p(R"),
(2.9) V:[0,00] — [0, u(R™)] 1is an absolutely continuous bijection.

Let u: R" +— [0,00] be a non-negative y-measurable function whose
support has finite y-measure. For each ¢t > 0 define

(2.10) E.(t) ={z e R" | u(z) > t},
(2.11) vu(t) = p(Eu(t)), and
(2.12) Uy (1) = sup{t: v,(t) > V(r)}.

We follow the convention sup() = 0. We are ready for our general
definition of rearrangement.

Definition 1. Given a family of non-empty bounded open sets { B, }»~¢
and a Borel measure p such that properties (2.1) through (2.9) hold,
the rearrangement of a p-measurable function u : R* — [0, 00] is the
“radial” function u* : R* — [0, co] defined by

u*(z) =t (l2]])-
The following lemma is elementary.
Lemma 1. If the support of u has finite u-measure, then the function
U, is finite, non-increasing and continuous from the right on (0, 00).
Moreover, we have
74(0) = 7, (0") = ess sup u.
Observe that the equivalence

vu(t) > V(r) <= u(Eu(t)) > n(B;)

always holds.
Corollary 1. If the gauge x — ||z|| is differentiable u-a. e., then the
gradient Du*(x) exists u-a. e. and satisfies

Du*(z) = o, ([|l) - D(l|=[])-

Proof. 1t is enough to observe that the absolute continuity of the vol-
ume function gives u({z: ||z|| € A}) = 0 whenever A is a set of measure
zero in R. U
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Lemma 2. For every t > 0 we have

N(Eu* (t)) = N(Eu (t))

Therefore u and u* have the same distribution function with respect to
the measure .

Proof. Let us start observing that the level set E,.(t) is the ball B,
where r = V~1(v,(t)). Indeed, we have

B (t) = {u* > t} = | Br-1(u() = Bv-100);
s>t

because V! o v, is right continuous and property (2.4). The lemma
follows from the following chain of equalities

B (1)) = p(By) = V(r) = V(V" (vu(t)) = va(t) = p(Eu(t)).
(]

Corollary 2. For any non-negative Borel measurable real function ¢
we have

WMT@MM@=RjW@MMﬂ

Lemma 3. If u is continuous and has compact support then v, s
strictly decreasing on the interval [0,esssupu] and V™t o v, is a right
wnverse of vy,.

Proof. The proof is identical to the proof of Lemma 1.4.1 and Lemma
1.5.1 in [SV], since only properties (2.1) through (2.9) are used. O

Theorem 1. If u is continuous with compact support so is u*.

Proof. Once again, the proof is identical to the proof of Theorem 1.4.4
in [SV], since only properties (2.1) through (2.9) are used. O

Lemma 4. If u is continuous with compact support then

(1) Dy is continuous and,
(ii) if vi(r) # 0 for a. e. r € [0,esssupu] then U, is absolutely
continuous.

Proof. The continuity of 7, follows from the continuity of u*. The
argument for (ii) is the same as in the proof of Proposition 1.5.2 in
[SV] using the absolute continuity of V. O
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3. REARRANGEMENTS IN CARNOT GROUPS.

Consider a collection of m smooth vector fields in R”
{X1,Xs, ..., X}
satisfying Hormander’s condition
Rank Lie[ X1, Xo,..., Xp|(z) =n
at every z € R". We will also assume that the horizontal tangent space
Th(x) = Linear span[Xy, Xo, ..., X;](x)

has dimension m < n for all x € R".

A piecewise smooth curve ¢ — 7(t) € R” is horizontal if its tangent
vector 4/ (t) is in Ty (y(t)). The Carnot-Carathéodory distance between
the points p and ¢ is defined as follows:

dcc(p,q) = inf{length(y) | y € T'}

where the set ' is the set of all horizontal curves « such that y(0) = p
and (1) = ¢. To measure the length of a curve we use the metric in
Tu(z) determined by requiring that the vector fields { X1, Xo, ..., X, }
form an orthonormal basis. We can always extend this metric to a full
Riemannian metric in R” so that its volume element is the Lebesgue
measure L".

By Chow’s theorem (see, for example, [BR]) any two points can be
connected by a horizontal curve, which makes doc a metric on R*. A
Carnot-Carathéodory ball of radius r centered at a point p, is given by

B(po,r) ={p € R* : dec(p, po) < 1}

Observe that properties (2.1) to (2.6) always hold in an arbitrary
metric space if B, = B(xzg,r) is the family of balls centered at some
fixed point x4, where 0 in property (2.2) is replaced by .

Given a Borel measure p property (2.8) always holds and so does
(2.7) if p is non-atomic. Property (2.9) follows easily if y is absolutely
continuous with respect to L£".

From now on we will consider the case of a Carnot group G of
dimension n and homogenous dimension () as defined, for example, in
[FS]. The vector fields { X1, Xs,..., X, } are left-invariant so that we
think of them as elements in the Lie algebra g. The Haar measure
of the group is L™ and we have a family of group homomorphisms 4,
indexed by r > 0, called dilations, satisfying

0p 005 = Ops.
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The volume of a ball is given by
V(B(po, R) = constant - R,

In order to determine a real variable structure for rearrangements we
have to single out a gauge x — ||z|| and set Bg = {z | ||z| < R}.
There are many choices of gauges which are smooth away from the
origin, see [FS]. A gauge that is usually non-smooth but natural in our
setting is the Carnot gauge

[zllc = dec(, 0).
We occasionally identify G with the underlying space R".

Theorem 2. A Carnot group G endowed with the Carnot gauge ||z||c,
or with a smooth gauge x +— ||x|| together with the Lebesque measure

L™ forms a real variable rearrangement structure. That is, properties
(2.1) through (2.9) hold.

In particular Theorem (1) applies to a Carnot group endowed with
an arbitrary gauge.

The horizontal gradient of a function u: G — R is the projection of
the full gradient onto the horizontal tangent space

Dpu = (Xqu) X1 + (Xou) Xo + ... + (Xpnu) X
For p > 1 the horizontal Sobolev space is defined by
W,"(G) = {u € LP(G) | Dyu € L(G)} -
Endowed with the norm
[ullwzgy = llullze(g) + 1 Duull o),

the class W, ”(G) is a Banach space (see [GN] and [L]).

The horizontal divergence divy(F) of a horizontal vector field F
(F(z) =Y, F'(z)X;(x)) is defined by requiring that for every com-
pactly supported smooth function ¢ the equality

/ 6 divy (F)dL" = — / (Duo, F)dL
g g
holds.

Next, we recall the definition of horizontal bounded variation from
[GN]. We say that u € BV,(Q) if

|lu|| Bvi (o) = sup {/ udithdE”} < o0.
Q
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where the supremum is taken among all I € C§°(£2,g) such that
S |F(z)[? < 1. If the function u is smooth, the horizontal bounded
variation is just the L'-norm of the length of the horizontal gradient

Jullav = [ 1Dyl dc™
Q
A measurable set £ C G has finite horizontal perimeter relative to a
domain Q C G if xg € BV4(€2) in which case we write

Pu(E, Q) = |Ixell Bv(e)-

We shall denote Py (E, G) simply by Py(E).
Using the anisotropic dilations, it is easy to see that

(3.1) Pu(Br) = R 'Pu(By).

Theorem 3. Suppose that G is a Carnot group endowed with a gauge so
that the unit ball By is reqular enough to have finite horizontal perime-

ter. Let u € L*(G) be a nonnegative function with compact support.
Then u* € BV4(G).

Remark 1. The finiteness of the horizontal perimeter of a ball certainly
holds for smooth gauges and also for the Carnot gauge ||z||c in a general
Carnot group. See Remark 4.3 in [MSC].

Proof. We will use integration in polar coordinates. For r > 0 set

o(r) = / divy F(y) dC"(y).

It follows from Proposition 1.15 in [FS], that there exists a Radon
measure ¢ on 0B; such that

#(r) = /  div, Fly) doy (),

where do, is the image of the measure do under the dilation z +— §,(z).
Let F' € C§°(G, g) be a test field satisfying |F| < 1. We have

/g (&) divy F(z) dC"(x / /a () divy F(w) dov(y) dr
- [Tan ([ din, F() i0,)) dr

- / " B ), dr

- " (r)dn(r)
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Observe next that ¢(R) < Py(Bg). Using (3.1) we get
$(R) < Pu(B1) R

Since —dv, is a positive measure we see that
/u*(x) divy F(z)dL"r < —’Ph(Bl)/ r91di, (r) < oo.
g 0

Therefore u* € BV4(G).
g

A basic result that we shall use several times is the isoperimetric
inequality for horizontal perimeters. (See Garofalo and Nhieu [GN]
and Franchi, Gallot and Wheeden [FGW]). Recall that @ is the ho-
mogeneous dimension of our Carnot group. For every set E with finite
horizontal perimeter P, (E) < co we have

(3.2) (LM(E))T < Ciuo Pu(E),

where Cis, is a constant independent of the set E. Inequality (3.2)
follows from Theorem 1.18 in [GN] by taking the domain € in this
theorem to be a metric ball of radius R and letting R — oo.

Garofalo and Nhieu [GN] and Franchi, Gallot and Wheeden [FGW]
also extended Federer’s classical co-area formula to the subelliptic set-
ting.

Horizontal Co-area Formula: Let 2 C G be a domain and let
u € BV4(R2). Then, for a. e. t € R the set

E,(t)={z € G |u(z) >t}

has finite horizontal perimeter relative to 2 and the co-area formula

(3.3) lull vacon /%

holds. Conversely, for u € L'(Q), if for a. e. ¢t € R the set E,(¢) has
finite horizontal perimeter relative to {2, and

/Ph dt<OO

then v € BV;4(€2) and we have (3.3).
For a function u € BV;(G) recall the variation measure ||[Dypul| de-
fined by

1Dvul|(U) = sup {/udithdﬁn},
g

where U is an open set in G and the supremum is taken with respect
to ' € C§°(U,g) such that Y ;" |[F"(z)|* < 1. With this notation,
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the horizontal perimeter of a set E relative to a domain €2 is just
| Duxe||(£2). We can also write (3.3) as follows

(3.4) | Dyl (© / Pu(E

Hence, for any nonnegative Borel measurable g we have

(3.5) /ggd||Dhu||=/R/ggdPh(E /

Lemma 5. Consider a function u in the horizontal Sobolev space W' (G).
Given a number t < ||ul|o and s >t we have

L (u='(t,s)) > 0.

Proof. Suppose that £" (u~'(¢,s)) = 0. Let g be a smooth function
with compact support bounded by 1. Write

/Xiu-gdﬁnz/ Xiu-gd[,"—i—/ Xu-gdLl"
g u<t u>s

—/Xz-(t—u)“L-gd£"+/Xi(u—s)+-gdﬁ"
g g

=/ (t—u)-XigdL"—i—/ (s —u)- X;gdL",
u<t u>s

where we have used the lattice properties of W,"'(G) (Lemma 3.5 in
[GN]) and integration by parts.
On the other hand we also have

/Xiu-gd,C":/Xi(u—t)-gd,C"
g G
:—/(u—t)-x,-gdcn
G

=/ (t—u)-Xing”-l-/ (t—u)- X,gdL".
u<t u>s

We conclude that
(3.6) / X,gdL" = 0.
u>s

If we call E = {u > s}, it follows from (3.6) that P, (F) = 0. Since sets
of horizontal perimeter zero have L£" measure zero as it follows from
the horizontal isoperimetric inequality (3.2), we deduce that u(z) <t
for a. e. x € G contradicting the hypothesis ¢ < ||u]|c- O

Theorem 4. If u € W,"'(G) N L™ is a nonnegative function with
compact support, then u* € Wﬁ’l(g).
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Proof. Once we have Lemma 5, the isoperimetric inequality (3.2) and
the coarea formula (3.5), the proof is identical to the proof of Theorem
1.6.7 in [SV]. O

4. ENERGY INEQUALITY FOR p =1

We assume in this section the finiteness of the horizontal perimeter
of ball. We begin with a lemma showing a quasi-monotonicity property
of the horizontal perimeter under rearrangements.

Lemma 6. There exists a constant Cper > 1 such that for all sets
E C G we have

(4.1) Pu(E*) < Cper'Ph(E),
where E* is the ball By satisfying L"(Bg) = L"(E).
Proof. Observe that if Bg is a ball, then

L"(Bg) = R2L™(B,)
and

Ph(BR) == RQ_lph(Bl).
Therefore, we have the following equality for balls
Q1
(L"(Br)) @ = CoPu(Br),

where we have set

Q-1
(£"(By)) @
4.2 Co=——-"""
( ) 0 Ph(Bl)
We now combine (4.2) with the isoperimetric inequality (3.2) as follows:
1 e-1 1 et G
EX)=—(L"(E")) @ =— (L"(E)) @ < Py(E).
PU(E) = o (C(B) T = o (e/(E) T < Zom ()
We conclude that
C.
4.3 Cper < —2.
( ) p CO

Note that if u € BV},(G), we have
(4.4) Ph (Eus (1)) < CperPr (Eu(t)) -

This follows from the fact that the level set F,«(t) is the ball By
where R = V~!(v,(t)) and the previous Lemma.
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Theorem 5. Suppose that G is a Carnot group endowed with a gauge so
that the unit ball By is reqular enough to have finite horizontal perime-
ter. Then, for all nonnegative u € Wﬁ’l(g) with compact support we
have the inequality

(4.5) /g Dy ()| L (&) < Cper /g Dyu(x)| AL ()

In particular, it follows that w* € W' (G).

Proof. Using the co-area formula twice, we get:

/g Dy ()] AL (z) = /0 h ( /g dPh(Eu*(t))> dt

= /oo Pr(Ey«(t)) dt
< Cper /oo Pu(Ey(t)) dt

— Cper /g | Dyu()| dC™ ().

5. ENERGY INEQUALITY FOR p > 1

In this section we need to assume that the mapping z — ||z|| is
differentiable a. e. This is certainly the case for smooth gauges and
also for the Carnot gauge. In fact, Monti and Serra Cassano [MSC]
have recently established that the Carnot gauge ||z||¢ is differentiable
a. e. and satisfies

(5.1) |Dy (|z]|c)] =1 for a. e. z € G.

The key step to obtain the rearrangement energy inequality for p > 1
is an integrability property of

o
| Da(ll[])]

Lemma 7. For an arbitrary a. e. differentiable gauge in a Carnot
group we have

1 Q-1,
oty B0 < )

where o is the Radon measure supported on 0B that is used in inte-
gration in polar coordinates.
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Proof. Let us begin by observing that both sides of the inequality are
homogeneous of degree ) — 1. Therefore, it is enough to prove the
lemma when R = 1. We will write B for B;.

Let U be an open set and compute

/U dPy(B)(z) = Pu(B)(U)
= sup {/Bdith(x) dL"(z) | F € C3°(U, g), |F| < 1}

= sup {/6B<F($),Dh(||w||)>d0($) | F e C(U,g), |F| < 1},

where the last equality follows from

(5.2) /B divy F(z) dC™(x) = /a (F(@). Di([e])) doa).

To prove this formula, consider the continuous function ¢.(r) which
takes the value 1 for r < 1 — ¢, vanishes for 7 > 1 + € and is linear
otherwise. From the definition of horizontal divergence we get

e (|z]]) dive F'(z) dL" (x) = —/ (Dn(¢c(ll1)), F(z)) dL"(x)

Bite Bite

=- Se(llzI)(Dn(llz)), F(z)) dL™(x)

B

1

- 2_6 BI+E\B176

1 1+e€ 1

- 2¢ / (Du([|z]]), F(6¢(2))) da(x)tQ_ dt,
B

where we have used the fact that Dy(||z||) is homogenous of degree
zero. Letting e — 0 we obtain (5.2).
Thus, we have

/U aPy(B)(z) < / Du(la])| do ().

8BNU
Since this is an inequality between two Radon measures, we conclude
that for f nonnegative and Borel measurable

/ f(z) dPu(B)(x) < / £(@) [ Du(llz])] do(x).
g 0B

The lemma follows by applying this formula to

1
J@) = Bt

(Du(llz]l), F(z)) dL"(z)

1—¢



REARRANGEMENTS IN CARNOT GROUPS 13

0

Next, we need to discuss a technical point. It follows from Corollary
1 that

Dyu*(z) = 2, (|l) - Du(llz]))-

Since |7, | is measurable with respect to the o-algebra generated by 7,
there exists a Borel measurable function U: R" U{0} — Rt U{0} such
that

|7,1(s) = W(2u(s))-
Therefore, using the equality 7,(||z||) = u*(z) we can write
(5-3) | Dyu*(2)| = ¥ (w*(2)) - [Da(ll]])]

Observe that the factor U(u*(x)) is radial but this is not, in general,
the case of the second factor |Dy(||z||)|. Nevertheless, with the choice
of the Carnot gauge this factor is identically 1 and |Dpu*(z)| is indeed
a radial function.

One could possibly think that |Dyu*(x)| is measurable with respect
to the o-algebra generated by u* so that we had |Dyu*(z)| = ®(u*(z))
for some Borel function ®. This is actually the case for the Carnot
gauge, but it is not for other gauges for which |Dy(||z]|)| is not radial.
This is why we need Lemma (7).

Theorem 6. Let G be a Carnot group endowed with an a. e. differen-
tiable gauge. Let u € W}}”’(g) be a nonnegative function with compact
support and p > 1. There ewists a positive constant Cgym such that we
have the inequality

| Duu(z) "

N AN (DK

4L7(@) < (Con [ 1Dusle)? d7(a).

In fact, we may take
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Proof. Let ¥}, = min{k, ¥} be the truncation of ¥ at level k. By the
coarea formula (3.5) we get:

[ @)ice < [T D) ac)
g

| Du(l]])
(o 1(u* .
/ Loty (e
— [T [ P |$” dPh(E;(t))] di

At this time we use the key lemma (7) together with lemma (6) and
another application of the coarea formula (3.5) and corollary (2) to get:

/qﬂ’( “(@)) L (z) < oy /oo (1) M dP, (Eu(t))] dt
_csym/ /qﬂ’l APy (Eu(t)) dt
= Cupn | 957 (ul)) D) dL(a)

< Co ([ Wit a0 ) (/ Dyu(a)l? AL (@ ))1
= Com [ W) a0 ) (/|Dhu P AL ))

Hence, we obtain

([ @) ic@) <o ([ Data)? i),
g g
letting £ — oo and using (5.3) we end the proof. O

For the Carnot gauge, we can prove a more traditional version of the
energy inequality. In this case |Dyu*(x)| is radial and from (5.3) it can
be written in the form

(5.5) |Dpu*(z)| = ¥(u*(x)).

Theorem 7. Let G be a Carnot group endowed with the Carnot gauge.
Let u € Wﬁ“’(g) be a nonnegative function with compact support and
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p > 1. Then, we have the inequality
(5.6) /|Dhu*(a:)\p dL"(z) < (CpeT)p/ |Dpu(z) P dL™(z).
g g

In particular, it follows that u* € W}}”(g).

Proof. Let ¥y, = min{k, ¥} be the truncation of ¥ at level k. By the
coarea formula (3.5) we get:

[ @)@ < [ 6wt @) D) i
g

g

_ /0 N /g W (u* (2))dPy (B} (1)) dt

:/Ooo TR (1) [/g dPh (E;(t))] dt

Next, we use lemma (6) together with another application of the coarea
formula (3.5) and (5.5) to repeat the arguments of the second part of
the proof of Theorem (6) to end the proof. O
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