Biocatalysis

QuickTime[™] and a are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompress TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Trypsin

RNA Ligase

Aminotransferase

Amanda Garner September 14, 2007

All enzyme structures from: http://www.ebi.ac.uk/thornton-srv/database/enzymes/

Responsible for the chemistry of life by catalyzing chemical transformations that make/break covalent bonds in cell

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Enzyme Specificity and Efficiency

Enzymes exhibit remarkable specificity for substrate and large rate accelerations

- Chiral environment due to side chains (selectivity and specificity)
- Rate constant ~ 10^{6} - 10^{8} M⁻¹•s⁻¹
- $k_{cat}/k_{uncat} \sim 10^{6} 10^{12} \text{ (up to } 10^{17}!\text{)}$
- Example: Acetylcholinesterase

Acetylcholinesterase

Enzyme Kinetics

$$\mathbf{E} + \mathbf{S} \xrightarrow{k_1}_{k_1} \mathbf{ES} \xrightarrow{k_{cat}} \mathbf{E} + \mathbf{P} \qquad \mathbf{V} = k_{cat} [\mathbf{ES}]$$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

[ES] ~ constant so assume steady state: rate of ES breakdown = rate of ES formation

$$k_{-1}$$
 [ES] + k_{cat} [ES] = k_1 [E][S]

Several manipulations:
$$V = \frac{k_{cat} [\mathbf{E}_{\mathbf{o}}][\mathbf{S}]}{K_{m} + [\mathbf{S}]} = \frac{V_{max} [\mathbf{S}]}{K_{m} + [\mathbf{S}]}$$
 Michaelis-Menten equation
 K_{m} = substrate affinity for enzyme ([**S**] at $V = 0.5 V_{max}$);
(low K_{m} = tight binding; high K_{m} = weak binding)
 k_{cat} = turnover number

Enzyme Efficiency

Fischer (1890) - "Lock and Key" model: binding of S results in its activation to effect catalysisPauling (1948) - Transition State model:

Lowering of E_a because has higher affinity for TS than GS

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Other factors:

- 1. Increased local [S] to hold atoms in correct orientation
- 2. Capability for simultaneous acid and base catalysis
- 3. Capability for covalent catalysis (ex. Histidine residue)

Industrial Use of Enzymes: Biocatalysis

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

TRENDS in Biotechnology 2007, 25, 66-71

Generation of New Enzymes

- <u>GOAL</u> Discover enzymes with unique and enhanced properties
 - 1. Improve enantioselectivity
 - 2. Tune and alter substrate specificity
 - 3. Enhance activity
 - 4. Discover new activities
 - 5. Improve stability (ex. temperature, structure)
 - 6. Ability to function in organic solvent

Rational Design

Drawback: difficult to discern aa responsible for substrate preference, stability, activity

Shaklin, J. Science 1998, 282, 1315-1317; Arnold, F. A. Nature 2001, 409, 253-257.

Evolution

Natural selection or *survival of the fittest* (Darwin, 1859): process by which favorable mutations are selected for over time

In Nature, this is an uncontrolled process over millions of years

Can evolutionary processes be <u>directed</u> towards a certain defined goal in an efficient manner (days/weeks)? QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Directed Evolution = Irrational Design

"Breeding" of enzyme for certain properties Involves iterative process of making random mutations (e.g. site mutagenesis, error-prone PCR) and screening the pool of mutants for the desired property

Reetz, M. T.; Jaeger, K-E. Chem. Biol. 2000, 7, 709-718.

DNA Shuffling

Nature uses both mutation and recombination to increase number of combinations of genes

DNA shuffling: homologous recombination of pools of selected mutant genes by random fragmentation and PCR reassembly (greatly increase # of mutations)

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Tobin, M. B. *Curr. Opn. Struct. Biol.* **2000**, *10*, 421-427. Stemmer, W. P. C. *Nature*, **1994**, *370*, 389--391; *PNAS*, **1994**, *91*, 10747-10751.

DNA Shuffling of Chimaeric Genes

Shuffling of gene family to accelerate evolution

Example: family of class C cephalosporinases Test for moxalactam resistance by DNA shuffling Single gene shuffling - 8-fold 1 in resistance Multi-gene shuffling - 270-540-fold 1 in resistance (best mutant contained segments from 3/4 genes shuffled)

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> > Stemmer, W. P. C. Nature, 1998, 391, 288-291.

Directed Evolution Toward New Catalytic Activity

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Change catalytic activity of existing protein scaffold glyoxalase (metallohydrolase) to β -lactamase with $k_{cat}/K_m = 1.8 \times 10^2 \text{ M}^{-1} \cdot \text{s}^{-1}$

Use technique combining directed evolution with insertion, deletion, and substitution of gene segments

Catalytic Antibodies

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Jencks (1967): antibody raised against analog of TS of reaction to catalyze reaction by $\downarrow E_a$ by recognizing and binding to transient TS structure

First example in 1986 independently by Schultz and Lerner: Raise hapten (antigen) mimicking TS against antibody to

screen for catalytic activity

>100 reactions accelerated incl. new and disfavored
 reactions
 Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1967.
 Schultz, P. G. Science, 1986, 234, 1570.; Lerner, R. A. Science, 1986, 234, 1566.

Catalytic Antibodies -Transition State Analogs

Hapten mimics bond orders, lengths, angles, expanded valences, charge distribution, geometry,etc. of transition state

Example:

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Phosphonamidate mimics tetrahedral intermediate

Lerner, R. A. *Science*, **1988**, *241*, 1188. Janda, K. D. *Bioorg. Med. Chem.* **2004**, *12*, 5247-5268.

Catalytic Antibodies -"Bait-and-Switch"

Place point charge (bait) in close proximity to or in direct substitution for functional group expected to transform substrate (switch) Example:

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. ← Bait are needed to see this picture. ← Bait

Benkovic, S. J. J. Am. Chem. Soc. 1990, 112, 1274. Janda, K. D. PNAS, 1998, 95, 5971.

 \rightarrow Switch

Catalytic Antibodies -Reactive Immunization

Highly reactive hapten that undergoes reaction in antibody-combining site during immunization

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Lerner, R. A.; Janda, K. D. Science, 1995, 270, 1775.

Enzymes vs. Catalytic Antibodies

Enzymes:

- Rate constant ~10⁶-10⁸
 L/mol•s
- $k_{cat}/k_{uncat} \sim 10^{6} 10^{12}$

Catalytic Antibodies:

- Rate constant ~10²-10⁴
 L/mol•s
- $k_{cat}/k_{uncat} \sim 10^3 10^5$

Best antibody = poor enzyme; why?

- Antibody raised for tight binding not catalytic efficiency (may tightly bind pdt if structurally similar)
- Hapten binding site solvent accessible
- Smaller time scale of evolution (weeks to months)
- Immunoglobulin fold not common structure in enzymes

Szostak Method: mRNA Display

Main barrier to protein evolution is difficulty of recovering information encoding protein sequence after protein is translated

- mRNA Display: mRNA directly attached to protein it encodes via stable covalent linkage
- Allows for generation of large complex libraries (>10¹²) *in vitro*

Example:

Szostak, J. W. PNAS, 1997, 94, 12297-12302.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

mRNA Display

P = puromycin; antibiotic that mimics aminoacyl end of tRNA to inhibit translation

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Szostak, J. W. PNAS, 1997, 94, 12297-12302.

mRNA Display

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

- 1. Ribosome initiates translation on mRNA and translocates to end of template
- 2. Ribosome reaches end of ORF and translation stalls at RNA/DNA junction (no stop codon)
- 3. Linker loops around ribosome and P enters A site to attach to newly formed protein
- 4. Incubate with complementary linker sequence attached to biotin and isolate on streptavidin beads

Current protein evolution requires extensive knowledge of enzyme's mechanism of activity (not random)

De novo creation of enzymatic active from naïve protein library of very high diversity (>10¹² unique sequences) using mRNA display Screen for enzymes catalyzing RNA ligation:

Szostak, J. W. Chem. Biol. 2006, 13, 139-147. Szostak, J. W. Nature, 2007, 448, 828-833.

- 1. In vitro selection of catalytic activity
 - 9 rounds 0.01 \rightarrow 0.3% selected
 - 12 rounds 2.3% selected
- 2. Directed evolution

After round 8, subject to recombination and random mutagenesis + error-prone PCR amplification (9*-17*) \uparrow selection pressure by \downarrow time allowed for reaction (select for most efficient enzyme)

- Loop 1 (12 aa): DYKXXD at varying positions in 57% (resembles recognition site for antibody used for purification; may not be important)
- Loop 2 (9 aa): 4 aa conserved 100%, 4 aa conserved 86-90%, 1 aa conserved 50%
- Non-loop region: low conservation of C used to coordinate Zn²⁺ in original structure, 2 large deletions observed (may indicate large structural rearrangement of evolved enzymes)

PP

Substrate

Chose Ligase 4 (most active) to characterize: Incubate fusion enzyme + PPP-substrate + HO-substrate + splint

 Test for presence of pyrophosphate: Label with ³²P to detect

Ref. 0 3 18 Time (h)

2. Test for requirements of the reaction:

Incubation time: Lane 1 = 1h, Lane 2 = 3h, Lane 3 = 10h No splint: Lane 4 5'-P (not PPP): Lane 5 5'-OH (not PPP): Lane 6 Wild-type RXRα: Lane 7 All nucleobases successful at 3' of HO-substrate _{Szostak}, J. W. *Nature*, **2007**, *448*, 828-833.

3. Effect of metals on activity:

Requires Zn²⁺ and Na⁺/K⁺ (not only 2+ metals) 2.6 Zn²⁺/enzyme (required for structure or catalysis)

4. <u>pH effect:</u>

Strong pH dependence with optimum pH = 7.6 (could rely on acid/base catalysis from aa residues)

5. Rate acceleration:

Uncatalyzed reaction only takes place with Mg²⁺ but catalyzed faster without Mg²⁺

Measure k in absence of Mg²⁺: $k_{obs(noncat)} < 3 \times 10^{-7} h^{-1}$ $k_{obs(cat)} = 0.65 \pm 0.11 h^{-1} (2 \times 10^{6} - fold faster!)$

Observe multiple turnover:

No natural enzyme known to catalyze ligation reaction of 5' PPP-substrate to 3' HO-substrate except ribozyme First use of mRNA-display to select for new enzyme activity Isolated enzyme with rate enhancement of 2 million-fold