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SUBELLIPTIC CORDES ESTIMATES

ANDRÁS DOMOKOS AND JUAN J. MANFREDI

Abstract. We prove Cordes type estimates for subelliptic linear partial dif-
ferential operators in non-divergence form with measurable coefficients in the

Heisenberg group. As an application we establish interior horizontal W 2,2-
regularity for p-harmonic functions in the Heisenberg group H1 for the range√

17−1
2

≤ p < 5+
√

5
2

.

1. Introduction

The main goal of this paper is to prove some estimates of Cordes type for subel-
liptic partial differential operators in non-divergence form with measurable coeffi-
cients in the Heisenberg group, including the linearized p-Laplacian. To show the
applicability of our methods let us state the following theorem that constitutes a
special case of our results.

Theorem 1.1. Let
√

17−1
2 ≤ p < 5+

√
5

2 . Then any p-harmonic function in the
Heisenberg group H1 initially in HW 1,p

loc is in HW 2,2
loc .

We build on previous regularity results obtained by Marchi [7, 8] and extended by
the first author [3], which give non-uniform bounds of the HW 2,2 (or HW 2,p) norm
of the approximate p-harmonic functions. Using the Cordes condition [2, 11] and
Strichartz’s spectral analysis [10] we establish HW 2,2 estimates for linear subelliptic
partial differential operators with measurable coefficients. As an application we
obtain uniform HW 2,2 bounds for the approximate p-harmonic functions for p in
a range that depends on the dimension of the Heisenberg group Hn.

Consider the Heisenberg group Hn; that is R2n+1 with the group multiplication

(x1, ..., x2n, t)·(y1, ..., y2n, u) = (x1+y1, ..., x2n+y2n, t+u− 1
2

n∑
i=1

(xiyn+i−xn+iyi)) .

For i ∈ {1, ..., n} consider the vector fields

Xi =
∂

∂xi
− xn+i

2
∂

∂t
, Xn+i =

∂

∂xn+i
+

xi

2
∂

∂t
, T =

∂

∂t
.

The nontrivial commutators are [Xi, Xn+i] = T , otherwise [Xi, Xj ] = 0.
Let Ω ⊂ Hn be a domain. Consider the following Sobolev space with respect to the
horizontal vector fields Xi as

HW 2,2(Ω) = {u ∈ L2(Ω) : XiXju ∈ L2(Ω) , for all i, j ∈ {1, ..., 2n}}
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endowed with the inner-product

(u, v)HW 2,2(Ω) =
∫

Ω

(
u(x)v(x) +

2n∑
i,j=1

XiXju(x) ·XiXjv(x)
)
dx .

HW 2,2(Ω) is a Hilbert space and let HW 2,2
0 (Ω) be the closure of C∞

0 (Ω) in this
Hilbert space.

We denote by X2u the matrix of second order horizontal derivatives whose entries
are (X2u)ij = Xj(Xiu), and by ∆Hu =

∑2n
i=1 XiXiu the subelliptic Laplacian

associated to the horizontal vector fields Xi.

Lemma 1.1. For all u ∈ HW 2,2
0 (Ω) we have

||X2u||L2(Ω) ≤ cn||∆Hu||L2(Ω) ,

where

cn =

√
1 +

2
n

.

The constant cn is sharp when Ω = Hn.

Proof. We follow the spectral analysis of ∆H developed by Strichartz [10]. Let us
recall the fact that −∆H and iT commute, and share the same system of eigenvec-
tors

Φλ,k,l(z, t) =
λn

(2π)n+1(n + 2k)n+1
· exp

(
− ilλt

n + 2k

)
· exp

(
− λ|z|2

4(n + 2k)

)
· Ln−1

k

(
λ|z|2

2(n + 2k)

)
,

where l = ±1, k ∈ {0, 1, 2, ...} and Ln−1
k is the Laguerre polynomial

Ln−1
k (t) =

et

tn−1
· 1
k!
· dk

dtk
(
e−ttk+n−1

)
.

For the eigenvalues, we have the following relations

iTu ∗ Φλ,k,l =
lλ

n + 2k
u ∗ Φλ,k,l (1.1)

−∆Hu ∗ Φλ,k,l = λu ∗ Φλ,k,l , (1.2)

where ∗ denotes the group convolution. Therefore, the spectral decomposition of
∆Hu for u ∈ C∞

0 (Ω), the Plancherel formula, and relations (1.1)-(1.2) give

||∆Hu||2L2(Ω) = 2π

∞∑
k=0

∑
l=±1

(n + 2k)
∫ ∞

0

∫
Cn

|∆Hu ∗ Φλ,k,l(z, 0)|2 dzdλ

= 2π
∞∑

k=0

∑
l=±1

(n + 2k)
∫ ∞

0

∫
Cn

∣∣∣∣n + 2k

l
iTu ∗ Φλ,k,l(z, 0)

∣∣∣∣2 dzdλ

≥ n2||Tu||2L2(Ω)

Therefore, for all u ∈ C∞
0 (Ω) we have

||Tu||L2(Ω) ≤
1
n
||∆Hu||L2(Ω) . (1.3)
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In the following we will use the fact that the formal adjoint of Xk is −Xk. Let
u ∈ C∞

0 (Ω). For k ∈ {1, ..., n} and j 6= k + n, Xk and Xj commute, therefore∫
Ω

(XkXju(x))2 dx =
∫

Ω

XkXku(x) ·XjXju(x)dx .

For j = k + n we have∫
Ω

(XkXju(x))2 dx =
∫

Ω

XkXju(x) · (XjXku(x) + Tu(x)) dx

=
∫

Ω

XkXju(x) ·XjXku(x) dx +
∫

Ω

XkXju(x) · Tu(x) dx

= −
∫

Ω

Xju(x) ·XkXjXku(x) dx +
∫

Ω

XkXju(x) · Tu(x) dx

= −
∫

Ω

Xju(x) · (XjXk + T ) Xku(x) dx +
∫

Ω

XkXju(x) · Tu(x) dx

= −
∫

Ω

Xju(x) ·XjXkXku(x) dx + 2
∫

Ω

XkXju(x) · Tu(x) dx

=
∫

Ω

XkXku(x) ·XjXju(x) dx + 2
∫

Ω

XkXju(x) · Tu(x) dx .

Similarly, ∫
Ω

(XjXku(x))2 dx

=
∫

Ω

XkXku(x) ·XjXju(x) dx− 2
∫

Ω

XjXku(x) · Tu(x) dx .

Therefore,

||X2u||2L2(Ω) =
2n∑

k,j=1

||XkXju||2L2(Ω) =

=
2n∑

k,j=1

∫
Ω

XkXku(x) ·XjXju(x) dx + 2
n∑

k=1

∫
Ω

[Xk, Xk+n]u(x) · Tu(x) dx

=
∫

Ω

(
2n∑

k=1

XkXku(x)

)2

dx + 2n

∫
Ω

(Tu(x))2 dx

≤
(

1 + 2n
1
n2

)
||∆Hu||2L2(Ω) =

(
1 +

2
n

)
||∆Hu||2L2(Ω) .

The constant
√

1 + 2
n is sharp when Ω = Hn, because for v = Φλ,0,1 we have

Tv = i
n∆Hv. �

2. Cordes conditions for second order subelliptic PDE operators in
non-divergence forms with measurable coefficients

Let us consider now

Au =
2n∑

i,j=1

aij(x)XiXju
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where the functions aij ∈ L∞(Ω). Let us denote by A = (aij) the 2n × 2n matrix
of coefficients.

Definition 2.1. [2, 11] We say that A satisfies the Cordes condition Kε,σ if there
exists ε ∈ (0, 1] and σ > 0 such that

0 <
1
σ
≤

2n∑
i,j=1

a2
ij(x) ≤ 1

2n− 1 + ε

(
2n∑
i=1

aii(x)

)2

, a.e. x ∈ Ω . (2.1)

Theorem 2.1. Let 0 < ε ≤ 1, σ > 0 such that γ =
√

1− ε cn < 1 and A satisfies
the Cordes condition Kε,σ. Then for all u ∈ HW 2,2

0 (Ω) we have

||X2u||L2 ≤
√

1 +
2
n

1
1− γ

||α||L∞ ||Au||L2 , (2.2)

where

α(x) =
〈A(x), I〉
||A(x)||2

.

Proof. We denote by I the identity 2n × 2n matrix, by 〈A,B〉 =
∑2n

i,j=1 aijbij

the inner product and by ||A|| =
√∑2n

i,j=1 a2
ij the Euclidean norm in R2n×2n for

matrices A and B. The Cordes condition Kε,σ implies that

〈A(x), I〉2

||A(x)||2
≥ 2n− (1− ε) (2.3)

for all x ∈ Ω′ ⊂ Ω, where the Lebesgue measure of Ω \ Ω′ is 0.
Let be now x ∈ Ω′ arbitrary, but fixed. Consider the quadratic polynomial

P (α) = ||A(x)||2α2 − 2〈A(x), I〉α + 2n− (1− ε) .

Inequality (2.3) shows that

min
α∈R

P (α) = P

(
〈A(x), I〉
||A(x)||2

)
≤ 0 . (2.4)

Therefore there exists

α(x) =
〈A(x), I〉
||A(x)||2

(2.5)

such that P (α(x)) ≤ 0. Observing that

||I − α(x)A(x)||2 = ||A(x)||2α2(x)− 2〈A(x), I〉α(x) + 2n

we get that (2.4) implies that

||I − α(x)A(x)||2 ≤ 1− ε ,

which is equivalent to

|〈I − α(x)A(x),M〉| ≤
√

1− ε||M || , for all M ∈M2n(R) . (2.6)

Condition (2.6) can be written also as∣∣∣∣∣∣
n∑

i=1

mii − α(x)
n∑

i,j=1

aij(x)mij

∣∣∣∣∣∣ ≤ √
1− ε

 n∑
i,j=1

m2
ij

1/2

(2.7)
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for all M ∈M2n(R).
Formula (2.7) and Lemma 1.1 imply that for all u ∈ HW 2,2

0 (Ω) we have∫
Ω

|∆Hu(x)− α(x)Au(x)|2 dx ≤ (1− ε)
∫

Ω

2n∑
i,j=1

(XiXju(x))2 dx ≤

≤ (1− ε)c2
n

∫
Ω

|∆Hu(x)|2 dx .

Therefore, for γ =
√

1− ε cn < 1 we get

||∆Hu− αAu||L2(Ω) ≤ γ||∆Hu||L2(Ω)

which shows that
||X2u||L2(Ω) ≤ cn||∆Hu||L2(Ω) ≤

≤ cn

1− γ
||αAu||L2(Ω) ≤

cn

1− γ
||α||L∞(Ω)||Au||L2(Ω) .

�

3. HW 2,2-interior regularity for p-harmonic functions in Hn

Let Ω ∈ Hn be a domain, h ∈ HW 1,p(Ω) and p > 1. Consider the problem of
minimizing the functional

Φ(u) =
∫

Ω

|Xu(x)|p dx

over all u ∈ HW 1,p(Ω) such that u − h ∈ HW 1,p
0 (Ω). The Euler equation for this

problem is the p-Laplace equation
2n∑
i=1

Xi

(
|Xu|p−2 Xiu

)
= 0 , in Ω . (3.1)

A function u ∈ HW 1,p(Ω) is called a weak solution for (3.1) if
2n∑
i=1

∫
Ω

|Xu(x)|p−2Xiu(x) ·Xiϕ(x)dx = 0 , ∀ ϕ ∈ HW 1,p
0 (Ω) . (3.2)

Φ is a convex functional on HW 1,p, therefore weak solutions are minimizers for Φ
and vice-versa.

For m ∈ N let us define now the approximating problems of minimizing func-
tionals

Φm(u) =
∫

Ω

(
1
m

+ |Xu(x)|2
) p

2

and the corresponding Euler equations
2n∑
i=1

Xi

((
1
m

+ |Xu|2
) p−2

2

Xiu

)
= 0 , in Ω . (3.3)

The weak form of this equation is
2n∑
i=1

∫
Ω

(
1
m

+ |Xu(x)|2
) p−2

2

Xiu(x) ·Xiϕ(x)dx = 0 , for all ϕ ∈ HW 1,p
0 (Ω) .

(3.4)
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The differentiated version of equation (3.3) has the form
2n∑

i,j=1

am
ij XiXju = 0 , in Ω (3.5)

where

am
ij (x) = δij + (p− 2)

Xiu(x) Xju(x)
1
m + |Xu(x)|2

.

Let us consider a weak solution um ∈ HW 1,p(Ω) of equation (3.3). Then am
ij ∈

L∞(Ω). Define the mapping Lm : W 2,2
0 (Ω) → L2(Ω) by

Lm(v)(x) =
2n∑

i,j=1

am
ij (x)XiXjv(x) . (3.6)

We will check the validity of Theorem 2.1 for Lm. We have
2n∑
i=1

am
ii (x) = 2n + (p− 2)

|Xum|2
1
m + |Xum|2

,

and
2n∑

i,j=1

(
am

ij (x)
)2 = 2n + 2(p− 2)

|Xum|2
1
m + |Xum|2

+ (p− 2)2
|Xum|4(

1
m + |Xum|2

)2 .

Denote

(p− 2)
|Xum|2

1
m + |Xum|2

= Λ .

Therefore, for an ε ∈ (1− 1
c2

n
, 1) we need

2n + 2Λ + Λ2 ≤ 1
2n− 1 + ε

(2n + Λ)2 .

This leads to
(2n− 1)Λ2 ≤ (1− ε)

(
2n + 2Λ + Λ2

)
<

<
1
c2
n

(
2n + 2Λ + Λ2

)
.

Hence, (
(2n− 1)c2

n − 1
)
Λ2 − 2Λ− 2n < 0 .

Solving this inequality we get

Λ ∈

(
1−

√
2n ((2n− 1) c2

n − 1) + 1
(2n− 1)c2

n − 1
,

1 +
√

2n ((2n− 1) c2
n − 1) + 1

(2n− 1)c2
n − 1

)
. (3.7)

Using c2
n = n+2

n and the fact that |Xum|2
1
m +|Xum|2

< 1 we have that for all m ∈ N we
have

p− 2 ∈

(
n− n

√
4n2 + 4n− 3

2n2 + 2n− 2
,

n + n
√

4n2 + 4n− 3
2n2 + 2n− 2

)
, (3.8)

and that the operators Lm satisfies the assumptions of Theorem 2.1 uniformly in
m.
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Let us remark that in the case n = 1 we have

p− 2 ∈

(
1−

√
5

2
,

1 +
√

5
2

)
.

Theorem 3.1. Let

2 ≤ p < 2 +
n + n

√
4n2 + 4n− 3

2n2 + 2n− 2
.

If u ∈ HW 1,p(Ω) is a minimizer for the functional Φ, then u ∈ HW 2,2
loc (Ω).

Proof. The case p = 2 it is well known, so let us suppose p 6= 2. Let u ∈ HW 1,p(Ω)
be a minimizer for Φ. Consider x0 ∈ Ω and r > 0 such that B4r = B(x0, 4r) ⊂⊂ Ω.
We need a cut-off function η ∈ C∞

0 (B2r) such that η = 1 on Br. Also consider
minimizers um for Φm on HW 1,p(B2r) subject to um − u ∈ HW 1,p

0 (B2r). Then
um → u in HW 1,p(B2r) as m →∞.

By [3, 7] we get that for 2 ≤ p < 4 we have um ∈ HW 2,2
loc (Ω), but with bounds

depending on m, and also that um satisfies equation Lm(um) = 0 a.e. in B2r. So,
in B2r we have a.e.

XiXj(η2um) = XiXj(η2)um + Xj(η2)Xium + Xi(η2)Xjum + η2XiXjum

and hence

Lm(η2um) = um Lm,um
(η2) +

2n∑
i,j=1

am
ij (x)

(
Xj(η2)Xium + Xi(η2)Xjum

)
.

By Theorem 2.1 it follows that

||X2um||L2(Br) ≤ ||X2(η2um)||L2(B2r) ≤ c||Lm(η2um)||L2(B2r)

≤ c||um||HW 1,p(B2r) ≤ c||u||HW 1,p(B2r)

where c is independent of m. Therefore, u ∈ HW 2,2(Br). �

Remark 3.1. Observe that the range for p given by Theorem 3.1 is shrinking from
[2, 5+

√
5

2 ) to [2, 3] as n increases from 1 to ∞.

For the case p < 2 we need the following lemmas. The first lemma is an inter-
polation result and its proof is based on integration by parts.

Lemma 3.1. For all u ∈ C∞
0 (Ω) and for all δ > 0 there exists c(δ) > 0 such that

||Xu||2L2(Ω) ≤ δ||X2u||2L2(Ω) + c(δ)||u||2L2(Ω) .

Proof.

||Xu||2L2(Ω) =
2n∑
i=1

∫
Ω

Xiu(x) Xiu(x) dx = −
2n∑
i=1

∫
Ω

u(x) XiXiu(x)dx =

= −
∫

Ω

u(x) ∆Hu(x) dx ≤ δ

2n

∫
Ω

|∆Hu(x)|2 dx + c(δ)
∫

Ω

u2(x) dx

≤ δ

∫
Ω

|X2u(x)|2 dx + c(δ)
∫

Ω

u2(x) dx

�
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From Lemma 3.1 and the higher order extension results available for the Sobolev
spaces on the Heisenberg group [6, 9] we get the following result.

Lemma 3.2. For all u ∈ HW 2,2(Br) and all δ > 0 there exists c(δ) > 0 such that

||Xu||2L2(Br) ≤ δ||X2u||2L2(Br) + c(δ)||u||2L2(Br) .

By Lemmas 3.1 and 3.2 we can use a method similar to the proof of Theorem
9.11 [5] to get the following result.

Lemma 3.3. Let us suppose that the operator A satisfies the assumptions of The-
orem 4.1 and that B3r ⊂ Ω. Then

||X2u||L2(Br) ≤ c
(
||Au||L2(B2r) + ||u||L2(B2r)

)
,

for all u ∈ HW 2,2
loc (B3r).

Proof. Let η ∈ C∞
0 (B2r), 0 < σ < 1 and σ′ = 1+σ

2 such that η is a cut-off function
between Bσ2r and Bσ′2r satisfying

|Xη| ≤ 2
(1− σ)r

and |X2η| ≤ 4
(1− σ)2r2

.

Then we can use Theorem 2.1 for ηu to get

||X2u||L2(Bσ2r) ≤ ||X2(ηu)||L2(B2r) ≤ c||A(ηu)||L2(B2r) =

≤ c

∥∥∥∥∥∥ηAu + uA(η) +
2n∑

i,j=1

aij

(
Xj(η)Xiu + Xi(η)Xju

)∥∥∥∥∥∥
L2(B2r)

≤ c
(
||Au||L2(B2r) +

1
(1− σ)r

||Xu||L2(Bσ′2r) +
1

(1− σ)2r2
||u||L2(Bσ′2r)

)

For k ∈ {0, 1, 2} let us use the seminorms

|||u|||k = sup
0<σ<1

(1− σ)krk||Xku||L2(Bσ2r) .

Then
|||u|||2 ≤ c

(
r2||Au||L2(B2r) + |||u|||1 + |||u|||0

)
.

Lemma 3.2 implies that for δ > 0 small we have

|||u|||1 ≤ δ|||u|||2 + c(δ)|||u|||0 .

Therefore,
|||u|||2 ≤ c

(
r2||Au||L2(B2r) + |||u|||0

)
and hence

||X2u||L2(Bσ2r) ≤
c

(1− σ)2r2

(
r2||Au||L2(B2r) + ||u||L2(B2r)

)
.

For σ = 1
2 we get the desired inequality. �

Theorem 3.2. Let us consider the Heisenberg group H1 and
√

17− 1
2

≤ p ≤ 2 .

If u ∈ HW 1,p(Ω) is a minimizer for the functional Φ, then u ∈ HW 2,2
loc (Ω).
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Proof. We start the proof in the same way as we did in the proof of Theorem 3.1.
Let u ∈ HW 1,p(Ω) be a minimizer for Φ. Consider x0 ∈ Ω and r > 0 such that
B4r = B(x0, 4r) ⊂⊂ Ω. We need a test function η ∈ C∞

0 (B3r). Also consider
minimizers um for Φm on HW 1,p(B3r) subject to um − u ∈ HW 1,p

0 (B3r). Then
um → u in HW 1,p(B3r) as m →∞. We use the facts that

4
3

<
5−

√
5

2
<

√
17− 1

2
< 2,

that the homogeneous dimension of H1 is Q = 4, and

2 ≤ 4p

4− p
for all

4
3
≤ p < 2 .

The Sobolev embeddings result in the subelliptic setting [1] says that

HW 1,p
0

(
B3r

)
↪→ Lq

(
B3r

)
, for 1 ≤ q ≤ 4p

4− p
.

Therefore, um → u in L2
(
B3r

)
. Also, using that (see [3]) for

√
17−1
2 ≤ p ≤ 2

we have um ∈ HW 2,p
loc

(
B3r

)
we get that Xum ∈ L2

loc

(
B3r

)
. Let us remark that

these bounds of X2um in Lp may depend on m and that Lm(um) = 0 a.e. in B3r.
Moreover,

||Lm

(
η2um

)
||L2(B3r) =

= c

∥∥∥∥∥∥um Lm(η2) +
2n∑

i,j=1

am,u
ij (x)

(
Xj(η2)Xium + Xi(η2)Xjum

)∥∥∥∥∥∥
L2(B3r)

≤

≤ c
(
||um||L2(suppη) + ||Xum||L2(suppη)

)
< +∞ .

and hence um ∈ HW 2,2
loc

(
B3r

)
. By Lemma 3.3 for all m sufficiently large we have

||X2
(
um

)
||L2(Br) ≤ c||um||L2(B2r) ≤ 2c||u||L2(B2r)

which shows that X2um is uniformly bounded in HW 2,2(Br), hence u ∈ HW 2,2(Br).
�

In the forthcoming article [4] we establish the C1,α regularity for p-harmonic
functions in Hn when p is in a neighborhood of 2.
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