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Abstract. We consider the natural Neumann boundary condition for the
∞-Laplacian. We study the limit as p → ∞ of solutions of −∆pup = 0 in a
domain Ω with |Dup|p−2∂up/∂ν = g on ∂Ω. We obtain a natural minimization
problem that is verified by a limit point of {up} and a limit problem that is
satisfied in the viscosity sense. It turns out that the limit variational problem is
related to the Monge-Kantorovich mass transfer problems when the measures
are supported on ∂Ω.

1. Introduction.

In this paper we study the natural Neumann boundary conditions that appear
when one considers the ∞-Laplacian in a smooth bounded domain as limit of the
Neumann problem for the p-Laplacian as p → ∞. This problem is related to the
Monge-Kantorovich mass tranfer problem when the involved measures are sup-
ported on the boundary of the domain.

Let ∆pu = div
(

|Du|p−2Du
)

be the p-Laplacian. The ∞-Laplacian is the limit
operator ∆∞ = limp→∞ ∆p given by

∆∞u =

N
∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi

in the viscosity sense. This operator appears naturally when one considers abso-
lutely minimizing Lipschitz extensions of a boundary function f ; see [A], [ACJ],
and [J]. A fundamental result of Jensen [J] establishes that the Dirichlet problem
for ∆∞ is well posed in the viscosity sense.

When considering the Neumann problem, boundary conditions that involve the
outer normal derivative, ∂u/∂ν have been addressed from the point of view of
viscosity solutions for fully nonlinear equations in [B] and [ILi]. In these references
it is proved that there exist viscosity solutions and comparison principles between
them when appropriate hypothesis are satisfied. In particular strict monotonicity
is needed, a property that does not hold in our case of interest.
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We study the Neumann problem for the ∞-Laplacian obtained as the limit as
p→ ∞ of the problems

(1.1)

{

−∆pu = 0 in Ω,
|Du|p−2 ∂u

∂ν = g on ∂Ω.

Here Ω is a bounded domain in R
N with smooth boundary and ∂

∂ν is the outer
normal derivative. The boundary data g is a continuous function that necessarily
verifies the compatibility condition

∫

∂Ω

g = 0,

otherwise there is no solution to (1.1). Imposing the normalization

(1.2)

∫

Ω

u = 0

there exists a unique solution to problem (1.1) that we denote by up. This solution
can also be obtained by a variational principle. In fact, we can write

∫

∂Ω

up g = max

{
∫

∂Ω

wg : w ∈ W 1,p(Ω),

∫

Ω

w = 0 ,

∫

Ω

|Dw|p ≤ 1

}

.

Our first result states that there exist limit points of up as p→ ∞ and that they
are maximizers of a variational problem that is a natural limit of these variational
problems.

Observe that for q > N the set {up}p>q is bounded in C1−p/q(Ω). Let v∞ be a
uniform limit of a subsequence {upi

}, pi → ∞.

Theorem 1.1. A limit function v∞ is a solution to the maximization problem

(1.3)

∫

∂Ω

v∞g = max

{
∫

∂Ω

wg : w ∈ W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖∞ ≤ 1

}

.

An equivalent dual statement is the minimization problem

(1.4) ‖Dv∞‖∞ = min

{

‖Dw‖∞ : w ∈ W 1,∞(Ω),

∫

Ω

w = 0,

∫

∂Ω

wg ≥ 1

}

.

The maximization problem (1.3) is also obtained by applying the Kantorovich
optimality principle to a mass transfer problem for the measures µ+ = g+HN−1

x ∂Ω
and µ− = g−HN−1

x ∂Ω that are concentrated on ∂Ω. The mass transfer compat-
ibility condition µ+(∂Ω) = µ−(∂Ω) holds since g has zero average on ∂Ω. The
maximizers of (1.3) are called maximal Kantorovich potentials [Am].

Evans and Gangbo [EG] have considered mass transfer optimization problems
between absolutely continuous measures that appear as limits of p-Laplacian prob-
lems. A very general approach is discussed in [BBP], where a problem related to
but different from ours is discussed (see Remark 4.3 in [BBP].)

Our next results discusses the equation that v∞ satisfies in the viscosity sense.

Theorem 1.2. A limit v∞ is a solution of

(1.5)

{

∆∞u = 0 in Ω,
B(x, u,Du) = 0, on ∂Ω,
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in the viscosity sense. Here

B(x, u,Du) ≡















min
{

|Du| − 1 , ∂u
∂ν

}

if g(x) > 0,
max{1 − |Du| , ∂u

∂ν } if g(x) < 0,
H(|Du|)∂u∂ν if g(x) = 0,
∂u
∂ν = 0 if x ∈ {g(x) = 0}o,

and H(a) is given by

H(a) =

{

1 if a ≥ 1,
0 if 0 ≤ a < 1.

Observe that the normalization (1.2) is not necessary to obtain existence of a
solution to (1.1) nor to (1.5) since both problems are invariant by adding a constant
to the solution u. Notice that the boundary condition only depends on the sign of
g.

The next question to consider is whether we have uniqueness of viscosity solu-
tions of (1.5). Examples discussed in Section §3 show that this is not the case.
Nevertheless we can say something about uniqueness under some favorable geomet-
ric assumptions on g and Ω. We will need that a limit is infinite harmonic in Ω by
Theorem 1.2, a maximizer of (1.3), and some geometric assumptions on g and Ω.
The proof is based on some tools from [EG].

To state our uniqueness result let us describe the required geometrical hypothesis
on the boundary data. Let ∂Ω+ = supp g+ and ∂Ω− = supp g−. For a given v∞ a
maximizer in (1.3) following [EG] we define the transport set as

(1.6) T (v∞) =

{

z ∈ Ω : ∃x ∈ ∂Ω+, y ∈ ∂Ω−, v∞(z) = v∞(x) − |x− z|

and v∞(z) = v∞(y) + |y − z|

}

.

Observe that this set T is closed. We have the following property

Proposition 1.1. Suppose that Ω is a convex domain. Let v∞ be a maximizer of

(1.3) with ∆∞v∞ = 0, then

|Dv∞(x)| = 1, for a.e. x ∈ T (v∞).

Define a transport ray by Rx = {z | |v∞(x)− v∞(z)| = |x− z|}. Notice that two
transport rays cannot intersect in Ω unless they are identical. Indeed, assume z ∈ T
then there exist x, y ∈ Ω such that v∞(x) − v∞(z) = |x− z| and v∞(z) − v∞(y) =
|z − y|, then |x − y| ≤ |x − z| + |z − y| = v∞(x) − v∞(y). If x, y and z are not
colinear we contradict the Lipschitz condition verified by v∞.

Our geometric hypothesis for uniqueness is then

∂Ω ⊂ T (v∞).

We have:

Theorem 1.3. Assume that Ω is a bounded convex domain with smooth connected

boundary. Let g be a continuous boundary data on ∂Ω such that every maximizer

v∞ with ∆∞v∞ = 0 verifies ∂Ω ⊂ T (v∞). Then there exists a unique infinite

harmonic solution u∞ to (1.3). Hence, the limit

(1.7) lim
p→∞

up = u∞, uniformly in Ω

exists.
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Remark 1.1. Observe that if {g = 0} has empty interior on the boundary then the

uniqueness of the limit holds since for every v∞ we get ∂Ω ⊂ T (v∞).

To illustrate our results we present some examples. In an interval Ω = (−L,L)
with g(L) = −g(−L) > 0 the limit of the solutions of (1.1), up, turns out to be
u∞(x) = x. It is easy to check that this function is indeed the unique solution of
the maximization problem (1.3) and of the problem (1.5).

This example can be easily generalized to the case where Ω is an annulus,

Ω = {r1 < |x| < r2},

and the function g is a positive constant g1 on |x| = r1 and a negative constant g2
on |x| = r2 with the constraint

∫

∂Ω

g =

∫

|x|=r1

g +

∫

|x|=r2

g = 0.

The solutions up of (1.1) in the annulus converge uniformly as p→ ∞ to a cone

u∞(x) = C − |x|.

However one can modify the function g on |x| = r2 in such a way it does not change
its sign and that the cone does not maximize (1.3), see Section §3. Hence, there is
no uniqueness for (1.5) even for non-vanishing boundary data.

An example of a domain and boundary data such that uniqueness of the limit
holds is a disk in R

2, D = {|(x, y)| < 1} with g(x, y) > 0 for x > 0 and g(x, y) < 0
for x < 0 with

∫

∂D g = 0. The details are in Section §3.

2. The Neumann problem

In this section we prove that there exists a limit, v∞, of the solutions at level p,
up. It satisfies a variational principle (1.3) and it is a solution to (1.5).

Recall from the introduction that we call up the solution of (1.1) with the normal-
ization (1.2). As we have mentioned, this solution can be obtained by a variational
principle. Indeed, consider the minimum in S of the following functional

Jp(u) =

∫

Ω

|Du|p −

∫

∂Ω

ug

where S is given by

S =

{

u ∈ W 1,p(Ω) :

∫

Ω

u = 0

}

.

Lemma 2.1. The functional Jp attains a minimun in S. Moreover there is a

unique minimizer.

Proof. It is standard. For the sake of completeness we provide the proof when p ≥ 2.
The functional attains a minimum in S since for every r, 1 ≤ r < p(N−1)/(N−p),
the embedding S →֒ Lr(∂Ω) is compact.

Next, let us show that if u and v are weak solutions of (1.1) then they agree up
to an additive constant. The proof of this fact is just to multiply the equation by
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u− v and integrate. We get

0 =

∫

Ω

< |Du|p−2Du− |Dv|p−2Dv,Du−Dv >

−

∫

∂Ω

(u− v)(|Du|p−2∂νu− |Dv|p−2∂νv)

=

∫

Ω

< |Du|p−2Du− |Dv|p−2Dv,Du−Dv >

≥ C(N, p)

∫

Ω

|Du −Dv|p.

Hence Du = Dv. �

An alternative variational formulation that is equivalent to the previous one is
to consider the maximization problem

Mp = max

{
∫

∂Ω

wg : w ∈W 1,p(Ω) :

∫

Ω

w = 0 ,

∫

Ω

|Dw|p ≤ 1

}

.

Denoting a maximizer by ũp we have

∆pũp = 0

with the boundary condition

|Dũp|
p−2 ∂ũp

∂ν
=

g

Mp
.

Hence, it holds

up ≡M1/(p−1)
p ũp.

The quantity Mp is uniformly bounded in p ∈ [2,∞). To see this fact we use the
trace inequality to obtain

Mp =

∫

∂Ω

ũpg ≤ ‖g‖∞

∫

∂Ω

|ũp| ≤ C1‖g‖∞

∫

Ω

|Dũp| ≤ C1‖g‖∞.

Suppose that we have a sequence {up} of solutions to (1.1). We derive some
estimates on the family up. Since we are interested in large values of p we may

assume that p > N and hence up ∈ Cα(Ω). Multiplying the equation by up and
integrating we obtain,

(2.1)

∫

Ω

|Dup|
p =

∫

∂Ω

up g ≤

(
∫

∂Ω

|up|
p

)1/p (
∫

∂Ω

|g|p
′

)1/p′

where p′ is the exponent conjugate to p, that is 1/p′+1/p = 1. Recall the following
trace inequality, see for example [E],

∫

∂Ω

|φ|pdσ ≤ Cp

(
∫

Ω

|φ|p + |Dφ|pdx

)

,

where C is a constant that does not depend on p. Going back to (2.1), we get,

∫

Ω

|Dup|
p ≤

(
∫

∂Ω

|g|p
′

)1/p′

C1/pp1/p

(
∫

Ω

|up|
p + |Dup|

pdx

)1/p

.

On the other hand, for large p we have

|up(x) − up(y)| ≤ Cp|x− y|1−
N
p

(
∫

Ω

|Dup|
pdx

)1/p

.
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Since we are assuming that
∫

Ω
up = 0, we may choose a point y such that up(y) = 0,

and hence

|up(x)| ≤ C(p,Ω)

(
∫

Ω

|Dup|
pdx

)1/p

.

The arguments in [E], pages 266-267, show that the constant C(p,Ω) can be chosen
uniformly in p. Hence, we obtain

∫

Ω

|Dup|
p ≤

(
∫

∂Ω

|g|p
′

)1/p′

C1/pp1/p(Cp2 + 1)1/p
(

∫

Ω

|Dup|
pdx

)1/p

.

Taking into account that p′ = p/(p− 1), for large values of p we get
(

∫

Ω

|Dup|
p

)1/p

≤ αp

(
∫

∂Ω

|g|p
′

)1/p

where αp → 1 as p→ ∞. Next, fix m, and take p > m. We have,
(

∫

Ω

|Dup|
m

)1/m

≤ |Ω|
1
m

− 1
p

(
∫

Ω

|Dup|
p

)1/p

≤ |Ω|
1
m

− 1
p

(
∫

∂Ω

|g|p
′

)1/p

,

where |Ω|
1
m

− 1
p → |Ω|

1
m as p → ∞. Hence, there exists a weak limit in W 1,m(Ω)

that we will denote by v∞. This weak limit has to verify
(

∫

Ω

|Dv∞|m
)1/m

≤ |Ω|
1
m .

As the above inequality holds for everym, we get that v∞ ∈ W 1,∞(Ω) and moreover,
taking the limit m→ ∞,

|Dv∞| ≤ 1, a.e. x ∈ Ω.

Lemma 2.2. The subsequence upi
converges to v∞ uniformly in Ω.

Proof. From our previous estimates we know that
(

∫

Ω

|Dup|
pdx

)1/p

≤ C,

uniformly in p. Therefore we conclude that up is bounded (independently of p) and
has a uniform modulus of continuity. Hence up converges uniformly to v∞. �

Proof of Theorem 1.1. Multiplying by up, passing to the limit, and using Lemma
2.2, we obtain,

lim
p→∞

∫

Ω

|Dup|
p = lim

p→∞

∫

∂Ω

upg =

∫

∂Ω

v∞g.

If we multiply (1.1) by a test function w, we have, for large enough p,
∫

∂Ω

wg ≤

(
∫

Ω

|Dup|
p

)(p−1)/p(
∫

Ω

|Dw|p
)1/p

≤

(
∫

∂Ω

v∞gdσ + δ

)(p−1)/p(
∫

Ω

|Dw|p
)1/p

.

As the previous inequality holds for every δ > 0, passing to the limit as p→ ∞ we
conclude,

∫

∂Ω

wg ≤

(
∫

∂Ω

v∞g

)

‖Dw‖∞.
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Hence, the function v∞ verifies,
∫

∂Ω

v∞g = max

{
∫

∂Ω

wg : w ∈ W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖∞ ≤ 1

}

,

or equivalently,

‖Dv∞‖∞ = min

{

‖Dw‖∞ : w ∈W 1,∞(Ω),

∫

Ω

w = 0,

∫

∂Ω

wg ≤ 1

}

.

This ends the proof. �

On the other hand, taking as a test function in the maximization problem v∞
itself we obtain the following corollary.

Corollary 2.1. If g 6≡ 0, then ‖Dv∞‖L∞(Ω) = 1.

Following [B] let us recall the definition of viscosity solution taking into account
general boundary conditions for elliptic problems. Assume

F : Ω × R
N × S

N×N → R

a continuous function. The associated equation

F (x,∇u,D2u) = 0

is called (degenerate) elliptic if

F (x, ξ,X) ≤ F (x, ξ, Y ) if X ≥ Y.

Definition 2.1. Consider the boundary value problem

(2.2)

{

F (x,Du,D2u) = 0 in Ω,
B(x, u,Du) = 0 on ∂Ω.

(1) A lower semi-continuous function u is a viscosity supersolution if for every

φ ∈ C2(Ω) such that u − φ has a strict minimum at the point x0 ∈ Ω with

u(x0) = φ(x0) we have: If x0 ∈ ∂Ω the inequality

max{B(x0, φ(x0), Dφ(x0)), F (x0, Dφ(x0), D
2φ(x0))} ≥ 0

holds, and if x0 ∈ Ω then we require

F (x0, Dφ(x0), D
2φ(x0)) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every φ ∈ C2(Ω)
such that u−φ has a strict maximum at the point x0 ∈ Ω with u(x0) = φ(x0)
we have: If x0 ∈ ∂Ω the inequality

min{B(x0, φ(x0), Dφ(x0)), F (x0, Dφ(x0), D
2φ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0, Dφ(x0), D
2φ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolution.

We will use the following notation

Fp(η,X) ≡ −Trace(Ap(η)X),

where

Ap(η) = Id+ (p− 2)
η ⊗ η

|η|2
, if η 6= 0, Ap(0) = IN ,



8 J. GARCÍA-AZORERO, J. J. MANFREDI, I. PERAL AND J.D. ROSSI

and the notation

(2.3) Bp(x, u, η) ≡ |η|p−2 < η, ν(x) > −g(x).

If we have a weak solution of (1.1) that is continuous in Ω then it is a viscosity
solution. This is the content of our next result.

Lemma 2.3. Let u be a continuous weak solution of (1.1) for p > 2. Then u is a

viscosity solution of

(2.4)

{

Fp(Du,D
2u) = 0 in Ω,

Bp(x, u,Du) = 0 on ∂Ω.

Proof. Let x0 ∈ Ω and a test function φ such that u(x0) = φ(x0) and u − φ has a
strict minimum at x0. We want to show that

−(p− 2)|Dφ|p−4∆∞φ(x0) − |Dφ|p−2∆φ(x0) ≥ 0.

Assume that this is not the case, then there exists a radius r > 0 such that

−(p− 2)|Dφ|p−4∆∞φ(x) − |Dφ|p−2∆φ(x) < 0,

for every x ∈ B(x0, r). Set m = inf |x−x0|=r(u − φ)(x) and let ψ(x) = φ(x) +m/2.
This function ψ verifies ψ(x0) > u(x0) and

−div(|Dψ|p−2Dψ) < 0.

Multiplying by (ψ − u)+ extended by zero outside B(x0, r) we get
∫

{ψ>u}

|Dψ|p−2DψD(ψ − u) < 0.

Taking (ψ − u)+ as test function in the weak form of (1.1) we get
∫

{ψ>u}

|Du|p−2DuD(ψ − u) = 0.

Hence,

C(N, p)

∫

{ψ>u}

|Dψ −Du|p

≤

∫

{ψ>u}

〈|Dψ|p−2Dψ − |Du|p−2Du,D(ψ − u)〉 < 0,

a contradiction.
If x0 ∈ ∂Ω we want to prove

max { |Dφ(x0)|
p−2 < Dφ(x0), ν(x0) > −g(x0),

−(p− 2)|Dφ|p−4∆∞φ(x0) − |Dφ|p−2∆φ(x0)
}

≥ 0.

Assume that this is not the case. We proceed as before and we obtain
∫

{ψ>u}

|Dψ|p−2DψD(ψ − u) <

∫

∂Ω∩{ψ>u}

g(ψ − u),

and
∫

{ψ>u}

|Du|p−2DuD(ψ − u) ≥

∫

∂Ω∩{ψ>u}

g(ψ − u).
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Therefore,

C(N, p)

∫

{ψ>u}

|Dψ −Du|p

≤

∫

{ψ>u}

〈|Dψ|p−2Dψ − |Du|p−2Du,D(ψ − u)〉 < 0,

again a contradiction. This proves that u is a viscosity supersolution. The proof of
the fact that u is a viscosity subsolution runs as above, we omit the details. �

Remark 2.1. If Bp is monotone in the variable ∂u
∂ν Definition 2.1 takes a sim-

pler form, see [B]. This is indeed the case for (2.3). More concretely, if u is a

supersolution and φ ∈ C2(Ω) is such that u − φ has a strict minimum at x0 with

u(x0) = φ(x0), then

(1) if x0 ∈ Ω, then

−

{

|Dφ(x0)|
2∆φ(x0)

p− 2
+ ∆∞φ(x0)

}

≥ 0,

and if

(2) If x0 ∈ ∂Ω, then

|Dφ(x0)|
p−2〈Dφ(x0), ν(x0)〉 ≥ g(x0).

It is worthy point out that (1.5) do not verifies this monotonicity condition.

Lemma 2.4. The limit limpi→∞ upi
= v∞ verifies

(2.5) |Dv∞| ≤ 1, in Ω in the viscosity sense.

Proof. See [BBM], Proposition 5.1. �

We are now ready to prove our result concerning the equation satisfied by
limpi→∞ upi

= v∞.

Proof of Theorem 1.2. First, let us check that −∆∞u∞ = 0 in the viscosity sense
in Ω. Let us recall the standard proof. Let φ be a smooth test function such that
v∞ − φ has a strict maximum at x0 ∈ Ω. Since upi

converges uniformly to v∞ we
get that upi

− φ has a maximum at some point xi ∈ Ω with xi → x0. Next we use
the fact that upi

is a viscosity solution of

−∆pup = 0

and we obtain

(2.6) −(pi − 2)|Dφ|pi−4∆∞φ(xi) − |Dφ|pi−2∆φ(xi) ≤ 0.

If Dφ(x0) = 0 we get −∆∞φ(x0) ≤ 0. If this is not the case, we have that
Dφ(xi) 6= 0 for large i and then

−∆∞φ(xi) ≤
1

pi − 2
|Dφ|2∆φ(xi) → 0, as i→ ∞.

We conclude that

−∆∞φ(x0) ≤ 0.

That is v∞ is a viscosity subsolution of −∆∞u∞ = 0.

A similar argument shows that v∞ is also a supersolution and therefore a solution
of −∆∞v∞ = 0 in Ω.
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Let us check the boundary condition. There are six cases to be considered.
Assume that v∞ − φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0. Using the
uniform convergence of upi

to v∞ we obtain that upi
− φ has a minimum at some

point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before
and obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have, by Remark 2.1,

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≥ g(xi).

Since g(x0) > 0, we have Dφ(x0) 6= 0, and we obtain

|Dφ|(x0) ≥ 1.

Moreover, we also have
∂φ

∂ν
(x0) ≥ 0.

Hence, if v∞ − φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0, we have

(2.7) max

{

min{−1 + |Dφ|(x0),
∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}

≥ 0.

Next assume that v∞ − φ has a strict maximum at x0 ∈ ∂Ω with g(x0) > 0.
Using the uniform convergence of upi

to v∞ we obtain that upi
−φ has a maximum

at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can argue
as before and obtain

−∆∞φ(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≤ g(xi).

If 1 < |Dφ|(x0)| we have
∂φ

∂ν
(x0) ≤ 0.

Hence, the following inequality holds

(2.8) min

{

min{−1 + |Dφ|(x0),
∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}

≤ 0.

For the following case assume that v∞ − φ has a strict maximum at x0 with
g(x0) < 0. Using the uniform convergence of upi

to v∞ we obtain that upi
− φ has

a maximum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we
can argue as before and obtain

−∆∞φ(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≤ g(xi).

As g(x0) < 0, Dφ(x0) 6= 0 and we obtain

|Dφ|(x0) ≥ 1,

and
∂φ

∂ν
(x0) ≤ 0.
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Hence, the following inequality holds

(2.9) min

{

max{1 − |Dφ|(x0),
∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}

≤ 0.

Now assume that v∞ − φ has a strict minimum at x0 ∈ ∂Ω with g(x0) < 0.
Using the uniform convergence of upi

to v∞ we obtain that upi
−φ has a minimum

at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can argue
as before and obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≥ g(xi).

If 1 < |Dφ|(x0) we have
∂φ

∂ν
(x0) ≥ 0.

Hence, the following inequality holds.

(2.10) max

{

max{1 − |Dφ|(x0),
∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}

≥ 0.

For the next case assume that v∞ − φ has a strict minimum at x0 ∈ ∂Ω with
g(x0) = 0. Using the uniform convergence of upi

to v∞ we obtain that upi
− φ has

a minimum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we
can argue as before and obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≥ g(xi).

If Dφ(x0) = 0, then we have
∂φ

∂ν
(x0) = 0.

If Dφ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≥

(

1

|Dφ|
(xi)

)pi−2

g(xi).

If |Dφ(x0)| ≥ 1 then we have
∂φ

∂ν
(x0) ≥ 0.

Therefore, the following inequality holds

(2.11) max

{

H(|Dφ|(x0))
∂φ

∂ν
(x0) ,−∆∞φ(x0)

}

≥ 0.

If x0 belongs to the interior of the set {g = 0} then we have,

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≥ g(xi) = 0.

Hence, passing to the limit, we obtain

∂φ

∂ν
(x0) ≥ 0.
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Therefore

(2.12) max

{

∂φ

∂ν
(x0) ,−∆∞φ(x0)

}

≥ 0.

Finally, assume that v∞ − φ has a strict maximum at x0 with g(x0) = 0 Using
the uniform convergence of upi

to v∞ we obtain that upi
− φ has a maximum at

some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can argue as
before and obtain

−∆∞φ(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≤ g(xi).

If Dφ(x0) = 0, then we have
∂φ

∂ν
(x0) = 0.

If |Dφ(x0)| ≥ 1 we obtain
∂φ

∂ν
(x0) ≤ 0.

Hence, the following inequality holds

(2.13) min

{

H(|Dφ|(x0))
∂φ

∂ν
(x0) ,−∆∞φ(x0)

}

≤ 0.

If x0 ∈ {g = 0}o we get

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≤ g(xi) = 0,

and taking the limit
∂φ

∂ν
(x0) ≤ 0.

Hence, we conclude

(2.14) min

{

∂φ

∂ν
(x0) ,−∆∞φ(x0)

}

≤ 0.

�

Remark 2.2. The function v∞ is a viscosity solution of ∆∞v∞ = 0 in Ω and

therefore it is an absolutely minimizing function, [ACJ]. It is a minimizer of the

Lipschitz constant of u among functions that coincides with v∞ on ∂Ω′ in every

subdomain Ω′ of Ω. Therefore we can rewrite the maximization problem (1.3) as a

maximization problem on ∂Ω: v∞|∂Ω is a function that has Lipschitz constant less

or equal than one on ∂Ω and maximizes
∫

∂Ω
ug.

Remark 2.3. If up is the solution of (1.1) with boundary data g and ûp is the

solution with boundary data ĝ = λg, λ > 0, then

u(x) = λ−1/(p−1)û(x).

Therefore the limit v∞ is the same if we consider any positive multiple of g as

boundary data and the same subsequence.

As a consequence the limit problem must be invariant by scalar multiplication of

the data g. One could naively conjecture that the limits depends only on the sign of

g, however this conjecture is not true as we will see in Example 2 below.
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3. Proof of the Uniqueness Theorem

We proceed now with the proof of Theorem 1.3. For this purpose, we first prove a
crucial Lemma based upon ideas from [EG]. Let us call dΩ(x, y) the usual distance
function for points in Ω, that is,

dΩ(x, y) = inf{length(γ), γ : [0, 1] 7→ Ω, γ(0) = x, γ(1) = y}.

Observe that dΩ(x, y) = |x− y| if the segment from x to y lies in Ω.

Lemma 3.1. Let v∞ be a maximizer of (1.3). Set ∂Ω+ = supp g+ and ∂Ω− =
supp g−. Define

(3.15) v∗(x) = inf
y∈∂Ω−

{v∞(y) + dΩ(x, y)}

and

(3.16) v∗(x) = sup
y∈∂Ω+

{v∞(y) − dΩ(x, y)} .

Then, we have

(3.17) v∗(x) ≥ v∞(x) ≥ v∗(x), for all x ∈ Ω,

(3.18) v∞(x) = inf
y∈∂Ω−

{v∞(y) + dΩ(x, y)} , for all x ∈ ∂Ω+,

and

(3.19) v∞(x) = sup
y∈∂Ω+

{v∞(y) − dΩ(x, y)} , for all x ∈ ∂Ω−.

Proof. First, observe that (3.17) can be easily deduced from the fact that v∞ verifies

(3.20) |v∞(x) − v∞(y)| ≤ dΩ(x, y), for all x, y ∈ Ω.

We prove (3.18), the proof of (3.19) being analogous. As we have that v∞ verifies
(3.20) we obtain

(3.21) v∞(x) ≤ inf
y∈∂Ω−

{v∞(y) + dΩ(x, y)} , for all x ∈ Ω.

The function v∗(x) verifies

|v∗(x) − v∗(y)| ≤ dΩ(x, y), for all x, y ∈ Ω,

v∞(x) ≤ v∗(x) for all x ∈ Ω

and

v∞(x) = v∗(x) for all x ∈ ∂Ω−.

Using that v∞ is a maximizer, we get
∫

∂Ω

gv∞ ≥

∫

∂Ω

gv∗.

Hence
∫

∂Ω+

g(v∞ − v∗) ≥ 0,

and, since g > 0 on ∂Ω+ we conclude that

v∞(x) = v∗(x), for all x ∈ ∂Ω+,

as we wanted to prove. �
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Remark 3.1. When Ω is convex, the proof of the lemma, the definition of v∗, v∗
and the definition of the transport set T given in (1.6) imply

∂Ω+ ∪ ∂Ω− ⊂ T = {v∗(x) = v∞(x) = v∗(x)}.

See Lemma 3.1 in [EG] for a detailed proof.

Lemma 3.2. We have that

(3.22)
|Dv∗| = 1, in Ω \ ∂Ω−,

|Dv∗| = 1, in Ω \ ∂Ω+.

Proof. Let us check the first property (the second being similar). By definition
|Dv∗(x)| ≤ 1 a.e; moreover there exists yx ∈ ∂Ω− such that

v∗(x) = v∞(yx) + |x− yx|.

Take z a point in the segment defined by x, yx. We claim that

v∗(z) = v∞(yx) + |z − yx|.

We argue by contradiction, if

v∗(z) < v∞(yx) + |z − yx|

we obtain

v∗(x) = v∞(yx) + |x− yx| > v∞(yz) + |z − yz| + |x− z| ≥ v∞(yz) + |x− yz|,

because x, z, yx are co-linear. This is a contradiction which proves the claim. Prop-
erty (3.22) follows immediately from the claim. �

Proof of Proposition 1.1. If follows from Remark 3.1 and Lemma 3.2 that

(3.23) |Dv∞| = 1, a.e. in T.

�

Proof of Theorem 1.3. Assume that we have a datum g on ∂Ω such that every
maximizer v∞ verifies that T (v∞) is connected and ∂Ω ⊂ T (v∞). If we have two
maximizers of (1.3), v∞ and w∞, then

z∞ =
v∞ + w∞

2

is also a maximizer, and hence, by (3.23),

|Dv∞| = |Dw∞| = |Dz∞| = 1,

almost everywhere in A, a connected set that contains the boundary of Ω (just take
A as the connected component of T (v∞)∩T (w∞)∩T (z∞) that contains ∂Ω). This
implies that

(3.24) Dv∞ = Dw∞,

in that set, A.
If A = Ω, using our normalization constraint,

(3.25)

∫

Ω

v∞ =

∫

Ω

w∞ = 0,

we obtain, from (3.24),

v∞ = w∞, in Ω.
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If A 6= Ω, from (3.24) we obtain that there exists a constant C such that

v∞ = w∞ + C, in A.

Now, in Ω \A we have two continuous functions, v∞ and w∞ +C that are infinite
harmonic and coincide on the boundary of Ω\A (here the assumption that ∂Ω ⊂ T
comes into play again). By uniqueness of viscosity solutions of ∆∞u = 0 with
Dirichlet boundary conditions, see [J], we conclude that

v∞ = w∞ + C, in Ω.

Hence, using again the normalization constraint, (3.25) we get

v∞ = w∞,

as we wanted to prove. �

Remark 3.2. Observe that, in general, the variational problem (1.3) does not have

a unique solution. To see this fact, observe that given v∞ a maximizer it does not

have to coincide with v∗ or with v∗ in Ω, see [ACJ].

4. Examples

Example: The Annulus. Let Ω be the annulus

Ω = {r1 < |x| < r2}.

Let us begin with a function g0 that is a positive constant g1 on |x| = r1 and a
negative constant g2 on |x| = r2 satisfyting the constraint

∫

∂Ω

g0 =

∫

|x|=r1

g1 +

∫

|x|=r2

g2 = 0.

As we stated in the introduction, the limit v∞ is the cone,

(4.26) v∞(x) = C(x) =

(

1

|Ω|

∫

Ω

|y|

)

− |x|.

To check this fact we observe that, by uniqueness, the solutions up of (1.1) are
radial hence the limit v∞ must be a radial function. Direct integration shows that
it must be a cone with gradient one.

Note however that the cone (4.26) may not be a maximizer of (1.3) for another
nonradial boundary datum g with sign(g) = sign(g0). In fact, consider a cone with
the vertex slightly displaced,

(4.27) Cx0
(x) = C − |x− x0|.

One may concentrate g on |x| = r2 near a point x̄ and on |x| = r1 near a point x̂
preserving the total integral and the sign. It is easy to show that in this case the
centered cone given by (4.26) does not maximizes (1.3) since for a suitable g we
obtain

∫

∂Ω

g(x)C(x) dx <

∫

∂Ω

g(x)Cx0
(x) dx.

Since this can be done without altering the sign of g we have that there is no
uniqueness for the limit problem (1.5). Moreover, the limit v∞ depends on the
shape of g not only on its sign (see Remark 2.3.)

Observe that we have not used Theorem 1.3 to conclude uniqueness, but rather
we have used an ad-hoc argument based on the simple nature of the boundary
function. When boundary function is constant, subject to the condition of zero
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average, the transport rays are radial so that the hypothesis of Theorem 1.3 are
trivially satisfied.

Example: The Disk. Now let us present a more interesting and non-trivial
example of a domain and boundary data such that uniqueness holds. Let Ω be a
disk in R

2, D = {|(x, y)| < 1} with boundary datum g(x, y) > 0 for x > 0 and
g(x, y) < 0 for x < 0 with

∫

∂D
g = 0. Let v∞ a maximizer of (1.3) and define for

x ∈ T the transport ray as

Rx = {z ; |v∞(x) − v∞(z)| = |x− z|}.

Recall that wo transport rays cannot intersect in Ω unless they are identical. More-
over the endpoints of every transport ray Rx = [a b] satisfy a ∈ ∂Ω+ and b ∈ ∂Ω−.
The union of the transport rays is the transport set T (see Lemma 3.2 in [EG].)
From these properties we conclude that there exists a monotone continuous func-
tion from ∂Ω+ to ∂Ω− that sends a point a ∈ ∂Ω+ to the endpoint of the ray,
b ∈ ∂Ω−. A monotonicity argument shows that T (v∞) = Ω. Hence we may apply
Theorem 1.3 to obtain the existence of the limit limp→∞ up.
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