VISCOSITY SUPERSOLUTIONS OF THE EVOLUTIONARY p-LAPLACE EQUATION

PETER LINDQVIST AND JUAN J. MANFREDI

1. Introduction

Often new proofs of old results give additional insight, besides the simplification offered. We hope that the present study of the diffusion equation

$$\frac{\partial v}{\partial t} = \nabla \cdot (|\nabla v|^{p-2} \nabla v) \tag{1.1}$$

has this character. Even obvious results for this equation may require advanced estimates in the proofs. We refer to the books [DB] and [WZYL] about this equation, which is called the "evolutionary *p*-Laplacian equation," the "*p*-parabolic equation" or even the "non-Newtonian equation of filtration.".

Our objective is to study the regularity of the viscosity supersolutions and their spatial gradients. We give a new proof of the existence of ∇v in Sobolev's sense and of the validity of the equation

$$\iint_{\Omega} \left(-v \frac{\partial \varphi}{\partial t} + \langle |\nabla v|^{p-2} \nabla v, \ \nabla \varphi \rangle \right) dx \ dt \ge 0 \tag{1.2}$$

for all test functions $\varphi \geq 0$. Here Ω is the underlying domain in \mathbb{R}^{n+1} and v is a bounded viscosity supersolution in Ω . The first step of our proof is to establish (1.2) for the so-called infimal convolution v_{ϵ} , constructed from v through a simple formula. The function v_{ϵ} has the advantage of being differentiable with respect to all its variables x_1, x_2, \dots, x_n , and t, while the original v is merely lower semicontinuous to begin with. The second step is to pass to the limit as $\epsilon \to 0$. It is clear that $v_{\epsilon} \to v$ but it is delicate to establish a sufficiently good convergence of the ∇v_{ϵ} 's.

This has earlier been proved in [KL1] for the so-called *p*-superparabolic functions; according to a theorem in [JLM] they coincide with the viscosity supersolutions. We had better mention that, when it comes to the "supersolutions" several definitions are currently being used. To clarify the concept we mention a few:

- weak supersolutions (test functions under the integral sign);
- viscosity supersolutions (test functions evaluated at points of contact);

Date: December 15, 2006.

1991 Mathematics Subject Classification. Primary: 35K85, 35K65; Secondary: 35J60.

• p-superparabolic functions (defined via a comparison principle).

The weak supersolutions are assumed to belong to a Sobolev space; they do not form a good closed class under monotone convergence. The viscosity supersolutions are assumed to be merely lower semicontinuous. So are the p-superparabolic functions. As we mentioned, the viscosity supersolutions and the p-superparabolic functions coincide. This is an important link in our proof. If they, in addition, are bounded, then they are weak supersolutions satisfying (1.2). Our contribution is a new proof of the last fact. Our use of the v_{ϵ} 's replace a technically complicated approximation procedure in the old proof in [KL1].

The present proof is not free of technical complications. The corresponding proof for the stationary equation

$$\nabla \cdot (|\nabla v|^{p-2} \nabla v) = 0,$$

often called the p-Laplace equation, is much simpler and more transparent. For the benefit of the reader we have written down also this case, although the original proof in [L] is simple enough. See also [KM].

A final remark about unbounded viscosity solutions is appropriate. The truncated functions $v_k = \min(v, k), k = 1, 2, 3, \dots$, are viscosity supersolutions and the results above apply to them. Then one may proceed from this as in [KL2], [L], and [KM]. See also [BDGO].

Acknowledgements: We thank the anonymous referee for a helpful suggestion that led to a considerable simplification of the proof of Theorem 6. P. Lindqvist thanks the University of Pittsburgh for its hospitality.

2. Preliminaries

We begin with the p-Laplace equation

$$\nabla \cdot \left(|\nabla v|^{p-2} \nabla v \right) = 0$$

in a domain Ω in \mathbb{R}^n . This is the stationary case. We say that $v \in W^{1,p}_{loc}(\Omega)$ is a weak supersolution in Ω , if

$$\int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \ \nabla \varphi \rangle dx \ge 0 \tag{2.1}$$

whenever $\varphi \geq 0$ and $\varphi \in C_0^{\infty}(\Omega)$. If the integral inequality is reversed, we say that v is a weak subsolution. We say that a continuous $h \in W_{\text{loc}}^{1,p}(\Omega)$ is a p-harmonic function, if

$$\int_{\Omega} \langle |\nabla h|^{p-2} \nabla h, \ \nabla \varphi \rangle dx = 0 \tag{2.2}$$

for all $\varphi \in C_0^{\infty}(\Omega)$. By elliptic regularity theory the continuity is a redundant requirement in the definition.

Definition 1. We say that the function $v : \Omega \to (-\infty, \infty]$ is p-superharmonic in Ω , if

- (i) $v \not\equiv +\infty$,
- (ii) v is lower semicontinuous,
- (iii) v obeys the comparison principle in each subdomain $D \subset\subset \Omega$: if $h \in C(\overline{D})$ is p-harmonic in D, then the inequality $v \geq h$ on ∂D implies that $v \geq h$ in D.

We refer to [L] for this concept. Notice that the definition does not include any hypothesis about ∇v . The next definition is from the modern theory of viscosity solutions.

Definition 2. Let $p \geq 2$. We say that the function $v : \Omega \to (-\infty, \infty]$ is a viscosity supersolution in Ω , if

- (i) $v \not\equiv +\infty$,
- (ii) v is lower semicontinuous, and
- (iii) whenever $x_0 \in \Omega$ and $\varphi \in C^2(\Omega)$ are such that

$$v(x_0) = \varphi(x_0), \text{ and}$$

 $v(x) > \varphi(x) \text{ when } x \neq x_0,$

we have

$$\nabla \cdot (|\nabla \varphi(x_0)|^{p-2} \nabla \varphi(x_0)) \le 0.$$

According to [JLM] (Theorem 2.5), the viscosity supersolutions and the p-superharmonic functions are the same. In other words, Definition 1 and Definition 2 are equivalent.

In [L] the following theorem was proved for the p-superharmonic functions.

Theorem 1. Suppose that v is a locally bounded p-superharmonic function in Ω . Then the Sobolev derivative

$$\nabla v = \left(\frac{\partial v}{\partial x_1}, \cdots, \frac{\partial v}{\partial x_n}\right)$$

exists and $v \in W^{1,p}_{loc}(\Omega)$. Moreover, v is a weak supersolution, i.e.,

$$\int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \ \nabla \varphi \rangle dx \geq 0$$

whenever

$$\varphi \in C_0^{\infty}(\Omega), \ \varphi \ge 0.$$

We aim at giving a new proof of this theorem, using the viscosity theory. The proof for viscosity supersolutions is given in Section 3.

We now proceed to the parabolic equation

$$\frac{\partial v}{\partial t} = \nabla \cdot (|\nabla v|^{p-2} \nabla v)$$

in a domain Ω , this time in \mathbb{R}^{n+1} . We use the notation

$$v = v(x,t) = v(x_1, \cdots, x_n, t).$$

We assume that $p \geq 2$. (The case $p < \frac{2n}{n+2}$ is in doubt.) With obvious modifications, we repeat what was written above, but by paying attention

to the time variable. We say that v is a weak supersolution in Ω , if $v \in L(t_1, t_2; W^{1,p}(D))$ whenever $D \times (t_1, t_2) \subset\subset \Omega$ and

$$\iint_{\Omega} \left(-v \frac{\partial \varphi}{\partial t} + \langle |\nabla v|^{p-2} \nabla v, \nabla \varphi \rangle \right) dx dt \ge 0$$
 (2.3)

for all $\varphi \geq 0, \varphi \in C_0^{\infty}(\Omega)$. Similarly we define weak subsolutions. A continuous function h, belonging to the aforementioned space, is called a p-parabolic function, if

$$\iint_{\Omega} \left(-h \frac{\partial \varphi}{\partial t} + \langle |\nabla h|^{p-2} \nabla h, \nabla \varphi \rangle \right) dx dt = 0$$
 (2.4)

for all test functions $\varphi \in C_0^{\infty}(\Omega)$.

Definition 3. We say that the function $v : \Omega \to (-\infty, \infty]$ is p-superparabolic in Ω , if

- (i) v is finite in a dense subset of Ω .
- (ii) v is lower semicontinuous.
- (iii) v obeys the comparison principle in each subdomain $D_{t_1,t_2} = D \times (t_1,t_2) \subset\subset \Omega$: if $h \in C(\overline{D_{t_1,t_2}})$ is p-parabolic in D_{t_1,t_2} and if $v \geq h$ on the parabolic boundary of D_{t_1,t_2} , then $v \geq h$ in D_{t_1,t_2} .

Recall that the parabolic boundary is the union of $\partial D \times [t_1, t_2]$ and $\overline{D} \times \{t_1\}$. Thus $D \times \{t_2\}$ is excluded. See [KL] for some basic facts. Again there is an equivalent definition in terms of the viscosity theory.

Definition 4. Let $p \geq 2$. Suppose that $v : \Omega \to (-\infty, \infty]$ satisfies (i) and (ii) above. We say that v is a viscosity supersolution, if

(iii) whenever $(x_0, t_0) \in \Omega$ and $\varphi \in C^2(\Omega)$ are such that $v(x_0, t_0) = \varphi(x_0, t_0)$ and $v(x, t) > \varphi(x, t)$ when $(x, t) \neq (x_0, t_0)$, we have

$$\frac{\partial \varphi(x_0, t_0)}{\partial t} \ge \nabla \cdot (|\nabla \varphi(x_0, t_0)|^{p-2} \nabla \varphi(x_0, t_0))$$

Again the test function is touching v from below and the differential inequality is evaluated only at the point of contact. According to Theorem 4.4 in [JLM] Definitions 3 and 4 are equivalent. Moreover, one also obtains an equivalent definition by looking only at points (x,t) such that $t < t_0$, see [J]. In [KL] the following theorem was proved for the p-superparabolic functions.

Theorem 2. Suppose that v is a locally bounded p-superparabolic function in Ω . Then the Sobolev derivative

$$\nabla v(x,t) = \left(\frac{\partial v(x,t)}{\partial x_1}, \cdots, \frac{\partial v(x,t)}{\partial x_n}\right)$$

exists and $\nabla v \in L^p_{loc}(\Omega)$. Moreover, v is a weak supersolution, i.e.,

$$\iint_{\Omega} \left(-v \frac{\partial \varphi}{\partial t} + \langle |\nabla v|^{p-2} \nabla v, \nabla \varphi \rangle \right) dx \ dt \ge 0$$

whenever $\varphi \geq 0, \varphi \in C_0^{\infty}(\Omega)$.

The interpretation of the time derivative requires caution. It is often merely a measure, as the following example shows. Every function of the form v(x,t) = g(t) is p-superparabolic if g(t) is a non-decreasing lower semi-continuous step function. Thus Dirac deltas can appear in v_t .

3. The Stationary Equation

In this section we prove Theorem 1. Aiming at a local result, we may for the proof assume that v is bounded in the whole Ω . By adding a constant, if needed, we have

$$0 \le v(x) \le L$$
, when $x \in \Omega$. (3.1)

The approximants

$$v_{\epsilon}(x) = \inf_{y \in \Omega} \left\{ \frac{|x - y|^2}{2\epsilon} + v(y) \right\}, \quad x \in \Omega,$$
 (3.2)

have many good properties: they are rather smooth, they form an increasing sequence converging to v(x) as $\epsilon \to 0^+$, and from v they inherit the property of being viscosity supersolutions themselves. Some well-known facts are listed below.

- 1°) At each x in $\Omega, v_{\epsilon}(x) \nearrow v(x)$ as $\epsilon \to 0^+$.
- 2°) The function

$$v_{\epsilon}(x) - \frac{|x|^2}{2\epsilon}$$

is locally concave in Ω .

3°) The Sobolev gradient ∇v_{ϵ} exists and $\nabla v_{\epsilon} \in L^{\infty}_{loc}(\Omega)$.

In fact, the third assertion follows from the second.

Proposition 1. The approximant v_{ϵ} is a viscosity supersolution in the open subset of Ω where

$$dist (x, \partial \Omega) > \sqrt{2L\epsilon}.$$

Proof. Choose x in Ω as required above. Then the infimum in (3.2) is attained at some point y in Ω , say $y = x^*$. Formally, the possibility that x^* escapes to $\partial\Omega$ is prohibited by the inequalities

$$\frac{|x-x^*|^2}{2\epsilon} \le \frac{|x-x^*|^2}{2\epsilon} + v(x^*) = v_{\epsilon}(x) \le v(x) \le L$$

and

$$|x - x^*| \le \sqrt{2L\epsilon} < \operatorname{dist}(x, \partial\Omega).$$

Fix a point x_0 so that $x_0^* \in \Omega$. Assume that the test function φ touches v_{ϵ} from below at x_0 . We have

$$\varphi(x_0) = v_{\epsilon}(x_0) = \frac{|x_0 - x_0^*|^2}{2\epsilon} + v(x_0^*)$$

and

$$\varphi(x) \le v_{\epsilon}(x) \le \frac{|x-y|^2}{2\epsilon} + v(y)$$

for all x and y in Ω . Using this one can verify that the function

$$\psi(x) = \varphi(x + x_0 - x_0^*) - \frac{|x_0 - x_0^*|^2}{2\epsilon}$$
(3.3)

touches the original v from below at the point x_0^* . By assumption the inequality

$$\nabla \cdot \left(|\nabla \psi(x_0^*)|^{p-2} \nabla \psi(x_0^*) \right) \ge 0$$

holds since x_0^* is an interior point. Because

$$\nabla \psi(x_0^*) = \nabla \varphi(x_0), \ D^2 \psi(x_0^*) = D^2 \varphi(x_0),$$

we also have that

$$\nabla \cdot (|\nabla \varphi(x_0)|^{p-2} \nabla \varphi(x_0)) \ge 0 \tag{3.4}$$

at the original point x_0 .

Write

$$\Omega_{\epsilon} = \left\{ x \in \Omega \colon \text{dist } (x, \partial \Omega) > \sqrt{2\epsilon L} \right\}.$$

Theorem 3. The approximant v_{ϵ} obeys the comparison principle in Ω_{ϵ} . In other words, given a domain $D \subset\subset \Omega_{\epsilon}$ and a p-harmonic function $h \in C(\overline{D})$, then the implication

$$v_{\epsilon} \geq h \text{ on } \partial D \Rightarrow v_{\epsilon} \geq h \text{ in } D$$

holds.

Proof. This is Theorem 2.5 in [JLM].

The comparison principle implies that v_{ϵ} is a weak supersolution with test functions under the integral sign. The proof is based on an obstacle problem in the calculus of variations.

Theorem 4. The approximant v_{ϵ} is a weak supersolution in Ω_{ϵ} , i.e.,

$$\int_{\Omega} \langle |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \nabla \varphi \rangle dx \ge 0$$
(3.5)

whenever $\varphi \in C_0^{\infty}(\Omega_{\epsilon})$ and $\varphi \geq 0$.

Proof. Let $D \subset\subset \Omega_{\epsilon}$ be a regular domain. We regard v_{ϵ} as an obstacle and consider the class consisting of all functions w such that

$$\begin{cases} w \in C(\bar{D}) \cap W^{1,p}(D), \\ w \ge v_{\epsilon} \text{ in } D, \text{ and} \\ w = v_{\epsilon} \text{ on } \partial D. \end{cases}$$

The problem of minimizing the variational integral $\int |\nabla w|^p dx$ has a unique solution w_{ϵ} in this class. In other words,

$$\int_{D} |\nabla w_{\epsilon}|^{p} dx \leq \int_{D} |\nabla w|^{p} dx$$

 $^{^{1}\}mathrm{It}$ is not clear, whether the obstacle problem can be totally avoided in the passage to (3.5).

for all w in the aforementioned class. We refer to [MZ] for the continuity. By a standard argument, the minimizer is weak supersolution, i.e.,

$$\int_{D} \langle |\nabla w_{\epsilon}|^{p-2} \nabla w_{\epsilon}, \nabla \varphi \rangle dx \ge 0$$

whenever

$$\varphi \in C_0^{\infty}(D), \ \varphi \ge 0.$$

The theorem follows from the claim $w_{\epsilon} = v_{\epsilon}$ in D. To prove the claim, we notice that $w_{\epsilon} \geq v_{\epsilon}$. In the open set $A_{\epsilon} = \{w_{\epsilon} > v_{\epsilon}\}$ one knows that w_{ϵ} is p-harmonic. On the boundary ∂A_{ϵ} we have $w_{\epsilon} = v_{\epsilon}$. The comparison principle (Definition 1) implies that $v_{\epsilon} \geq w_{\epsilon}$ in A_{ϵ} . It follows that A_{ϵ} is empty and $w_{\epsilon} = v_{\epsilon}$. This was the claim.

The next lemma contains a bound that is independent of ϵ .

Lemma 1. (Caccioppoli) We have

$$\int_{\Omega} \zeta^p |\nabla v_{\epsilon}|^p dx \le p^p L^p \int_{\Omega} |\nabla \zeta|^p dx \tag{3.6}$$

whenever $\zeta \in C_0^{\infty}(\Omega_{\epsilon})$ and $\zeta \geq 0$.

Proof. Use the test function

$$\varphi = (L - v_{\epsilon})\zeta^p$$

in (3.5) to obtain this well-known estimate.

Corollary 1. The Sobolev derivative ∇v exists and $\nabla v \in L^p_{loc}(\Omega)$.

Proof. Use Lemma 1 and a standard compactness argument. \Box

In order to proceed to the limit under the integral sign in (3.5) we need more than the weak convergence:

$$\nabla v_{\epsilon} \to \nabla v$$

locally weakly in $L^p(\Omega)$. Actually, the convergence is strong.

Lemma 2. We have that $\nabla v_{\epsilon} \to \nabla v$ strongly in $L_{loc}^p(\Omega)$.

Proof. Let $\theta \in C_0^{\infty}(\Omega)$ and $\theta \geq 0$. Use the test function $\varphi = (v - v_{\epsilon})\theta$ in (3.5). The inequality can be written as

$$\int_{\Omega} \theta \langle |\nabla v|^{p-2} \nabla v - |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \ \nabla v - \nabla v_{\epsilon} \rangle \, dx
+ \int_{\Omega} (v - v_{\epsilon}) \langle |\nabla v|^{p-2} \nabla v - |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \nabla \theta \rangle \, dx
\leq \int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \ \nabla ((v - v_{\epsilon})\theta) \rangle \, dx$$

The last integral approaches zero as $\epsilon \to 0^+$, because of the weak convergence. We obtain

$$\left| \int_{\Omega} (v - v_{\epsilon}) \langle |\nabla v|^{p-2} \nabla v - |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \nabla \theta \rangle \, dx \right|$$

$$\leq \left(\int_{\Omega} (v - v_{\epsilon})^{p} dx \right)^{\frac{1}{p}} \|\nabla \theta\|_{L^{\infty}} \left\{ \left(\int_{\theta \neq 0} |\nabla v|^{p} \, dx \right)^{\frac{p-1}{p}} + \left(\int_{\theta \neq 0} |\nabla v_{\epsilon}|^{p} \, dx \right)^{\frac{p-1}{p}} \right\}$$

$$\to 0 \text{ as } \epsilon \to 0^{+}.$$

We conclude that

$$\limsup_{\epsilon \to 0} \int_{\Omega} \theta \langle |\nabla v|^{p-2} \nabla v - |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \nabla v - \nabla v_{\epsilon} \rangle dx = 0.$$

The integrand is non-negative. For $p \geq 2$ the elementary inequality

$$2^{2-p}|b-a|^p \le \langle |b|^{p-2}b - |a|^{p-2}a, b-a \rangle$$

yields the desired result.

Now we can take the limit under the integral sign in (3.5). Thus (2.1) follows. This concludes our proof of Theorem 1.

4. The Parabolic Case

For the proof of Theorem 2 we may assume that the viscosity supersolution v of the evolutionary p-Laplacian equation is bounded in the domain Ω in \mathbb{R}^{n+1} . Suppose that

$$0 \le v(x,t) \le L \text{ when } (x,t) \in \Omega. \tag{4.1}$$

The approximants

$$v_{\epsilon}(x,t) = \inf_{(y,\tau)\in\Omega} \left\{ \frac{|x-y|^2 + (t-\tau)^2}{2\epsilon} + v(y,\tau) \right\}, \quad \epsilon > 0, \tag{4.2}$$

play a central role in our study. Some useful properties are

- 1°) At each point (x,t) in $\Omega, v_{\epsilon}(x,t) \nearrow v(x,t)$ as $\epsilon \to 0^+$.
- 2°) The function

$$v_{\epsilon}(x,t) - \frac{|x|^2 + t^2}{2\epsilon}$$

is locally concave in Ω .

3°) The Sobolev derivatives $\frac{\partial v_{\epsilon}}{\partial t}$ and ∇v_{ϵ} exist and belong to $L^{\infty}_{loc}(\Omega)$. Given a point (x,t) in Ω , the infimum in (4.2) is attained at some point (x^*,t^*) in Ω provided that

$$\operatorname{dist}((x,t),\partial\Omega) > \sqrt{2L\epsilon}.$$
 (4.3)

Formally, the inequalities

$$\frac{|t - t^*|^2 + |x - x^*|^2}{2\epsilon} \le \frac{|t - t^*|^2 + |x - x^*|^2}{2\epsilon} + v(x^*, t^*)
= v_{\epsilon}(x, t) \le v(x, t) \le L,$$
(4.4)

and

$$\sqrt{(t-t^*)^2 + |x-x^*|^2} \le \sqrt{2L\epsilon} < \operatorname{dist}((x,t),\partial\Omega),$$

and the semincontinuity guarantee this. For simplicity, we denote the open set defined by (4.3) as Ω_{ϵ} . We then have $\Omega_{\epsilon} \subset\subset \Omega$ and $\lim_{\epsilon\to 0^+} \Omega_{\epsilon} = \Omega$.

Proposition 2. The approximant v_{ϵ} is a viscosity supersolution in Ω_{ϵ} .

Proof. Fix a point (x_0, t_0) in Ω_{ϵ} . Then the infimum (4.2) is attained at some interior point (x_0^*, t_0^*) in Ω . Select an arbitrary test function φ that touches v from below at (x_0, t_0) . The inequalities

$$\varphi(x_0, t_0) = v_{\epsilon}(x_0, t_0) = \frac{(t_0 - t_0^*)^2 + |x_0 - x_0^*|^2}{2\epsilon} + v(x_0^*, t_0^*),$$
$$\varphi(x, t) \le v_{\epsilon}(x, t) \le \frac{(t - \tau)^2 + |x - y|^2}{2\epsilon} + v(y, \tau)$$

are at our disposal for all (x,t) and (y,τ) in Ω . Manipulating these inequalities, one can verify that the function

$$\psi(x,t) = \varphi(x+x_0-x_0^*,t+t_0-t_0^*) - \frac{(t_0-t_0^*)^2 + |x_0-x_0^*|^2}{2\epsilon}$$

touches v from below at the point (x_0^*, t_0^*) . It will do as a test function. Because v is a viscosity supersolution, the inequality

$$\frac{\partial \psi}{\partial t} \le \nabla \cdot (|\nabla \psi|^{p-2} \nabla \psi)$$

holds at the point (x_0^*, t_0^*) . The partial derivatives of ψ evaluated at (x_0^*, t_0^*) coincide with those of φ evaluated at the original point (x_0, t_0) :

$$\psi_t(x_0^*, t_0^*) = \varphi_t(x_0, t_0), \nabla \psi(x_0^*, t_0^*) = \nabla \varphi(x_0, t_0), \dots$$

Hence the desired inequality

$$\frac{\partial \varphi}{\partial t} \le \nabla \cdot (|\nabla \varphi|^{p-2} \nabla \varphi)$$

holds at (x_0, t_0) .

Theorem 5. The approximant v_{ϵ} obeys the comparison principle in Ω_{ϵ} . In other words, given a domain $D_{t_1,t_2} = D \times (t_1,t_2) \subset\subset \Omega_{\epsilon}$ and a p-parabolic function $h \in C(\overline{D_{t_1,t_2}})$ then $v_{\epsilon} \geq h$ on the parabolic boundary of D_{t_1,t_2} implies that $v_{\epsilon} \geq h$ in D_{t_1,t_2} .

Proof. This was proved for viscosity supersolutions in Theorem 4.4, p. 712 of [JLM] \Box

The *parabolic* comparison principle allows comparison in space-time cylinders. We need domains of a more general shape but we do not need to distinguish the parabolic boundary. It turns out that parabolic comparison implies the following *elliptic* comparison principle:

Proposition 3. Given a domain $\Upsilon \subset \subset \Omega$ and a p-parabolic function $h \in C(\overline{\Upsilon})$, then $v_{\epsilon} \geq h$ on $\partial \Upsilon$ implies that $v_{\epsilon} \geq h$ in Υ .

Now Υ does not have to be a space-time cylinder and $\partial \Upsilon$ is the total boundary in \mathbb{R}^{n+1} .

Proof. For the proof of the necessity, it is enough to realize that the proof is immediate when Υ is a finite union of space-time cylinders $D_j \times (a_j, b_j)$. To verify this, just start with the earliest cylinder(s). Then the general case follows by exhausting Υ with such unions. Indeed, given $\alpha > 0$ the compact set $\{h(x,t) \geq v_{\epsilon}(x,t) + \alpha\}$ is contained in an open finite union

$$\bigcup D_i \times (a_i, b_i)$$

comprised in Ω so that $h < v_{\epsilon} + \alpha$ on the (Euclidean) boundary of the union. It follows that $h \le v_{\epsilon} + \alpha$ in the union. Since α was arbitrary, we conclude that $v_{\epsilon} \ge h$ in Υ .

The above *elliptic* comparison principle does not acknowledge the parabolic boundary. The reasoning can easily be slightly modified so that the latest boundary part is exempted.² Suppose that t < T for all $(x,t) \in \Upsilon$. (In this case $\partial \Upsilon$ may have a plane portion with t = T.) It is sufficient to verify that

$$v_{\epsilon} > h$$
 on $\partial \Upsilon$ when $t < T$

in order to conclude that $v_{\epsilon} \geq h$ in Υ .

This variant of the comparison principle is convenient for the following conclusion.

Lemma 3. The approximant v_{ϵ} is a weak supersolution in Ω_{ϵ} . That is, we have

$$\iint_{\Omega} \left(-v_{\epsilon} \frac{\partial \varphi}{\partial t} + \langle |\nabla v_{\epsilon}|^{p-2} \nabla v_{\epsilon}, \nabla \varphi \rangle \right) dx dt \ge 0 \tag{4.5}$$

for all $\varphi \in C_0^{\infty}(\Omega_{\epsilon}), \ \varphi \geq 0$.

Proof. We show that in a given domain $D_{t_1,t_2} = D \times (t_1,t_2) \subset\subset \Omega_{\epsilon}$ our v_{ϵ} coincides with the solution of an obstacle problem. The solutions of the obstacle problem are *per se* weak supersolutions. Hence, so is v_{ϵ} . Consider the class of all functions

$$\begin{cases} w \in C(\overline{D_{t_1,t_2}}) \cap L^p(t_1,t_2,W^{1,p}(D)), \\ w \geq v_{\epsilon} \text{ in } D_{t_1,t_2}, \text{ and } \\ w = v_{\epsilon} \text{ on the parabolic boundary of } D_{t_1,t_2}. \end{cases}$$

The function v_{ϵ} itself acts as an obstacle and induces the boundary values. There exists a (unique) weak supersolution w_{ϵ} in this class satisfying the variational inequality

$$\int_{t_1}^{t_2} \int_D \left[(\psi - w_{\epsilon}) \frac{\partial \psi}{\partial t} + \langle |\nabla w_{\epsilon}|^{p-2} \nabla w_{\epsilon}, \nabla (\psi - w_{\epsilon}) \rangle \right] dx dt$$

²Another way to see this is to use $v_{\epsilon}(x,t) + \alpha/(T-t)$ in the place of v_{ϵ} and then let $\alpha \to 0^+$.

$$\geq \frac{1}{2} \int_D (\psi(x, t_2) - w_{\epsilon}(x, t_2))^2 dx$$

for all smooth ψ in the aforementioned class. Moreover, w_{ϵ} is p-parabolic in the open set $A_{\epsilon} = \{w_{\epsilon} > v_{\epsilon}\}$. We refer to [C].

On the boundary ∂A_{ϵ} we know that $w_{\epsilon} = v_{\epsilon}$ except possibly when $t = t_2$. By the "elliptic" comparison principle we have $v_{\epsilon} \geq w_{\epsilon}$ in A_{ϵ} . On the other hand $w_{\epsilon} \geq v_{\epsilon}$. Hence $w_{\epsilon} = v_{\epsilon}$.

Let $\varphi \in C_0^{\infty}(D_{t_1,t_2}), \ \varphi \geq 0$, and choose $\psi = w_{\epsilon} + \varphi = v_{\epsilon} + \varphi$ above. An easy manipulation yields (4.5.)

Recall that $0 \le v \le L$. Then also $0 \le v_{\epsilon} \le L$. An estimate for ∇v_{ϵ} is provided in the well-known lemma below.

Lemma 4. (Caccioppoli) We have

$$\iint_{\Omega} \zeta^{p} |\nabla v_{\epsilon}|^{p} dx dt \leq CL^{2} \iint_{\Omega} \left| \frac{\partial \zeta^{p}}{\partial t} \right| dx dt + CL^{p} \iint_{\Omega} |\nabla \zeta|^{p} dx dt$$

$$(4.6)$$

whenever $\zeta \in C_0^{\infty}(\Omega_{\epsilon}), \zeta \geq 0$. Here C depends only on p.

Proof. The test function

$$\varphi(x,t) = (L - v_{\epsilon}(x_1,t))\zeta(x,t)$$

leads to this estimate.

Keeping $0 \le v \le L$, we can conclude from the Caccioppoli estimate that ∇v exists and $\nabla v \in L^p_{loc}(\Omega)$. Moreover, we have

$$\nabla v_{\epsilon} \to \nabla v$$
 weakly in $L_{\text{loc}}^p(\Omega)$,

at least for a subsequence. This proves the first part of the main theorem. The second part follows, if we can pass to the limit under the integral sign in

$$\iint_{\Omega} \left(-v_{\epsilon} \frac{\partial \varphi}{\partial t} + \langle |\nabla v_{\epsilon}^{p-2} \nabla v_{\epsilon}, \nabla \varphi \rangle \right) dx dt \ge 0 \tag{4.7}$$

as $\epsilon \to 0+$. When $p \neq 2$ the weak convergence alone does not directly justify such a procedure. Strong local convergence in L^p is, as it were, difficult to achieve. The difficulty is that no good bound on $\frac{\partial v_{\epsilon}}{\partial t}$ is available. In fact, calculations with the example

$$v(x,t) = \begin{cases} 1 & \text{when } t > 0 \\ 0, & \text{when } t \le 0 \end{cases}$$

reveal that simple adaptations of the proof given in the stationary case fail. However, the elementary vector inequality

$$|b|^{p-2}b - |a|^{p-2}a| \le (p-1)|b-a|(|b|+|a|)^{p-2}$$

valid for $p \ge 2$, implies that strong convergence in L_{loc}^{p-1} is sufficient for the passage to the limit. This is more accessible. Thus the theorem follows from

Lemma 5. We have that $\nabla v_{\epsilon} \to \nabla v$ strongly in $L_{loc}^{p-1}(\Omega)$, when $p \geq 2$.

Remark: The same proof yields strong convergence in $L_{loc}^q(\Omega)$, where q < p. The method fails for q = p, except when the original v is continuous.

This lemma is a special case of the next theorem.

Theorem 6. Suppose that $v_1, v_2, v_3, ...$ is a sequence of Lipschitz continuous weak supersolutions satisfying

$$0 \le v_k \le L \text{ in } Q_T = Q \times (0,T)$$

and

$$v_k \to v \text{ in } L^p(Q_T).$$

Then ∇v_1 , ∇v_2 , ∇v_3 ,... is a Cauchy sequence in $L^{p-1}_{loc}(Q_T)$.

Proof. Let $\delta > 0$. The idea is that a good estimate can be obtained integrated over the set where $|v_j - v_k| \leq \delta$. The exceptional set where $|v_j - v_k| > \delta$ requires an extra consideration based on the fact that it is of small measure³ for large indices, to wit less than $\delta^{-p} ||v_j - v_k||_p^p$. To this end, let $\theta \in C_0^{\infty}(Q_T)$, where $0 \leq \theta \leq 1$. Recall that

$$\iint_{\theta \neq 0} |\nabla v_k|^p \, dx dt \le A^p, \quad k = 1, 2, 3, \dots, \tag{4.8}$$

by the Caccioppoli estimate from Lemma 4. The constant A depends on L and on the support of θ .

In the equation

$$\iint (\langle |\nabla v_j|^{p-2} \nabla v_j, \nabla \varphi \rangle - v_j \frac{\partial \varphi}{\partial t}) \ dxdt \ge 0$$

the test function $\varphi = (\delta - w_{j_k})\theta$ is admissible⁴ where

$$w_{jk} = \begin{cases} \delta, & \text{when} \quad v_j - v_k > \delta, \\ v_j - v_k, & \text{when} \quad |v_j - v_k| \le \delta, \\ -\delta, & \text{when} \quad v_j - v_k < -\delta. \end{cases}$$

Notice that $|w_{jk}| \leq \delta$ and $\varphi \geq 0$. In the corresponding equation for v_k we use the test function $(\delta + w_{jk})\theta$. Subtracting the resulting equations and arranging terms, we arrive at

 $^{^3}$ The L^p -convergence assumption can be replaced by convergence in measure.

⁴We seize the opportunity to mention that the parameter δ is missing from the test function $(v^* - v_k)\theta$ in [KL1], which should be $(v^* - v_k + \delta)_+\theta$. To correct the error there the Egorov theorem is convenient.

$$\iint_{|v_{j}-v_{k}| \leq \delta} \theta \langle |\nabla v_{j}|^{p-2} \nabla v_{j} - |\nabla v_{k}|^{p-2} \nabla v_{k}, \ \nabla v_{j} - \nabla v_{k} \rangle \, dx dt
\leq \delta \int_{0}^{T} \int_{Q} \langle |\nabla v_{j}|^{p-2} \nabla v_{j} + |\nabla v_{k}|^{p-2} \nabla v_{k}, \nabla \theta \rangle \, dx dt
- \int_{0}^{T} \int_{Q} w_{jk} \langle |\nabla v_{j}|^{p-2} \nabla v_{j} - |\nabla v_{k}|^{p-2} \nabla v_{k}, \nabla \theta \rangle \, dx dt
+ \int_{0}^{T} \int_{Q} (v_{j} - v_{k}) \, \frac{\partial}{\partial t} (\theta w_{jk}) dx dt - \delta \int_{0}^{T} \int_{Q} (v_{j} + v_{k}) \, \frac{\partial \theta}{\partial t} \, dx dt
= I + II + III + IV.$$
(4.9)

We need an estimate that is free of the time derivatives $\frac{\partial v_j}{\partial t}$ and $\frac{\partial v_k}{\partial t}$, now present in term III. Thus we write this term as

$$III = \int_0^T \!\! \int_Q \theta \frac{\partial}{\partial t} \left(\frac{w_{jk}^2}{2} \right) dx dt + \int_0^T \!\! \int_Q (v_j - v_k) w_{jk} \frac{\partial \theta}{\partial t} dx dt$$
$$= -\frac{1}{2} \int_0^T \!\! \int_Q w_{jk}^2 \frac{\partial \theta}{\partial t} dx dt + \int_0^T \!\! \int_Q (v_j - v_k) w_{jk} \frac{\partial \theta}{\partial t} dx dt$$
$$\leq \frac{1}{2} \delta^2 \|\theta_t\|_1 + 2L\delta \|\theta_t\|_1 \leq \delta C_3,$$

where C_3 is independent of j and k. We also have

$$IV \leq 2\delta L \|\theta_t\|_1 = \delta C_4.$$

Next we turn to the first term. Hölder's inequality yields

$$I \leq \delta \|\nabla \theta\|_p \left(\|\nabla v_j\|_p^{p-1} + \|\nabla v_k\|_p^{p-1} \right)$$

$$\leq 2A^{p-1}\delta \|\nabla \theta\|_p$$

$$= \delta C_1,$$

and since $|w_{jk}| \leq \delta$ we also obtain

$$II < \delta C_1$$
.

Summing up, we have the estimate

$$I + II + III + IV < C\delta$$

with C independent of j and k.

The elementary inequality

$$2^{2-p}|b-a|^p \le \langle |b|^{p-2}b - |a|^{p-2}a, b-a \rangle$$

valid for vectors yields a minorant for the left-hand side. It follows that

$$\iint_{|v_j - v_k| \le \delta} \theta |\nabla v_j - \nabla v_k|^p \, dx dt \le 2^{p-2} \delta \, C = \mathcal{O}(\delta)$$

and, a fortiori,

$$\iint_{|v_j - v_k| \le \delta} \theta |\nabla v_j - \nabla v_k|^{p-1} dx dt = \mathcal{O}(\delta^{(p-1)/p})$$
 (4.10)

Recall the bound $\delta^{-p}||v_j - v_k||_p^p$ (Chebychev's inequality) for the measure of the set where $|v_j - v_k| > \delta$. It follows from Hölder's inequality that

$$\iint_{|v_{j}-v_{k}|>\delta} \theta |\nabla v_{j} - \nabla v_{k}|^{p-1} dxdt \leq \delta^{-1} ||v_{j} - v_{k}||_{p} \left(||\nabla v_{j}||_{p} + ||\nabla v_{k}||_{p} \right)^{p-1} \\
\leq (2A)^{p-1} \delta^{-1} ||v_{j} - v_{k}||_{p} \\
\to 0 \text{ as } j, k \to \infty. \tag{4.11}$$

Adding up the estimates (4.10) and (4.11) we finally arrive at

$$\int_0^T \!\! \int_O \theta |\nabla v_j - \nabla v_k|^{p-1} \, dx dt \le \mathcal{O}(\delta^{(p-1)/p}) + (2A)^{p-1} \delta^{-1} ||v_j - v_k||_p.$$

The theorem follows since the left-hand side is independent of δ .

Remark: We have locally that $\nabla v_{\epsilon} \to \nabla v$ strongly in each fixed L^q -norm with q < p. The claim in [KL1] that this convergence also holds for q = p has not been rigorously proved, so far as we know (the error is described in the footnote on page 12.)

Epilogue: The use of the *infimal convolutions* suggests a problem in Analysis. We state it in its simplest form. Suppose that $v \in W^{1,2}(\mathbb{R}^n) = H^1(\mathbb{R}^n)$ is a lower semicontinuous and bounded function of compact support. Again, define

$$v_{\epsilon}(x) = \min_{y \in \mathbb{R}^{\mathbf{n}}} \left\{ \frac{|x-y|^2}{2\epsilon} + v(y) \right\}$$

where $\epsilon > 0$. Assume that $\nabla v_{\epsilon} \to \nabla v$ weakly in $L^2(\mathbb{R}^n)$. Does it follow that $\nabla v_{\epsilon} \to \nabla v$ strongly in $L^2(\mathbb{R}^n)$? If not, what about strong convergence in some $L^q(\mathbb{R}^n)$? (Notice that now v is not necessarily a viscosity supersolution.)

References

- [BDGO] L. BOCCARDO, A. DALL'AGLIO, T. GALLOUËT, L. ORSINA, Nonlinear parabolic equations with measure data, J. Funct. Anal. **147** (1997), no. 1, pp. 237–258.
- [C] H.-J. CHOE, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities, Differential and Integral Equations 5, 1992, pp. 915-944.
- [DB] E. DiBENEDETTO, Degenerate Parabolic Equations, Springer-Verlag, New York, 1933.

- [J] P. JUUTINEN, On the definition of viscosity solutions for parabolic equations, Proceedings of the American Mathematical Society **129**, 10, pp, 2907–2911, 2001.
- [JLM] P. JUUTINEN, P. LINDQVIST, J. MANFREDI, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM Journal on Mathematical Analysis 33, 2001, pp. 699-717.
- [KL] T. KILPELÄINEN, P. LINDQVIST, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM Journal on Mathematical Analysis 27, 1996, pp. 661-683.
- [KL1] J. KINNUNEN, P. LINDQVIST, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Annali di Matematica Pura ed Applicata (4) 185, 2006, pp. 411-435.
- [KL2] J. KINNUNEN, P. LINDQVIST, Summability of semicontinuous supersolutions to a quasilinear parabolic equation, Annali della Scuola Normale Superiore di Pisa (Serie V) 4, 2005, pp. 59-78.
- [KM] T. KILPELÄINEN, J. MALÝ, Degenerate elliptic equations with measure data and nonlinear potentials, Annali della Scuola Normale Superiore di Pisa (Serie IV) 19, 1992, pp. 591-613.
- [L] P. LINDQVIST, On the definition and properties of p-superharmonic functions, Journal für die Reine und Angewandte Mathematik **365**, 1986, pp. 67-79.
- [MZ] J. MICHEL, P. ZIEMER, Interior regularity for solutions to obstacle problems, Nonlinear Analysis 10, 1986, pp. 1427-1448.
- [WZYL] Z. WU, J. ZHAO, J. YIN, H. LI, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001.

DEPARTMENT OF MATHEMATICS, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, NO-7491 TRONDHEIM, NORWAY

 $E\text{-}mail\ address:$ peter.lindqvist@math.ntnu.no URL: http://www.math.ntnu.no/~lqvist

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail address: manfredi@pitt.edu URL: http://www.pitt.edu/~manfredi