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Induction,” Philosophical Review 1X1X, 4 (October 1960), 511-522; B. Skyrms,
Choice and Chance (Belmont, Calif: Dickenson, 1966). The tendency (e.g., by Barker
and Kyburg) to slip between D, and D, may be duc to the fact that % is grue, = V #(x
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8. See, e.g., Kelley, op. cit., §111.

9. As Goodman points out in Problems and Projects (Indianapolis: Bobbs-
Merrill, 1972); see p. 359.

10. As, in effect, R. Carnap points out in “On the Application of Inductive
Logic,” Philosophy and Phenomenological Research viu, 1 (September 1947), 133
147; see §3.

11. T take this to be essentially the argument in H. Leblanc, “That Positive
Instances Are No Help,” J. Philosophy LX, 16 (Aug. 1, 1963), 452-462.

12. For just one, typical example, see Skyrms, op. cit., 61, 62.

13. Asin W. V. Quine, “Natural Kinds,” in Ontological Relativity (New York:
Columbia, 1969).

14. And we could bring in the time factor by, for instance, supposing the
method of examining changes at T.

15. R. C. Jeffrey, “Goodman’s Query,” J. Philosophy Lx111, 11 (May 26, 1966),
281-288; see p. 288. He actually has ‘bleen’ for ‘grue’ in the relevant passage.

16. Cf. Kelley, op. cit., 196.

Concepts of
Projectibility and the
Problems of Induction

John Earman

Projectibility is most often discussed in connection with the distinction
between “genuine” and “Goodmanized” predicates. But questions about
projectibility arise for the most mundane of hypotheses and predicates
where not the slightest hint of Goodmanian trickery is present. And there
are a number of different concepts of projectibility, each corresponding to a
different problem of induction. Some of these problems are not only
solvable but have actually been solved, solved in the sense that interesting
sets of sufficient and /or necessary conditions for projectibility have been
found. In some cases the conditions are so mild that a coherent inductive
skepticism is hard to maintain, whereas in other cases the conditions are so
demanding that skepticism seems to be the only attractive alternative.
Again, in some of the cases Goodmanian considerations are the key; in
others they are irrelevant.

The purpose of this note is to provide a classification scheme for the
various senses of projectibility that will reveal what is at stake in the
corresponding problems of induction. A useful beginning can be made by
recalling the twofold classification Russell offered in Human Knowledge:

Induction by simple enumeration is the following principle: “given any
number of &’s which have been found to be B’s, and no @ which has been
found to be not a B, then the two statements: (a) ‘the next a will be a 8, (b)
‘all o’s are B%s,” both have a probability which increases as # increases and
approaches certainty as a limit as # approaches infinity.” I shall call (a)
“particular induction” and (b) “general induction.”!

Each of Russell’s categories needs to be refined. Under particular or instance
induction I will recommend a fourfold partition, first distinguishing weak
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and strong senses according as the induction is on the next instance or the
next m instances, and second distinguishing two ways of taking the limj;
as the number # of instances increases toward infinity according as we

~“march into the future with the accumulating instances or stand pat iy
the present and reach further and further back into the past for more .
stances. Under general or hypothesis induction I will recommend ,
twofold partition depending on whether the hypothesis is a simple genera].
ization on observed instances or a theoretical hypothesis that outruns the
data. The upshot is a collection of six problems of induction with six
rather different solutions.

1. Instance Induction: Marching into the
Future ‘

Only nonstatistical hypotheses will be considered. Further, it is assumed
that the “instances” E;, 1 =1, 2, 3, .. . , of the hypothesis H are deductive
consequences of H and the “background evidence” B (i.e., H, B E)). If you
want H to be a universal conditional, e.g., (Vx)}(Px D Qx), take instances to
be (Pa O Qa) and the like; or else let B state that all the objects examined are
P’s and take instances to be (P & Qa) and the like.

DEFINITION 1. Relative to B, H is weakly projectible in the Juture-
moving-instance sense for the instances B, By, . . . 4ff
hm PrE,,./E, & ... & E, & B) = 1.

DEFINITION 2. Relative to B, H 1is strongly projectible in the future-.

moving instance sense for the instances E, E,, . . . iff
lim PrE,,&...E,,,/E& ... &E&B)=1.

Claim: A sufficient condition for both weak and strong future-
moving-instance projectibility is that Pr(H /B) > 0.

Proof: (a) Weak projectibility (Jeftreys).” By Bayes’s theorem and the .

assumption that H, B+ E,

(1) PHH/E & ...&E,, & B) =
: Pr(H /B)
Pr(E,/B)xPr(E,/E, & B)x .. .xPr(E,,,/E, & . .. & E,&B)

If Pr(H /B) > 0, the denominator on the right-hand side of (1) will
eventually become smaller than the numerator, contradicting an
axiom of probability, unless P»(E,, /E& ... &E,&B)—> lasn—
o, (b) Strong projectibility (Huzurbazar).® Rearrange Bayes’s theor-
em to read
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- Pr(H/B)
&E,/B) = Pr(H/E,& ... &E,&B)

Setting #, = Pr(E' & . &E,/B), (2) shows that u, = Pr(H /B) > 0. Since

Byor = u,,Pr( i1/ Bl & . &E,&B), ), #,, . . . , is a monotone decreasing
sequence that tends to limit I, = Pr(H/B) > 0. So

»+m_£=1

2) PrEX...

. 12
(3 ) ilnl,I};l—m ", L

There is an immediate application to the projectibility of predicates.*

DEFINITION 3. Relative to B, the predicate “P” is weakly projectible
in the future-moving semse over the sequence of individuals a,,
Ay . off

lim Pr(Ptzt,,Jrl /Pa& ... &Pa,&B) = 1.

DEFINITION 4. Relative to B, the predicate “P” is strongly projectible
in the future-moving semse over the sequence of individuals @,
Ay . iJ?‘

lim Pr(Pu,,“&

m, o0

.&Pa,,,/Pa& ... &Pa,&B) =1
From the previous results we know that a sufficient condition for both weak
and strong projectibility of “P” in the future-moving sense is that

(C) Pr((Vi)Pa,/B) > 0.

Thus, contrary to what is sometimes suggested, definitions 3 and 4 do not
serve to separate “grue” from “‘green,”® except on what I take to be the
wholly implausible assumption that the universal generalization of the one
but not the other receives a zero prior.

When is (C) necessary as well as sufficient for future-moving instance
induction? The limit of Pr(Pa,& . . . &Pa,/B) as n goes to infinity exists
and is independent of the order in which the instances are taken. Further, we

~ know that

(4) lim Pr(Pa& . .. &Pa,/B) = Pr((Vi)Pa,/B)

But to assure that
(A) lim Pr(Pa,& ... &Pa,/B) = Pr((Vi)Pa,/B)

we need to assume what Kolmogorov calls an axiom of continuity. Then
(C) is a necessary condition for strong projectibility of “P” in the
future-moving sense; for

(5) lim Pr(Pzzt,,Jrl . &Pa,,,./Pa& ... &Pa,&B) =
m, n—>eo
lim [Pr(Pa& ... &Pa,,+m/B) /Pr(Pa,& . .. &P»,/B)],
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and if (A) but ~(C), this limit is not 1 independently of how m and # go ¢,
infinity; e.g., first taking the limit as m — % gives 0.

(C) is not a necessary condition for weak future-moving projectibility of
“P.” Carnap’s systems of inductive logic provide examples where (C) and
strong future-moving projectibility - fail but weak future-moving
projectibility holds. However, the point can be illustrated in a more genera]
way, independently of Carnap’s ¢-function apparatus.” Suppose that Py i
exchangeable for “P” over the ay, i.c., for every m

(E) Pr(xPr&... &*tPa,/B)=Pr(=zPa,&... &= Pa,,/By

where +P indicates that cither P or —P may be chosen and {#,} is any
permutation of the a5 in which all but a finite number are left fixed. If (E)
holds, De Finetti’s representation theorem gives

(D) Pr(Pm& ...&Pa,/B) = [ ©" du(O)

where u is 2 normed probability measure on the unit interval 0 = 0 < 1.8
Choosing w to be the uniform measure gives

6) Pr(Pa&...&Pa,/B)=1/n+ 1.
Thus, (C) fails. But
(7y Pr(Pa,../Pu,& ... &Pa,&B)=(n+ 1)/(n + 2),

which is Laplace’s rule of succession, so that “P” is weakly projectible in the

future-moving sense. Under (E) the necessary and sufficient condition for

the failure of weak future-moving projectibility is that
1 gntl
(CM) lim M
" [, du(®)
The label (CM) is supposed to indicate a closed-minded attitude, for (CM)
is equivalent to the condition that u([0, ©*]) = 1 for some ©* < 1, ruling
out the possibility that an instance of “P* can have a probability greater than
©*. The extreme case of closed-mindedness is represented by a u concen-
trated on a point; for example, if u({1,/2}) = 1, then each instance of “P” is
assigned a probability of 1 /2 independently of all other instances, so that
the user of the resulting Pr function is certain (in the sense of second order
probability) of the probability of an instance of “P,” so certain that no
number of other instances of “P” will ever change her mind. The
probability measure in Wittgenstein’s Tractatus had this character.’
To summarize: Suppose that you give a nonzero prior probability to the
hypothesis that the sun always rises. Then the rising of the sun is strongly

# 1.
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future-moving projectible over the series of days. On the other hand,
suppose that you are absolutely certain that the sun won’t always rise. It is

-~ still possible for your belief that the sun will rise tomorrow to approach

certainty as your experience of new dawns increases without bound. But,
assuming (A), it is not possible for your belief that the sun will rise on any
number of tomorrows to approach certainty as your experience of new
dawns increases without bound.

Another sense of projectibility for predicates sometimes used in the
fiterature!® is codified in

DerRINITION 5. Relative to B, “P” is somewhat future-moving
projectible over the sequence of individuals a,, 4,, . . . iff for each » >
0, Pr(Pa,,,/Pa.& . . . &Pn,&B) > Pr(Pa,/Pa,& . . . &Pa, &B).

Under exchangeability (E), “P” is somewhat future-moving projectible
unless the measure u(6) is completely concentrated on some value of ©, as
can be seen by applying the Cauchy-Schwartz inequality. Thus, the case of a
closed-minded w which is not completely closed-minded provides an
example where “P” is somewhat but not weakly future-moving projectible.
And in general there is no guarantee that projectibility in the sense of
definition 5 will have the limiting properties postulated in definitions 3 and
4.

Humean skepticism with respect to future-moving instance induction,
weak or strong, stands on unstable ground. If Pr((V7)Pa,/B) is any positive
teal number, no matter how small, future-moving instance induction must
take place, like it or not. Setting Pr((Vi)Pa,/B) = 0 avoids strong future-
moving instance induction, but if past experience, as codified in B, does not
record a negative instance, then Pr((3i)—Pa,/B) = 1 says that there is
absolute certainty that the future will produce a negative instance, a not very
Humean result.

Humeans can escape between the horns of this dilemma either by

"refusing to conform their degrees of belief to the axioms of probability or

else by refusing to assign degrees of belief at all. The first tack is unattractive
in view of the ‘Dutch book’ and other arguments that promote the axioms
of probability as rationality constraints on degrees of belief.!! The second
tack seems to lead to something closer to catatonia than to active skepticism.

2, Instance Induction: Standing Pat in the
Present While Reaching into the Past

There is a second way of taking the limit as the number of instances
accumulates without bound, a way that is, perhaps, more directly relevant to
Hume’s classic problem of induction. To explain it, suppose as before that
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H, B. k E,, but now let  range over all the integers so that we have a doy
infinite sequence of instances . . . E,E | ,E,E,E, ...

DEFINITION 6. Relative to B, H is wenkly projectible in the pasic

reaching instance sense for the sequence {E}if VYn
lim Pw(E,, /E&E, & ... &E, &B) = 1.

=t :
DEFINITION 7. Relative to B, H is strongly projectible in the pag.
veaching instamce sense for the sequence (B} if Vn

lim Pr(E, & ...&E,,,/E&E, &. .. &E, &B) = 1,

m, f— + o
Corresponding senses of projectibility apply to predicates. (Of course the
future versus the past direction of time is not the issue here; rather the [;Oint
concerns whether the “next instance™ lies in the direction in which the limit
of accumulating evidence is taken.)

For the future-moving sense of instance induction to be valid, it was
sufficient that the prior probability of the universal generalization be
nonzero. But not so for past-reaching instance induction. Consider the
predicates “P” and “P*,” where the latter is defined by

Pta; = (Pagi = 1990) V (- P, & i > 1990),

We can assign nonzero priors to both H: (V:)Pa, and to H*; (Vi)P*a, but
obviously not even weak past-reaching projectibility is possible for both “p»

and “P*”* For P*a, is logically equivalent to Pa, forn = 1990 and to — Py
for n > 1990, so that if '

(8) }f{:w Pr(Paygg /Parrgok . . . &Payg90 i &B) = 1
then

9) jlin} - Pr(P*ay90/P*a 1900 . . . &P* 1999 &B) = 0.
Thus, unlike definitions 3 and 4, definitions 6 and 7 do distinguish between
“gruc” and “green” in the sense that both cannot be projectible in the
past-reaching sense. But the cut between past-reaching nonprojectible versus
projectible predicates does not necessarily correspond to the cut between
Goodmanlike versus non-Goodmanlike predicates (see sec. 5 below).

If exchangeability (E) holds for “P,” then past-reaching projectibility for
“P” is equivalent to future-moving projectibility. Thus, if we assign
nonzero priors to both (Vi)Pa; and (Vi)P*a,, exchangeability cannot hold
for both “P” and for “P*.” Or if exchangeability does hold for both, then
for at least one of them the measure u in De Finetti’s representation must be
closed-minded.

This is more or less what one would have expected since in the present

sctting exchangeability functions as one expression of the principle of the

bly
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aniformity of nature.'”> What is interesting is that there is a principle of
induction—weak and strong future-moving instance induction—whose
" yalidity does not depend on a uniformity of nature postulate. Furthermore,
uniformity of nature in the guise of exchangeability is precisely what one
does not want in order to make true some of the truisms of confirmation
- theory, such as that variety of evidence can be more important than sheer
amount of evidence. Return to formula (1) used to prove Jeffreys’s theorem
and note that the more slowly for given » the factor PHE,, /E & . . .
- &E,&B) goes to 1, the smaller the denominator on the right-hand side of
'(1) and, thus, the larger the posterior probability of H. Intuitively, the more
yarious (and nonexchangeable) the E;s, the slower the approach to 1 is.
- Perhaps this intuition can be turned round to yield an analysis of variety of
evidence, but I will not pursue the matter here.
Crudely put, the problem of future-moving instance induction concerns
* whether the future will resemble the future, while the problem of past-
reaching instance induction concerns whether the future will resemble the
past. The former problem can be posed and solved without much attention
- to the form the resemblance is supposed to take; for amy predicate,
. “genuine” or “Goodmanized,” will, irresistibly, lend itself to future-
moving projectibility as long as a nonzero prior is assigned to the universal
generalization on the predicate, and there is no danger of being led into
~ inconsistency as long as the initial probability assignments are coherent. But
~ the latter problem, as Goodman’s examples have taught us, requires
- scrupulous attention to the form of resemblance if inconsistencies are to be
* avoided. Future-moving instance induction leaves only narrow and unstable
ground for the skeptic to stand on. By contrast, past-reaching instance
- induction provides the grounds for but does not require a blanket skepti-
cism, while the strongest form of general induction virtually begs for
skepticism. It is to general induction that I now turn.

-3, General Induction

Still assuming that H, B+ E;, i = 1, 2, 3, ..., we can say that

DerINITION 8. Relative to B, the hypothesis H is weakly projectible
on the basis of instances E,, E,, . .. #f the probability of H is
increased by each new instance, i.c.,

PrH/E\& ...E, &B)>Pr(H/E & . .. &E,&B) for eachn > 0.
Claim: The necessary and sufficient conditions for H to be weakly
projectible are that Pr(H/B) > 0 and that Pr(E,,,/E.& ...
&E,&B) « ! -

Proof: Write out Bayes’s theorem.
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The price for weak projectibility of H is low; but what we buy may be
unexciting since there is no guarantee that the increases that come with
increasing instances will boost the probability toward 1. Thus, we also
formulate

DEerINITION 9. Relative to B, the hypothesis H is strongly projectible
on the basis of the instance E|, E,, . . . iff
lim Pr(H/E & . . . &E,&B) = 1.

Claim: H is mot strongly projectible if there is an alternative
hypothesis H” such that (i) B + —(H&H’), (ii)H’, B |- E, for all i and
(iii) Pr(H’/B) > 0.

Proof: Assume that H is strongly projectible and assume that there is
an H’ satisfying (i) and (ii) and show that (iii) is violated. By Bayes’s
theorem and (%),

Pr(H/E & . .. &E,&B) _ Pr(H/B)
PrH' /E& ... &E,&B) Pr(H /B)
By (i), Pr(H/X&B) + Pr(H'/X&B) < 1. So if H is strongly projectible,

the limit as » — w0 of Pr(H’/E,& . . . &E,&B) is 0. Thus, taking the limit in
(10) gives

(10)

_ Pr(H/B)

(11) oo = Pr(E /B)

— Pr(H’/B) = 0.

Philosophers of science routinely claim that any amount of data can be
covered by many, possibly an infinite, number of hypotheses. Strictly
speaking, this is not so if it means that there are many H’s satisfying (i) and
(ii) above. Take the E; to be Pa; and take H to be (V7)Pa;,. Then H admits of
no logically consistent alternatives satisfying (i) and (ii) and, hence, no
alternatives satisfying (i) (iii). Such lowly empirical generalizations escape
the above negative result, and if (A) and (C) hold, so does strong
projectibility. For if (A) and (C), then

(12) Lim Pr((Vi)Pa,/Pa,8c . . . &P,&B) =
lim [Pr((Vi)Pn,/B)/Pr(Pa,8c . . . &Pa,/B)] = 1.

We can also consider a doubly infinite sequence of individuals . . . a_,,
A_1y g, Ay, Ay, . . . and demand strong projectibility in the past-reaching
sense, i.e.,

DEerINITION 10. Relative to B, (Vi)Pa; is strongly projectible in the
past-reaching sense iff for all n

lim Pr((V5)Pa,/Pa,&Pn, & . ..&Pa, &B) = 1.

Jteo
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If (C) holds along with exchangeability and the natural generalization of
(A), viz., for all

(A% 11111& Pr(Pa, S&Pn,; & . .. &Pa,&Pa, & . ..&Pa, /B) =
Pr((Vi)Pa,/B),

 then definition 10 is satisfied. In effect, exchangeability has the flavor of “If

you’ve seen an infinite number of them, you’ve seen them all.”

Once we move beyond direct observational generalizations to theories
that outrun the data, it is surely true that there are many rival theories that
cover the same data. For such a theory strong projectibility on the basis of its
instances is impossible unless the dice have been completely loaded against
all the alternatives.

We might then hope for a more modest form of projectibility, as given in

DerINITION 11. Relative to B, H is (¥, 5) projectible on the basis of its
instances Ey, E,, . . . iff Pr(H /B) = < .5, but there is a sufficiently
large N such that Pr(H/E,& . . . &Ey&B) = 5 > .5.

Claim. H is not (r, s) projectible for any » and s if there is an H’ such
that (i) B+ — (H&H"), (ii) H’, B+ — E, for all 4, and (iii) P+(H’ /B) =
Pr(H /B).

Progf. Use (10) with» = N. If H is (r, s) projectible and there is an H’
satisfying (i) and (ii), the left side of (10) is greater than 1. But if (iii)
holds, the right-hand side is less than or equal to 1.

For this more modest form of general induction to work we don’t have
to load the dice completely against all rivals covering the same instances, but
we still need to load them.

Although the Bayesian apparatus has shown itself to be very useful in
clarifying issues about confirmation and induction, it proves to be idle
machinery when it comes to testing nonstatistical scientific theories. Such a
theory can have its probability boosted above .5 and toward 1 by finding
evidence that falsifies rival theories. But in such cases simple eliminative
induction suffices; and when eliminative induction does not work, then
neither does Bayes1amsm unless the dice have been loaded against all rival
theories.

4. Russell on Induction

Having begun with Russell’s formulation of the problem of induction, I
now want to return to Human Knowledge to sec what progress Russell made
on the problem. Given that the book is the product of one of the great
minds of Western putlosophy, the results are more than a little disappoint-
ing. Here are four interrelated reasons for disappointment.
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Eirst, Russell did not distinguish berween the past-reaching and futyre.
moving senses of instance induction. When he gets specific about what
1nsFancc induction means he tends to make it sound like the future-movin
variety, as in “Leta,, a,, . . . , &, be the hitherto observed members of o aﬁ
of Wh_ich have been found to be B, and let 4, + 1 be the next member of a”’13
This is the easiest and most neatly “solvable” case, but Russell makes li.ttle
progress toward its “solution,” despite the fact that some of his reasoning is
Flose to that later used by Jeffreys™ to prove that the probability of the next
mnstance approaches 1 (see the third comment below). One can speculate
that Russell, having already decided that the validity of induction requires
an extralogical principle not justified by experience, was not on the lookout
for the kind of result provided by Jeffreys and Huzurbazar.

Second, Russell recognized Goodman’s “new problem™ of induction;
and then again he didn’t. He did because he used examples o%

C}%loodmanized hypotheses (see the fourth comment) and because he says
that 8

must not be what might be called a “manufactured” class, i.c., one defined
pa'rtly by extension. In the sort of cases contemplated in inductive inference,
B bls alw:[ys a cla;s known bc}lr intclilsion, but not in extension except as regards
observed members . . . and such o

oy o Obslgvedt.ier members of B, not members of a as

B.ut. then again he didn’t because he didn’t recognize that there is a
filstlnction to be drawn between past-reaching and future-moving instance
induction and that it is only for the former that Goodman’s “new problem?
arises.

. Third, Russell formulated the problem of induction in part V. Part VI
discusses Keynes’s attack on general induction., Assuming as before that H,

B+ E,, we can apply a result from Keynes’s Treatise on ProbabilityV’ to
conclude that ‘

(13) PrH/E& ... &E,&B) =

1
LHPH=H/B)/Pr(H/B)] X [P(E,/B& —~ H)x ... wPr(E, /EK ... &F, ,&B& = )]

Set Q,=Pr(E,/E& . ..&E 1&B&— H) and g, = Q.x i
" - &E,_ A % ... 20, Then if
Pr'(H /B) # 0, the posterior probability of H will go to 1 in the limit as % —
® if g, — 0. Russell comments:

If there is any number less than 1 such that all the Q’s are ‘less than this

number, then the product of » Q’s is less than the nth power of this number,
and therefore tends to zero as # increases,1?
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The reasoning here is similar to that used to prove Jeffreys’s theorem on
future-moving instance induction, but Russell does not make the connec-
tion. When H is a simple empirical generalization, e.g., (Vi)Pa, and the E/’s
are Pw;, Russell says that “it is difficult to see how this condition [as quoted
above] can fail for empirical material.”'* When 7 runs from 1 to +  and the
continuity axiom (A) holds, the factor Pr(Pa,& . . . 8&Pa,/B& —(Vi)Pa,) in
the denominator of the Keynes formula (13) must go to 0. But when 4
ranges from — o to + o and the instances accumulate in the past-reaching
sense, this factor cannot be shown to go to 1, unless by “empirical material”
Russell means material for which exchangeability or the like holds.

Fourth, the difficulty with general induction to theoretical hypotheses
can be seen from a simplified version of Keynes’s formula, viz.,

(14) Pr(H/E&B) =
1
1 + [Pr(—H/B)/Pr(H/B)] X Pr(E,/—H&B)

Suppose that Pr(H /B) is nonzero but small. Then in order for Pr(H /E&B)
to be large, E must be such that it would be improbable if H were false
(Pr(E/—H&B) small). But as Russell notes, it may be hard to find such
evidence. Take, for sake of illustration, H to be Newton’s theory of
gravitation and E to be the discovery of Neptune. Then there are many
alternatives to H “which would lead to the expectation of Neptune being
where it was”; for example, take H” to be the hypothesis that Newton’s law
of gravitation holds up to the time of discovery of Neptune but not
afterward.” Russell scores a point with his Goodmanian illustration, but the
point obscures the fact that the general problem arises even when
Goodmanian alternatives are not at issué.

5. Prospects for a Theory of Projectibility

From the perspective of the preceding approach some philosophical theories
of projectibility appear to be confused as to purpose, or false, or both.
Consider the most ambitious and widely discussed philosophical theory of
projectibility, Goodman’s entrenchment theory.? Conditions couched in
terms of relative entrenchment of predicates seem irrelevant to some of the
questions of projectibility distinguished here and inadequate to others. For
example, any hypothesis, no matter how ill entrenched its predicates, is
weakly projectible on the basis of its positive instances if it has a nonzero
prior—that is a theorem of probability. To claim that H gets a zero prior if it
conflicts with an H’ that is supported, unviolated, and unexhausted, that
uses better-entrenci.od predicates than those of H, and that conflicts with no
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still better entrenched hypothesis, is to make a claim that is constantly belj
by actual scientific practice where new hypotheses using new predicates -
gven a “fighting chance” of a nonnegligible prior. On the other hy a(r{e
strong projectibility of a hypothesis, even if all of its predicates P
supremely well entrenched, may be provably impossible if rival hypothearc
are given a fighting chance, even when the rivals use ill—entrenchSes
predicates. The most obvious application of the entrenchment notion j o
what I called the problem of past-reaching instance induction. Of colis .
Fhe general problem is independent of the direction of time and mrse,
importantly, of the time dimension, for parallel problems arise for [;ro': .
ing from one side of a division of the range of a nontemporal parameter ]init-
the other side (say, from cases where (v/¢) <1 to cases where » is near Y
But as Rosenkrantz? has emphasized, there are numerous cases in t;)
history of science where scientists project predicates that are unentrenches
and that, from the perspective of entrenched theory, appear to b
Goodmanized because they agree with the old entrenchec,l predicates to .
good degree of approximation in the well-sampled side of the division bu:
diverge on the other side. .

It is Fime to pausc to ask what can be expected from a “theory of
pro;t.:ctlblhty.” A minimalist theory would be established by finding shar
and. Interesting necessary and sufficient conditions for the varions notions oE;‘
prf))cct_lb.ility. The results reported here take us only part of the way toward
this minimalist goal. But once the goal is reached, what more remains to be
done? A more grandiose theory of projectibility would, presumably, consist
of descriptive and /or normative rules for determining when the cor,lditions
developed in‘ the minimalist theory are or ought to be met. The prospects
It;(:z c;;;sfructmg such a theory with the tools of analytic philosophy seem to

To make this skeptical conclusion plausible, it suffices to focus on cases
wher'c we found that projectibility turns largely on prior probabilit
considerations. Objectivist accounts of prior probability assignments havZ
been offered by Reichenbach,? in terms of frequency counts, by Jaynes, in
terms of maximum entropy calculations, and by others. But in c,very
Instance there are serious if not crippling difficulties with the proposed
method of assignment.” Without assigning specific prior probabilities we
could seek a theory to Justify assigning some nonzero priors to a class of
.favore('i hypotheses. Keynes’s “principle of limited variety” was designed for
just this purpose. In Human Knowledge Russell attacks Keynes’s theory (and
rlgl_ltly so, I think). But Russell’s own five: ‘postulates of induction,’
.demgn.ed he says to “provide the antecedent probabilities required to justif’y
induction,”” are just as unattractive. Separability and continuity of causal
lines, common causes for similar structures ranged around a center, etc.,
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have a certain intuitive appeal, but they involve contingent assumptions that
may not hold in the actual world if it is anything like what the quantum
theory says it is like. For the subjectivist school of probability, as represented
by De Finetti and followers, the envisioned theory of projectibility would
consist of a psychological account of how people in fact distribute initial
degrees of belief consistent (hopefully) with the axioms of probability. This
is a task for cognitive psychology, not armchair philosophy. Of course, I

" expect that psychology will find that entrenchment and other considera-

tions suggested by philosophers will play some role in the account, but I do
not expect that the account will consist of a neat set of rules of the type
envisioned in the philosophical literature.

Goodman has charged that the problem of induction and its solution
have been misconceived. I agree, but I think the misconception extends
further than Goodman would allow. In any case, it is curious that
philosophers have reached for more grandiose theories of projectibility
before getting a firm grip on minimalist theories. In addition to filling in the
gaps in the results reported here, it would be nice to have results based on
alternatives to exchangeability.” One would also like to have information
about how fast the posterior probability increases and whether, as Keynes
worried; we are all dead before the value gets anywhere near 1.8

Postscript (July 1992)

Nelson Goodman’s projectibility puzzle was first stated in print in his
article “A Query on Confirmation,” Journal of Philosoplhy 43 (1946):
383-385. Starting before the publication of the Query and continuing for
some years thereafter, there was an intense series of three-way conversations
among Goodman, Carnap, and Hempel regarding the issues raised in
Goodman’s Query. Some fascinating glimpses of these conversations are
preserved in documents in the Carnap Nachlass, which is part of the
University of Pittsburgh Archives of Scientific Philosophy. One of the
documents is entitled “Survey of comments and objections made by Nelson
Goodman concerning Carnap and the H,O theories of degree of confirma-
tion.”? It is dated 1,/27/46, and consists of eight handwritten pages,
numbered 3 through 10. At the top of the first page (numbered 3), Carnap
has written in red a large “H,” his indication that the author is Hempel.
“H,0” evidently refers to the confirmation theories of Hempel, “Studies in
the Logic of Confirmation,” Mind 54 (1945): 1-26, 97-121, and of
Helmer and Oppenheim, “A Syntactical Definition of Probability and
Degree of Confirmation,” Journal of Symbolic Legic 10 (1945): 25-60.
Characteristically - aap underlined what he took to be important passages,
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and in the margins and between lines he scrawled comments in his barely
decipherable shorthand notation. I will quote from what I take to be the
most interesting part of Hempel’s missive.

“Question: How if at all are we to distinguish between permissible and
non-permissible predicates?”® Answering in the third person, Hempe|
responded to his question as follows:

The difficulty here indicated is closely related to the one which struck Hempel
many years ago in connection with certain descriptions of the basic idea of
inductive procedures; the latter is sometimes characterized thus: Induction
consists in assuming that those regularities which have been found to be
satisfied in all cases [of] past experience will continue to be satisfied by future
experiences.! But this ‘assumption’ is contradictory: Any given finite evi-
dence always satisfies several incompatible general regularities, which lead to
different predictions for future cases. This is illustrated by . . . the fact that
any finite set of points (results of measurements of 2 magnitudes) lies on
many different curves (representing different laws of 2?? for the two magni-
tudes) which determine incompatible predictions for new values still to be
measured.

There are two and possibly three morals to be drawn from ‘grue.’
Writing before the term ‘grue’ was coined, Hempel had one of the morals
right in advance: in part, ‘grue’ is an illustration of the familiar point that
any given finite evidence always satisfies several incompatible hypotheses
that lead to inconsistent predictions about new instances. The inductive
machinery Carnap was developing was in no way idled by this common-
place since it was not designed to say which one of the competing
hypotheses was confirmed (period) but rather to specify the degree to which
cach is confirmed by the evidence.

Why then did ‘grue’ become so controversial? In part the answer lies
with the other (alleged) morals I will discuss below. But a significant
segment of the controversy was an artifactual result of the constrained
setting in which the inductive logicians of the 1940s were working. For
example, Hempel’s account of qualitative confirmation was designed for
hypotheses formulated in first order predicate logic. In this setting it is not
so easy to concoct examples of a consistent evidence set, consisting of
atomic observation sentences or negations of such sentences, that simulta-
neously satisfies two or more general hypotheses which are also couched in
observational vocabulary and which make incompatible predictions about
new cases. Indeed—and this helps to explain why ‘grue’ generated
controversy—to produce such examples in this constrained setting, it is

Concepts of Projectibility and the Problems of Induction 111

necessary to resort to what many interpret as logical sleight of hand. And
thus has arisen the impression that what is needed to resolve the grue
problem is some clever bit of countermaneuvering. Perhaps ‘grue’ can be
squashed by some clever philosophical tap dancing. But if the fundamental
problem to which ‘grue’ averts is the one identified in Hempel’s missive, a
solution is not to be had by squashing of Goodmanized predicates.

To understand the second moral, recall that the inductive logicians of
the 1940s took the ‘logic’ of inductive logic seriously in that they saw their
task as one of creating an inductive logic that complements but lies parallel
to deductive logic, and they took the parallelism to mean that they should
produce a purely syntactical definition of confirmation. ‘Grue’ and related
examples showed that this goal had to be abandoned.

Here it is interesting to trace Carnap’s own evolving reactions to ‘grue’
and company. His first response was to deny that Goodman’s objections
affected Carnapian inductive logic as it was then conceived. All of
Goodman’s examples, as reported to Carnap by Hempel, seemed to involve
an appeal to temporally or spatially ordered individuals. This allowed
Carnap to write on March 9, 1946, that such examples are “outside my
theory, because my theory applies only to a simple language with a
non-ordered universe.””*® But even in a relatively simple language gruelike
predicates can be defined, a point made by Goodman on March 13,1946, in
a document humorously entitled, “Notes on Notes on Carnap’s Notes on
Hempel’s Notes on my Notes.””** Goodman noted that the evidence that all
marbles observed so far are red confirms not only the hypothesis that other
marbles are red but also (x)Tx, where T’ is a predicate that ascribes redness
to observed marbles and nonredness to other marbles. So, for example, if
the observed marbles were placed on desk D and other marbles are to be
placed on shelf S, one could take ‘T’ to mean thatx is on D and is red or x is
on § and is green. Carnap acknowledged the point in correspondence and in
his published reply to Goodman (“On the Application of Inductive Logic,”
Philosophy and Phenomenological Research 8 (1947): 133-147) by placing
restrictions on the primitive predicates of the system—in particular,
requirements of simplicity and completeness. Hempel was skeptical of this
approach, essentially for Carnapian reasons! His reservations were expressed
in a letter to Carnap dated January 29, 1947:

I share Nelson’s [Goodman’s] skepticism concerning the concept of absolute
simplicity and the idea of a non-relativized analysis of attributes. Would you
not have characterized these ideas some years ago, as reflecting—at least!—
the material mode of speech, and as requiring a restatement which would
make them rel *ive to the language under consideration and to the logical
means of analysis available in it}




112 John Earman

Carnap’s response showed just how far he had moved from his position of
the Vienna Circle days:

I do not myself like at all this absoluteness of simplicity and completeness,
but at the present moment I do not see a way of avoiding it. It is not
meaningless, I believe. I do not condemn the material mode as strongly as
carlier, but would merely warn against its possible dangers. . . . Semantics has
removed some of the earlier fears of speaking about the world and the
properties in it. Once we admit property variables in the metalanguage
(which it is true, involves serious problems, but is anyway necessary for
certain purposes of science), then we can say that a/l properties (in the
universe in question) are expressible in the language. This is ‘ontological®
only in the new Quine sense, not in the traditional, metaphysical sense.?

I turn finally to the third and most controversial moral which Goodman
wanted to draw from ‘grue’; namely, that projectibility turns not only on
matters of syntax and semantics but also on practical criteria, such as what
predicates have in fact been successfully projected in past practice. The
Carnap of the 1940s would have found this moral quite uncongenial. Once
the appropriate restrictions on the primitive predicates (simplicity, com-
pleteness, or whatever) were in place, questions of degree of confirmation
and, thus, of projectibility were for Carnap just a matter of calculation, a
matter of applying the correct c-function, ¢* being his then favorite
candidate for that role.

In his later years Carnap tended towards, without ever quite reaching,
the point of view of Bayesian personalism. Here talk of #he degree of
confirmation of H and E is replaced by talk of a person’s degree of belief in
H on E, the only synchronic constraints on such degrees of belief being the
axioms of probability and the only diachronic constraint being the rule of
conditionalization. From this perspective the ultimate moral of Goodman’s
grue problem—the descriptive nature of the problem of induction—
returns with a such a vengeance that even the Goodman of the Query might
have flinched. Goodman assumed that as a matter of actual fact we do
largely agree on matters of projectibility and that the remaining task of
induction is to describe how the agreement is manifested in rules of
projectibility. By contrast the Bayesian personalist is prepared to find that
such rules are a shimmering mirage. There will, of course, be rules in the
sense of truisms of confirmation consisting of theorems of probability. But
it is dubious that simple and general substantive rules about what degrees of
belief to assign to new instances on the basis of already observed ones can be
extracted from the set of degree of belief functions of all actually existing
people. Perhaps such rules can be extracted from the more circumscribed set
of belief functions of the members of a scientific community, the idea being
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that the community would not remain a community for long unless the
members experience rapid merger of opinion on the relevant range of
hypotheses. This idea is in danger of turning into a tautology unless
communities can be identified independently of merger of opinion behav-
jor. We have arrived at an interesting set of issues. But they are a far cry from
what most of the literature takes the grue problem to be about.?”

University of Pittsburgh
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