C. J. S. Clarke

19. See note 15.

20. I am indebted to Professor A. Taub for this point.

21. H. Miiller zum Hagen, P. Yodzis, H.-J. Seifert, "On the Occurrence of Naked
Singularities in General Relativity,” Communications in Mathematical Physics 34 (1973):
135-148; 37 (1974): 2940,

22. By the “boundary of space-time”, I mean the h-boundary (B. G. Schmidt, “A new
Definition of Singular Points in General Relativity,” General Relativity and Gravitation 1
(1971): 269-280). Data which can be expressed as scalars on the frame bundle sometimes
have limiting values on this boundary (C. J. S. Clarke, “The Classification of Singularities,”
General Relativity and Gravitation 6 (1975): 35-40), and it might be hoped that this would
generalise to genuinely singular situations.

23, See, for example, . C. Graves, The Conceptual Foundations of Contemporary Rela-
tivity Theory (Cambridge, Mass.: M. 1. T. Press, 1971),
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Tull the End of Time

1. Introduction

What could it mean to say that time has a beginning or an end? Is it
possible that time has a beginning or an end? In this paper I shall not be
concerned with these questions in their full generality, for T shall be
concerned only with physically interesting possibilities. I cannot specify
at the outset what is to count as a physically interesting possibility in the
present context—substantial discussion will be needed to uncover the
factors relevant to such a specification. In the sense in which I am using it,
the notion of a physically interesting possibility is broader than that of a
physical possibility; any actual physical possibility is a physically interest-
ing possibility, but not conversely, although every physically interesting
possibility must be intimately related to actual physical possibilities. It
would seem good strategy to discuss physical possibilities first, before
proceeding to the murkier concept of physically interesting possibilities.
This would indeed be sound strategy, except for the fact that we do not
know what counts as a physical possibility in the present context. Thus it
is necessary to plunge right into murkier waters.

The particular approach that I shall explore is certainly not the only
one, nor do I claim it is the best. However, it does have a virtue, albeit a
negative one: it reveals that we are not now in a position to give meaning-
ful answers to the questions posed above, and that in order to arrive at
such a position it is necessary to settle a number of other questions first,
some of which belong to mathematics, some to physics, and some to
metaphysics.! Since the recognition of ignorance is often the first step
toward wisdom, it is to be hoped that the way will be paved for more
positive results.

2. Arvistotle and Leibniz on the Beginning and End of Time

Initially, Aristotle’s theory of time seems to allow for the possibility of a
heginning or an end lor time. According to Aristotle, time is the measure
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or numerable aspect of motion. Hence, if motion has a beginning or an
end, time would have a beginning or an end. But Aristotle forecloses this
possibility, for he says that time cannot have a beginning or an end, and
that, therefore, motion must also be eternal. His argument here is that a
first or a last instant of time is impossible since in conceiving of an instant
of time we must conceive of it as being preceded and succeeded by other
instants.”

Today this argument does not seem very compelling. We have learned
to be suspicious of any argument that purports to prove the impossibility
of Y by secking to demonstrate the inconceivability of ¥ and by utilizing
the premise that if Y is inconceivable, Y is impossible. I shall not stop to
give a detailed analysis of Aristotle’s argument, for my main concern is to
examine the implications of modern science for the questions at issue, and
from the point of view of modern science, Aristotle’s theory of time has
only a curiosity value. For from the modern point of view, time must be
seen as the temporal aspect of the more fundamental entity, space-time,
and modern science countenances space-time structures which, in a pre-
cise sense, do not harbor any physical change and whose temporal aspects
are, in a precise sense, infinite in both past and future.”

However, Aristotle’s views do raise some points that help to focus the
issues under discussion. Aristotle seems to take the statement, “Time
comes to an end,” to mean, “There is a last instant for time.” He does not
seem to have conceived of the possibility that time could come to an end
without coming to an end—that time could, so to speak, “run out” in the
future direction without there being a last instant. Suppose, for example,
that time can be represented by the metric space (I, d.) where I is the
open interval (— o, +1) of the real line IR and d, is the usual Euclidean
metric (it is understood that the positive direction of IR corresponds to the
future direction of time). In this case there is no last instant for time, but
time is finite in the future in the sense that there is a finite upper bound
on how far one can go in the future direction from any given point of time,
i.e., foranyx el, there is a finite N, such that for any y € I where y > x,
de(x, y) < N,.* I suppose Aristotle might have responded that such a
possibility is not a real one, and that to conceive of an instant of time, we
must conceive of other instants which precede and succeed the first by as
great an interval as we like. But such a response should be taken, 1 think,
as indicating that its author has limited powers of conception.

Conversely, the existence of a future end point for time is not sulficient
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by itself to guarantee that time comes to an end in the sense intended, at
least not if we are willing to extend the concept of a metric space (X, d) so
that d may be mapping from X x X to [0, + c]. For example, let X be the
extended real line IR which is obtained from IR by adjoining the points
* o to IR, defining — o <x < + o for any x € IR. Define d(x, y) = d.(x, y)
andd(* «,x) =d(x,= ©) = + cforxeR;d(+ o, + *) =d(— ®, — ) =0,
and d(+ %, — ) = d(— %, + ®) = + . Time as represented by (X, d) has
first and last instants, but they are infinitely far in the past and future so
that time never runs out in the past or future directions.

Thus in what I shall refer to as the Aristotelian conception of the begin-
ning (end) of time, two elements are involved: (1) time is finite in the past
(future) in some appropriate sense, and (2) there .is a past (future) end
point for time. I shall begin by investigating condition (1); only in the
latter part of the paper shall we be in a position to deal with (2) in a
meaningful way. It might be thought that if we have a model which
satisfies condition (1), we can always make it into a model which illustrates
the Aristotelian conception of the beginning or the end of time by adjoin-
ing end points. We shall see, however, that things are not so simple; the
illusion of simplicity is fostered by two pernicious tendencies: first, the
tendency to think of time as an autonomous entity rather than as an aspect
of space-time, and second, the tendency to think of time as being repre-
sented by an interval of the real line. In these respects, the discussion of
this section and, indeed, most of the discussion of these matters in the
philosophical literature has been misleading.

[ turn now to Leibniz’s views. Leibniz believed that there are possible
worlds which have a beginning or an end. But when combined with the
lollowing argument, his Principle of Sufficient Reason poses a problem for
the actuality of any such world: “Time can be continued to infinity., For
since a whole of ime is similar to a part, it will be related to another whole
ol time as its part is to it. Thus it must always be understood as being
capable of being continued into another greater time.”3 So for any possi-
bl world W which has, say, a beginning, there is another world W’ which
extends Woto past infinity. What sufficient reason could God have for
actualizing W orather than W'? And does not the Principle of Plenitude
suprest that He would choose W' over WP

Leibniz addresses himsell to these questions in a letter to Bourguet. 5 If
nature is “always equally perfect, though in variable ways, it is more
probable that it had no beginning” (hecause, presumably, W would then
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be more perfect than W). On the other hand, if nature decreases in
perfection as we go backward in time, and if the perfection decreases at
such a rate that, within a finite period, we reach zero and negative perfec-
tion, then it is more probable that time has a beginning (since, presuma-
bly, W would then be more perfect than W'). Leibniz simply left the
matter hanging since he was unwilling to commit himself on whether the
perfection of nature changes at such a rate as to make a beginning for time
_probable, and even on whether it is changing at all.

As we shall see below, relativity theorists have had to confront issues
similar to those with which Leibniz struggled. But we shall also see that
certain relativistic space-time models circumvent the main problem.

3. The Meaning of Temporal Finiteness within
a Relativistic Space-time Framework

If we take seriously the notion that time must be thought of as the
temporal aspect of space-time, we are led to ask what sort of space-time
structure would illustrate the notions of the beginning and the end of
time. In what follows, I shall work with relativistic space-times, and this
for two reasons. First, and most obviously, current evidence indicates
that actual space-time is relativistic. The fact that the possibilities to be
discussed below can be constructed within this framework makes for some
initial confidence that they will lead to physically interesting possibilities.
Secondly, and less obviously, certain of the possibilities to be discussed
cannot be realized within the orthodox Newtonian framework.

Definition 1. A relativistic space-time § is a triple (M, g, V) where M is
a connected, four-dimensional differentiable manifold, g is a Lorentzian
metric for M, and ¥ is the unique symmetric linear connection compati-
ble with g.”

According to general relativity theory, which will be taken as our guide to
physically interesting possibilities, space-time structure and the distribu-
tion of matter-energy are not independent. Thus we must consider cos-
mological models.

Definition 2. A cosmological model I isapair ( 8, & ) where § isa
space-time and & is an energy-momentum tensor.”

Conditions for a physically interesting example of how time can have a
beginning or an end will be conditions on cosmological models. However,
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I shall concentrate primarily on conditions which the space-time & must
satisty, for once we have settled on these conditions, it will prove easy to
find a cosmological model which incorporates & and which satisfies all
the conditions that one might plausibly impose on & and on & and &
together.

It will be assumed that & is temporally orientable so that it can be
assigned a consistent time sense or direction, and that one of the two
possible time orientations has been singled out so that one can meaning-
fully speak of the future direction of time.? The restriction imposed by this
requirement is not a strong one; for if § is not temporally orientable,
there always exists a covering space-time that is. And in any case, the
questions at issue do not even arise unless & possesses the assumed
feature. We shall shortly see that other features as well need to be as-
sumed for the same reason.

It is easy to display relativistic space-times that are finite in their tem-
poral aspects. For example, start with Minkowski space-time &, and
obtain the hypertorodial space-time 8,,; by rolling up My, in the
spatial sense and then rolling up the resulting space in the temporal
sense. ' The temporal aspect of &,y is finite in a straightforward sense,
hut this sense of finiteness is not appropriate for our present concerns; for
time in 8,y is not bounded in the past or future in any appropriate way,
and, indeed, there is no past or future in the usual sense, since every
point of M,y lies to the past and future of itself and every other point.

The moral is that for & to illustrate how time can be finite in the past
or future, something like time in the usual sense must be present to start
with. Exactly which temporal features § must display is open to debate,
but certainly 8,4, does not qualify. Some of the features that might
plausibly be required are given in the following definitions.

Definition 3. The (time-oriented) space-time & has global time order if
and only if there do not exist any nontrivial, closed, future-directed,

limelike curves. !

Il & has a temporal order according to definition 3, then the relation <
on M x M where x <ty (read “x is chronologically earlier than y7) is
defined to hold just in case there is a differentiable map o: [0, 1] = M
wieh that or(0) = x, (1) =y, and () is future-pointing for all A € [0, 1], is
tumsitive and asymmetrie. Henee M is partially ordered by =, where

vy holds just in case v <oy or e = gy,
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Definition 4. & possesses a global time function if and only if there is a
smooth map f: M — IR such that ¢(x) < t(y) whenever x < y.

The existence of a time order does not necessarily imply the existence of a
global time function. If & does have a global time function, we can
project out a one-dimensional time T: an “instant™ (a point of T) corre-
sponds to a time slice of M, i.e., aset8, = {x:xeMandtlx) =X A=
constant}. The points of T are totally ordered by the relation of temporal
precedence induced on T by the natural order of the slices S, .

Definition 5. Suppose now that & has a global time function t. Consider
the field of future-pointing unit normals to the S, If this field is
sufficiently smooth, its integral curves will form a timelike congruence. t
is metric if and only if each pair of the S, are a constant space-time
distance apart as measured along the curves of the congruence.

If t is metric by definition 5 and T is the one-dimensional time associated
with ¢, we can find a metric space (X, d), where X is an interval of IR, and
a one-one correspondence f: T — X such that for a, b € T, d{f(a), fib)) is
the space-time distance between the slices corresponding to a and b.
However, this representation of T as a metric space can be misleading for
our purposes. If there is a timelike curve of maximal proper length from
some point x € M to S, then this curve must be a geodesic normal to S, ;
and the curves of the congruence in definition 5 are geodesics which are
normal to S,. But it is not always the case that there is a timelike curve of
maximal length from some arbitrary x € M to §,. If the $, have the Cauchy
property defined below, then such a maximal curve will always exist.

Definition 6. A time-slice S of the space-time & (i.e., a properly embed-
ded spacelike submanifold without boundaries) is a Cauchy surface of 8
if and only if every future-directed timelike curve without end point
intersects $ once and only once.

Suppose that & possesses a global time function. No future-directed
timelike curve can intersect any of the corresponding S, more than once.
We ordinarily assume that if a process “goes on forever” (has no past or
future end point), then there must be for each instant of T a stage of the
process dated by that instant. This assumption will not be satisfied unless
the §, have the Cauchy property.

Since the existence of a global time function and the existence of
Cauchy surfaces are strong requirements, it would scem desirable to have
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a definition of temporal finiteness that does not rely on these require-
ments. Towards this end, one might try

Definition 7. Let & be a time ordered space-time. A half-curve of § is
a curve which has one end point and which has been extended as far as
possible in some direction from that point. A future- (past-) directed
timelike half curve is complete in the future (past) if and only if proper
length as measured along the curve from its end point assumes arbitrarily
large values; otherwise the curve is incomplete in the future (past). 8 is

finite in the future (past) or future- (past-) bounded if and only if every

future- (past-) directed timelike half-curve is incomplete in the future
(past).

Note that any relativistic space-time contains some incomplete timelike
half-curves. However, in the more commonly known cases, all timelike
half-curves of bounded acceleration are complete; in particular, all
timelike half-geodesics are complete, geodesics being curves of zero ac-
celeration.

Unfortunately, definition 7 is unsatisfactory. Start with Minkowski
space-time 8y, (which for sake of illustration is taken to be two-
Jdimensional), and remove all those points on or above some chosen null
hypersurface. (Note: if & = (M, g, V) is a space-time, then the result of
removing a closed set of points from M and restricting g and V to the
remainder is again a space-time.) The resulting space-time S, (see
I'igure 1) will be finite in the future according to definition 7. But should
S be counted as finite in the future in the sense being sought? Tt is

— femove

~>— null surface

W\ -
> X
null cones at 45°

Figure |
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true that in &, every possible observer will “run out of tim(?.” -But
time itself can be said to go on forever, since for every Hletl.'l(_‘- time
function ¢, the metric of the associated one-dimensional time T is not
future-bounded. o

A somewhat more complicated example gives an even clearer indica-
tion of the shortcomings of definition 7. Start again with Sy 'and re-
move spacelike hypersurfaces at regular intervals as indicated in Figure 2.
The resulting space-time &g, is finite in both the past an.d f-uture
according to definition 7; but clearly its temporal aspect is not finite in the

intended sense.

——-3 null cones at 45°

Figure 2

The moral is that the collection of individual timelike curves may give a
misimpression of temporal finitude; global time functions may have to be
consulted in order to gain an accurate impression. But the exact form the
consultation should take is not easy to specify. Start yet e}gain with &mf”
and let (x, t) be a pseudo-Cartesian coordinate system for Myy,. Obtain
the truncated space-time &, by deleting all those points whose t(*.m-
poral coordinates satisfy ¢t 2 1 (see Figure 3). As restricted to My, t IS".I
global metric time function for 8., and the associated temporal nn*h'if‘
i-s future-bounded. Consider, however, elnqther pseude-Cartesian (-nnnlll-
nate system (v', ') for Sy As restricted to M., ' is also 1 mvlrlu'
time function for S, but the metric of the associated time is not in
general future-bounded. '

My own reaction is that, in the sense i!l[i'l‘l(lt‘(‘l. .\.,,.,,“ :ﬁll(NIJ’(I he
regarded as finite in the future, The existence of o time function + that
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makes S, look infinite in the future does not detract from this conclu-
sion since the original time function ¢ has a preferred status with respect
lo the present problem: the t = constant time slices are Cauchy surfaces
lor 8 whereas the ¢’ = constant hypersurfaces are not. If my view is
correct, then definition 7 is satisfactory when applied to space-times with
i Cauchy surface. In such a case there exists a global time function all of
whose time slices are Cauchy surfaces, And past (future) boundedness in
the sense of definition 7 is equivalent to the past (future) boundedness of
the metrie associated with such a time function.

However, as the examples of 8,,,; and Srip reveal, definition 7
cannot be applied with confidence beyond this restricted class of cases. It
i« difficult to think of a general criterion that can be so applied. Suppose,
lor example, that & has a global metric time function but that no global
metric time function for & has time slices with the Cauchy property.
Shall we then decree a democracy among metric time functions and say
that & is temporally finite if and only if all the temporal metrics of the
one-dimensional tiines associated with the metric time functions are ap-
propriately bounded? This would be too strong a requirement. If we
temove one additional point from 8,,, then there are no Cauchy sur-
faces in the resulting space-time, and, consequently, it would not be
commted as temporally finite in the future according to the criterion under
consideration. This is an unaceeptable result,

At this juncture it must be strongly emphasized that the above exam-

17



John Earman

ples are of more than mere academic interest; for physical space-time
singularities, e.g., “curvature singularities,” can play the role of the de-
leted regions. And such singularities have been shown to be a pervasive
feature of the solutions to Einstein’s field equations (see below).

In summary, unless a space-time satisfies some very strong causality
conditions, it may not make sense to ask, “Is time finite or infinite?” Even
when such conditions are satisfied, it is difficult to formulate an adequate
general criterion for temporal finiteness, if indeed one exists. That the
finite-infinite distinction becomes blurred in the relativistic context is an
interesting point, and it deserves more attention in the philosophical
literature. But having made it, I propose to avoid it in what follows by
concentrating on cases in which we can agree that an appropriate type of
finiteness obtains.

Before closing this section T want to comment on the meaning of the
Aristotelian conceptions of the beginning and the end of time. It might be
thought that the way to illustrate these conceptions within the relativistic
context is to modify the picture of space-time so that a space-time can be a
manifold with boundary, the boundary being the disjoint union of two
spacelike three-manifolds, one of which can be interpreted as the “first
instant” and the other as the “last instant.” Prima facie, the existence of
such boundaries is problematic. Their existence prompts one to ask such
questions as “What explains the appearance of these boundaries?” and
“What is beyond these boundaries?” Perhaps such guestions can be dis-
missed as not legitimate. Or perhaps there are quite straightforward an-
swers, e.g., the answer to the second question may be simply “Nothing!”
What is problematic is how in general to attach a “future (past) boundary”
to a space-time that is future- (past-) bounded. In some cases there is an
obvious and natural procedure, but such cases turn out not to provide
physically interesting illustrations of how time can have an end or a be-
ginning, or so I shall argue below. For the moment, let us set aside the
questions of boundaries and of how to implement condition (2) of the
Aristotelian conceptions of the beginning and the end of time.

4. Truncated Space-times
Although the example of the truncated Minkowski space-time Stun
presented above is a trivial example, it poses a nontrivial problem for the
philosophy of time: are there good reasons for believing that actual space-
time cannot be truncated in the way S, is?
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If one holds that there are no good reasons, then one would be wise to
receive extreme unction as soon as possible, since time may run out any
second now. Moreover, such a position implies a profound skepticism
with respect to our knowledge of the past and future; it implies that we do
not in fact know the great bulk of the things we ordinarily claim to know
about the past and future. For if a person has no reason to believe p, then
he does not know p; and if p is a presupposition of g and he does not know
that p, then he does not know that ¢.'2 And, needless to say, most of our
ordinary knowledge claims about the past and future presuppose that
there is a past and future. Thus my claim to know that I existed five
seconds ago (as measured along my world-line), or that barring certain
catastrophes, the universe will still exist five seconds from now, presup-
poses respectively that actual space-time is not truncated in the past
(future) in such a way that proper length along my world-line as measured
backwards (forwards) in time from now never reaches five seconds; hence,
if I have no good reason to believe that space-time is not truncated in the
manner described, I do not know that I existed five seconds ago or that
the universe will exist five seconds from now.

One’s initial reaction to such skepticism is apt to be that it is too absurd
to be taken seriously. Whether or not this reaction can be sustained
remains to be seen.

On the other hand, if one holds that there are good reasons to reject
Strun and its like as a model for actual space-time, then these reasons
must be supplied. We shall see that this order is less simple to fill than
one might think at first glance. But before going into details, it will be
helpful to contrast the above examples with another sort.

5. Another Example—Temporally Finite
but Untruncated Space-time

Definition §. A space-time &' = (M', g', V') properly extends the
space-time & = (M, g, V), if and only if M is isometrically embeddable
as a proper subset of M. 8 is inextendible if and only if there is no &'
that properly extends S,

Can there be a space-time that is inextendible and yet is finite in the past
or future? If so, the finiteness cannot be the result of truncation surgery. 13
The answer is affirmative; specific examples will be studied below (see
section 8),
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We can now see one of the virtues of the four-dimensional point of
view, from which time is seen as an aspect of space-tithe. For from the
one-dimensional point of view, there is no distinction between the tem-
poral finiteness of Sy, and the inextendible space-times referred to
above. And from the one-dimensional point of view, it is hard to fault
Leibniz's assertion that time is always capable of being extended into a
greater time. But not so in the four-dimensional view! Another virtue of
the four-dimensional view will emerge below; namely, that general rela-
tivity provides a mechanism for realizing temporal finiteness in space-

time.

6. Arguments against Truncation

There are physical considerations, both observational and theoretical,
that can be brought to bear against certain kinds of geodesic incomplete-
ness. For example, we never observe particles in inertial motion simply to
pop out of existence, and conservation principles weigh against our ever
observing this. But such considerations do not seem to operate against
Spuns for here it is the whole matrix of existence that, so to speak, pops
out.

(It is worth noting that in the present context, the problems attending
the notion of space coming to an end are not wholly different from those
attending the notion of time coming to an end. If we truncate Minkowski
space-time in the spatial sense (e.g., delete all those points whose
pseudo-Cartesian coordinates (x, t) satisty 11' = A, where A is a positive
constant), all the ancient problems arise about what happens when we
poke a spear at the “edges” of space; but these problems arise here in a
form not contemplated by the ancients, and, in fact, in the present con-
text they are part and parcel of the problems involved in interpreting
incomplete timelike curves. On the other hand, there are important dif-
ferences between space and time. For example, adding the time slice
consisting of all those points of M 4, whose temporal coordinates satisty
¢ = 1 as a future boundary for My, does not help to resolve any problems.
But it is possible to deal with the timelike incompleteness arising from
truncating in the spatial sense by adding a spatial boundary (in the above
example, the set of all points satisfying |x| = A) and by treating this
boundary as a rigid reflecting barrier; now, of course, the problems raised
by the ancients do arise in the form they contemplated.)

Nor do the basic laws of relativistic physics help to rule out truncated
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space-times. Thus, for example, it follows from the local nature of Ein-
stein’s field equations that if the cosmological model (S, &) is a solu-
tion, 50 is { Strun» & trun) -

At this point, common sense cries out: “If my world line cannot be
extended backwards in time from now more than five seconds, then most
of my memory impressions are mistaken. But this is absurd.” But exactly
where does the absurdity lie? There is no logical contradiction, nor—
apparently—any inconsistency with the basic laws of physics. Of course, it
does seem that the likelihood that the universe switched itself on, so to
speak, a few seconds ago in such a way that people are endowed with the
memory impressions they in fact have, is very low. But this estimate of
likelihood is surely not an estimate of probability based on either ob-
served relative frequencies or on the implications of the laws of physics.
The point becomes clearer when we contrast the present case with a case
in which we assume that space-time is not truncated in the past, and ask
for the probability of the spontaneous appearance of fossillike objects.
Here laws and observed relative frequencies can be brought to bear, e.g.,
statistical mechanics tells us that the probability of a spontaneous fluctua-
tion producing the ‘fossils’ is vanishingly small. No such argument is
available in the case in which we ask for the likelihood of the universe
being truncated in the past. The estimate of low likelihood in this case
seems simply an expression of our unwillingness to accept a certain kind
of explanation. But whether or not this unwillingness can be backed by
philosophically respectable reasons is the question at issue.

Moreover, even if memory impressions, ‘fossils” and the like did pro-
vide reasons for rejecting truncation in the past, there still remains the
case of truncation in the future. Here I am inclined to think that the best
we can hope for is a pragmatic vindication of the rejection of future-
truncated space-times as models of the actual universe. Long and frustrat-
ing experience has revealed the fruitlessness of attempting to refute radi-
cal skepticism with respect to our knowledge of the external world. How-
ever, one can hope to show that such skepticism is inquiry-limiting and in
this way justify proceeding as if the skepticism were false. And so 1
helieve it is with future truncation.

Intuition would have it otherwise—the actual space-time world cannot
be tuncated in the future. Nor is this intuition raw and untutored. In-
deed, it is not much of an exaggeration to say that this intuition is the
starting point of recent rescarch on gravitational collapse. Consider the
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original Schwarzschild vacuum solution to the Einstein field equations.
(The reader need not be familiar with the details in order to follow the
argument.) Focus on an observer whose world-line approaches the
Schwarzschild radius. It is found that the observer would have to use up
an infinite amount of Schwarzschild coordinate-time in order to reach this
radius. But another calculation shows that only a finite amount of proper
time clapses. Therefore, either the observer encounters some sort of
violent agency at the Schwarzschild radius and is snuffed out of existence,
or he simply runs out of time and ceases to exist, or he crosses over the
Schwarzschild radius into a region of space-time not covered by the
Schwarzschild coordinates. The first possibility can be ruled out, since it
can be shown that the space-time metric is perfectly regular as one ap-
proaches the Schwarzschild radius (the so-called Schwarzschild
singularity is a coordinate singularity, not a real singularity). The second
possibility is ruled out on the grounds that “it would be unreasonable to
suppose that the observer’s experience could simply cease after some
finite time, without his encountering some violent agency.” '* We are left
then with the last alternative. If we admit this, we are driven to ask what
happens to a massive object with exterior Schwarzschild field once it
collapses within its Schwarzschild radius. This is the beginning of the
story of gravitational collapse, a story that cannot be told here. What
should be told here is that the argument just considered is essentially an
application of Leibniz’s Principle of Sufficient Reason. Had Leibniz lived
to read it, he would no doubt have claimed that it provides an illustration
of his doctrine that physics rests on metaphysical principles.

Without taking a stand on this doctrine, I am simply going to assume in
what follows that certain kinds of truncated space-time do not provide
physically interesting examples of how time can be finite. The final judg-
ment about the justifiability of this assumption must await further investi-
gation.

7. Conditions for Physically Interesting Finite Pasts and Futures

The above discussion leads to the following conditions (or more prop-
erly, to condition schema, since the details are left open) on a cosmologi-
cal model (8, &) if it is to serve as a physically interesting example of
how time can be finite in the past (future):

; ; . - :
(1) 8 possesses certain properties, among which are the propefty ol
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having a global time order and, possibly, the properties of definitions
4-6.

(2) S is past- (future-) bounded.

(3) & has certain features, among which is, perhaps, the feature that
there are no negative energy densities (see below).

(4) & and § together satisfy certain conditions, among which is, per-
haps, that of being a solution of Einstein’s field equations.

(5) (&, &) is maximal with respect to (1), (3), and (4), i.e., there is no
(&', 8’") which properly extends {8, § ) and which satisfies (1),
(3), and (4).

The condition most open to question is (5). Finiteness in the past or
future might seem so objectionable that we would expect nature to go on
building even if she could do so only by employing building blocks that do
not satisfy (1), (3), and (4). This suggests that we strengthen (5) to

(5) & is inextendible.

On the other hand, (5) and (5’) may prove to be too strong. If nature
starts by building a cosmological model (8, & ), we cannot require her
to go on building until a model that is maximal with respect to properties
P is reached if there is no such maximal space-time. And unless the set of
properties P is chosen with care, it may not be provable that every space-
time having properties P is contained in a space-time that is maximal with
respect to P. If & = (M, g, V) has a Cauchy surface C and if we
consider only those extensions 8 = (M’, g’, V') of & such that the
image C’' = ¢(C) of C under the embedding map is a Cauchy surface of
S’ then it can be sbown that there is a unique maximal extension S of
8.1 But although & may be maximal in this sense, it may not be a
good model for illustrating how time can be finite. For by deleting por-
tions of Minkowski space-time 8,;,, we can obtain a space-time g,
which is maximal in this sense and which is past and future-bounded; but
Saer 15 just as objectionable as the original truncated space-time 8.,
discussed in section 4.1®

Another approach is to use the concept of a framed space-time, a
space-time & = (M, g, V) together with an orthonormal tetrad at some
point of M. If we restrict attention to framed space-times and extensions
in which the embedding map carries the preferred frame of the one onto
the preferred frame of the other, it can be proven that every space-time is

123



John Earman

contained in a maximal space-time.”” However, the use of preferred
frames is somewhat artificial. And it is not obvious that any framed space-
time with properties P can be extended to a framed space-time which is
maximal with respect to P.

All this suggests that (5) may have to be weakened to

(5") (8,8 ) is not extendible to an (&' &'y which satisfies (1), (3),
and (4) and which itself is not past- (future-) bounded.

However, (5") may be too weak. For there are truncated cpsmological
models that cannot be extended as a solution to Einstein’s field equations
to a model that is not past- or future-bounded (consider, for example,
truncated versions of the Friedmann models—see the following section);
such truncated models will again be as objectionable as the original one.
Fortunately we can carry forward the discussion without having to
decide precisely what form of the inextendibility condition to impose; for
we shall see that there are cosmological models which satisfy the strongest
form of the inextendibility condition and which have the other properties

we desire.

8. Some Physically Interesting Examples of
Temporally Finite Space-times

The considerations of the preceding section are closely related to the
definition of “singular space-time” adopted by a number of physicists: &
is said to be singular if no extension of & is timelike geodesically com-
plete (i.e., no extension is such that every timelike half-geodesic is com-
plete). Several theorems have been proved about the existence of
singularities in the cosmological models of the general theory of relativity.
These theorems will not in general be relevant to our present concerns;
for we are not interested in timelike incompleteness in general—we are
interested only in cases in which the incompleteness is of such a global
nature that time runs out for all possible observers and in which & sat-
isfies the other conditions discussed in section 7. There is one general
class of cases in which the singularity theorems will be of general interest;
namely, those in which & contains a Cauchy surface. For, in the first
place, such an & will possess a global time function. Second, it & s
timelike geodesically incomplete, we may be able to prove that the in-
completeness is of a global nature. Moreover, the existence of a Canchy
surface adds a bonus—it makes possible the implementation of Lapflacian
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Determinism; thus it may be possible to predict (retrodict) from the state
of the universe at a given instant, the end (beginning) of time.

In fact, general relativity predicts that in many seemingly physically
interesting cases, time is finite in the past or future. More precisely, let
(8,8 ) be a cosmological model such that Einstein field equations
(without cosmological constant) ® are satisfied and & possesses a Cauchy
surface C. Then if the convergence of the future-pointing unit normals to
C is everywhere greater than some positive constant C, (this means that at
the instant corresponding to C, the universe is everywhere contracting at
a rate at least as great as that given by C,), and if a condition on the
energy-momentum tensor is satisfied (in typical cases, this condition
can be violated only by having negative energy densities or large negative
pressures), then as measured from C, no future-directed timelike curve of
& has a proper length greater than 3/C,."

The Friedmann cosmological models satisfy the hypotheses of this
theorem and/or the temporal converse of the convergence condition; thus
they are finite in the past and/or in the future. Moreover, the space-times
involved are inextendible—none of them can be embedded as a proper
subset of any space-time, much less a solution to Einstein’s field equa-
tions, and they are therefore maximal in the strongest sense. Thus they
would seem to qualify as physically interesting examples of how time can
be infinite in the past or future.?®

9. Examples Reconsidered

How physically realistic are such models? Two opposing views on this
question in particular and on the singularity theorems in general have
emerged. According to one view, no space-time can be regarded as being
physically realistic unless it is timelike geodesically complete. The fact
that timelike geodesic incompleteness is a pervasive feature of the cos-
mological models of general relativity is taken as an indication that some-
thing is drastically wrong with the theory.?' The opposing attitude is that
nothing is wrong with the theory and that, therefore, we must learn to
live with singularities. Thus C. Misner? argues that since observational
evidence together with Einstein's theory suggests that time in our uni-
verse has a beginning, we had better get used to the notion that time has
an “absolute zero.”

However, Misner goes on to say that “the universe is meaningfully
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infinitely old because infinitely many things have happened since its be-
ginning.”® Viewed as a way of making the notion of the beginning of
time more palatable, this statement is unexceptionable; but viewed in
another light, it threatens to undermine the analysis given above. For in
support of this statement, Misner introduces a time scale {} which is
related logarithmically to the proper time scale and which is “attractive as
a primary standard” in that “significant epochs (e.g., galaxy formation,
nucleo-synthesis hardon era, etc.) are spaced at reasonable intervals of
.7 24 But on the () scale, the universe is infinitely old. Therefore, if the {1
scale were accepted as the “primary standard,” time would have no be-
ginning on the above analysis since it would not be past-bounded on the ()
scale. And, it might be asked, what can justify the use of the proper time
scale to the exclusion of all other time scales? The answer is that it may be
useful to employ the  scale or some other scale in discussing some
phenomenon, e.g., galaxy formation; but if one is to believe the theory in
the context of which the discussion is taking place, space-time is equipped
with a metric that gives the measure of space-time distances, and it is this
metric that we must use in answering the question, “Does time have a

beginning or an end?”

10. Singularities and the End Points of Time

Misner uses the term “singularity” to cover not only the case of timelike
geodesic incompleteness but also the case in which there is some “in-
finity,” e.g., infinite curvature or infinite mass density. In suggesting that
a singularity may well have occurred in our universe at some finite proper
time in the past, he presumes that the singularity may well involve some
such infinity. But this sort of talk is not consistent with the point of view
we have adopted so far, for such talk assumes there are “singular points”
at which the curvature or mass density becomes infinite; but we have
been assuming that space-time is a Lorentzian manifold and that, in par-
ticular, the metric of M is everywhere non-singular (i.e., defined and
differentiable at every point of M).*® Thus, in speaking of a Friedmann
universe, we mean Friedmann space-time Sp with singular points omit-
ted, and in the statement that S is not extendible to a larger space-time
8:'. 8p' must be taken to be without singular points. (For example,
the proof of the inextendibility takes the following form for the spatially
closed Friedmann space-time which is finite in the past and future. Asspme
for purposes of contradiction that M. can be isometrically embedded as a
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proper subset of M’ and let ¢ (Mp) denote the image of My under the
embedding map. Then we can find a point p € Mz’ — (M) and a
sequence of points x; € (M) such that the sequence converges to p and
the scalar curvature R(x;) diverges as x; — p. But this yields a contradic-
tion, since the curvature invariants are differentiable functions of space-
time position.)

There is good reason not to admit singular points as part of the space-
time manifold M: unless some limitation is put on the type of singularity
we admit, we shall not have any theory at all, and there does not seem to
be any good motivation for picking out the admissible singularities or for
prescribing how many and in what configuration they will be placed on
the manifold.2

Still, it is possible that singular points can be treated by joining them to
M so as to form a “boundary” for M. Some such move must be made if our
picture of space-time is to accommodate the notion that the scalar curva-
ture “becomes infinite.” (It is at this point that I part company with R.
Swinburne,? who argues that if the best confirmed cosmological theory
implies that there is a time ¢, in the past at which matter was infinitely
dense, then we can conclude that the universe (which Swinburne takes to
mean the collection of all physical objects that are spatially related to the
carth) came into existence after ¢,, since an infinitely dense state of matter
is physically impossible. But if it really is physically impossible, then the
conclusion we must draw from Swinburne’s argument is that the theory in
(uestion is false. Moreover, on my interpretation of relativity theory,
models like those of Friedmann do not imply that there was or will be a
time at which matter was or will be infinitely dense; rather, they entail
the more radical consequence that time itself is finite in the past or future.
On the other hand, such models do imply that singular states do
“occur’—not at any point of time, but at ideal points which are attached
to space-time by some procedure yet to be described.)

Also we would like to have a means of illustrating the Aristotelian
conception of the beginning or end of time, i.e., a means of representing
first or last instants of time.

Mathematically, what we want is a prescription for associating with any
future- (past-) bounded space-time § a “future (past) boundary” for 8.
One immediately runs into a problem if this task is interpreted in the
lollowing literal way: for any future- or past-bounded space-time § =
(M, g, V), find a manifold with boundary M such that M = M UdM)
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and the boundary d(M) is the disjoint union of the “future boundary” and
the “past boundary.” In the case of the truncated Minkowski space-time
Strun, the obvious and natural way to obtain M, is to take the “future
boundary” to be the set of all points whose temporal coordinates satisfy
t = 1. But the very reason why there is an obvious procedure in this
case—the fact that there is an extension Sy, of Spun so that the future
boundary of 8., can be derived by taking the closure of M, in
Myin—means that condition (5') of section 7 is violated. And it can be
shown that for any time-orientable space-time § = (M, g, V), if there
exists a manifold with boundary M = M (y 8(M) such that the bound-
ary 0(M) is a spacelike three-manifold, then & is extendible to an S’
= (M', g', V') so that M) = CI(M) U CI(M' — M) where CI denotes
the operation of taking the closure in M'. Thus we have a dilemma. If 8
is, say, a future-bounded and inextendible space-time, then the “future
boundary” for & cannot be represented as a boundary of the space-time
manifold of S, at least not in the way the time slice ¢+ = 1 of Minkowski
space-time does for S, On the other hand, if § is extendible to a
larger space-time, it violates condition (5') and thus may fail to qualify as
an interesting example of how time can come to an end. To sum up, the
straightforward way of trying to illustrate the Aristotelian conceptions of
the beginning and end of time seems to be blocked.

A more sophisticated approach is needed. In order to illustrate the
possibilities, I shall briefly describe the g-boundary approach.?® For any
given space-time § = (M, g, V), this approach associates with each
incomplete timelike geodesic an ideal end point, An equivalence relation
is defined on the timelike geodesics, and two ideal end points are iden-
tified just in case their corresponding geodesics are equivalent modulo
this relation. The resulting set of ideal points forms the g-boundary
3y(M); a topology is defined for 8,(M), and a prescription is given for
attaching 9,(M) to M to form a manifold M, with g-boundary. In some
cases a differential and metric structure can also be defined for 8,(M). M,
will not in general be a manifold with a boundary. However, if M is a
manifold with boundary (M) such that every incomplete timelike
geodesic of M strikes 8(M), then given the space-time M =M — (M),
the g-boundary approach can be used to extend M to M.

In the case of the spatially closed Friedmann universe, the g-boundary
does not consist, as one might expect, of two points corresponding to the
initial and final singular states; rather, it consists of two three-spheres 8%,
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and topologically, Friedmann space-time-plus-g-boundary is the product
of $?and a closed and bounded interval of IR. Similarly, if the g-boundary
approach is applied to a conical space-time with vertex removed, it does
not give back the vertex point and only the vertex point. However, a
modification of the equivalence relation on the timelike geodesics will
lead to this result.*® In addition to alternate schemes for equating timelike
geodesics, there are alternative topologies and metric structures for
d,(M). There doesn’t seem to be any sense in choosing one alternative
once and for all to the exclusion of all others; different alternatives may be
better for illuminating different aspects of “singularities.” Consequently
there is no one right way to represent the “first” or “last moment of time.”

11. Before the Beginning and After the End

The truncated Minkowski space-time of section 4 illustrates how time
can be finite in the future; but the success of this example is the success of
stipulation. We stipulate in effect that time is finite in the future by
erasing an infinite portion of Minkowski space-time; there seems to be no
reason to believe—and some reason not to believe—that this particular
stipulation could be physically realized. In contrast, the Friedmann cos-
mological models provide a more interesting illustration in that they pro-
vide us with a mechanism for realizing temporal finiteness. Still, it could
be claimed that these examples succeed only by virtue of stipulation; this
time the stipulation specifies what we are to count as a space-time. Why,
it might be asked, could we not change our picture of space-time so that
other regular regions of space-time are joined onto the “initial” and “final”
singularities of the Friedmann models, making them passing episodes in a
longer history?

I shall approach this question somewhat obliquely by considering first
another question. We have assumed that space-time is a connected mani-
fold. Why, it might be asked, could we not change this picture to allow
for the existence of other regions of space-time totally disconnected from
ours? Well, clearly we could. But the question remains as to what the new
picture of space-time amounts to, and in particular, what is meant by the
“existence” of these other regions. Does every possible connected space-
time “exist” (in this new sense of existence) as a region (of the new
extended space-time) that is disconnected from ours? If so, the new pic-
ture does not really contain any innovation; the “existence” of a discon-
neeted space-time region such that ___— means no more than it
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is possible that _____ . Disconnected regions of space-time are
only a device for picturing other possible worlds. On the other hand, if
not every possible space-time “exists” as a region disconnected from ours,
how do we tell which of them “exists”? For the “existence” of the other
regions to make any empirical difference, these other regions must inter-
act in some fashion with our region. This interaction cannot be described
in anything like the usual spatio-temporal terms we use to describe causal
interactions since, by hypothesis, these other regions do not enjoy any of
the usual spatio-temporal relations with our region. What sort of interac-
tion, then, can it be?

Does talk about what happens “before” and “after” the “initial” and
“final” singularities in the Friedmann universes make any more sense
than talk about events that happen “out there,” where “out there” indi-
cates a region of space-time disconnected from ours? If the singularities
are true space-time singularities and not just regions where matter is very
dense—and we have assumed that they are true space-time
singularities—then they seem to separate us from the “other” regions that
“join on” “before” and “after” just as effectively as disconnectedness sepa-
rates us from the other regions “out there.” The “before” and “after”
regions might just as well be other possible worlds.

This interpretation is opposed to the more usual picture of an “oscillat-
ing universe.” In the case of the spatially closed Friedmann universe, there
are formal solutions to the differential equations governing the temporal
behavior of the radius R of the universe which, if taken literally, would
allow one to picture the universe as oscillating between the singular
points where R = 0. (There are other solutions in which r does not oscil-
late.) But here as elsewhere, one can be misled by taking a picture too
literally, for from the point of view presented above, these mathematical
solutions are purely formal. As we have seen above, the “singular points”
at which B = 0 can be represented only by sophisticated mathematical
techniques, and on some representations they are not even points but
rather three-spheres. Second, although continuity considerations can be
used to help characterize certain aspects of singularities, they do not seem
to provide a means of carrying us “through” the singularities and into
“other” space-time regions on the “other side” of the singularities. Com-

pare the situation here with that in Newtonian gravitational theory of

.2'

point mass particles. When the particles collide, Newton’s 1/r* law blows

up. Under certain conditions, however, solutions to the equations of
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motion can be extended through the singularities by means of analytic
continuation. This procedure is possible only because of the constant
background of Newtonian space-time, which gives the means of defining
relevant senses of continuity of solutions. But in the relativistic case, the
space-time background itself becomes singular, and hence no means of
defining a “continuous” extension through the singularity is at hand.

I am not claiming that we could never come to possess any empirically
well-grounded principle that would “carry us through™ space-time
singularities. What I do claim is that we do not now possess such a
principle and that it is difficult to see how such a principle could be
constructed and confirmed within present relativity physics.?3°

Two final points. First, the arguments given in this section take for
granted certain elements of the currently accepted picture of space-time.
This picture may well be dropped in the future in favor of some radically
different picture; but this is a matter which at the present time must be
left to writers of science fiction. Second, if the sentiments of this section
are rejected, then one must conclude that no physically interesting exam-
ple of how time can be finite in the future or past can be constructed
within the current framework of physics. Such a negative conclusion
would be interesting in its own right.

12. Concluding Remarks

Many of the above considerations rely heavily on the space-time met-
ric. This is no accident, for most of the crucial distinctions I have drawn
cannot be made in terms of topological, or affine, or even conformal
structure. Some philosophers hold that the metric element is “nonintrin-
sic” and “conventional” in a way that, say, the topological structure is not.
I do not share this view, but I wish to point out that if it is correct, then
the answers to many of the questions which philosophers have asked
about the beginning and end of time are matters of convention.

Unless the line of analysis I have pursued in this paper is very mislead-
ing, the answers to the questions posed at the outset lie somewhere in a
thicket of problems growing out of the intersection of mathematics,
physies, and metaphysics. This paper has only located the thicket and
engaged in a little initial bush-beating. This is not much progress, but
knowing which bushes to beat is a necessary first step.

Some philosophers will be disappointed that the thicket is populated by
so many problems ol a technical and scientific nature. On the contrary, T
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am encouraged by this result because it shows that a long-standing
philosophical problem has a nontrivial and, indeed, a surprisingly large
content. Moreover, this result is a good illustration of the artificiality and
danger of trying to separate philosophy from science. If T am right, some
of the best philosophy of time is being done today by physicists or, as I
would prefer to say, by natural philosophers. Conversely, this work in-
evitably brings a confrontation with traditional philosophical problems.
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