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1. The Problem 

 It is very difficult to grasp the essential content of the general theory of relativity by 

reading Einstein’s narratives on the theory and by reviewing the historical papers he wrote on the 

way to completion of the theory. The difficulty is that Einstein’s investigations were driven by 

his focus on certain notions of principle: the principle of equivalence, a generalized principle of 

relativity, the principle of general covariance and Mach’s principle. As a matter of history, these 

principles played a decisive role in Einstein’s discovery and completion of the theory. However, 

their role in the logical foundations of the theory is difficulty to discern. At times, they even 

seem to be directly contradicted by the theory. Once Einstein had completed the theory in 1915, 

he did not put much effort into separating what the final theory actually says and which were the 

heuristics that guided him. His accounts of the theory tend to recapitulate the steps he took in 

devising the theory. They mix the heuristics and the final results in ways that are at best puzzling 

and at worst misleading. My goal here is to give a compact statement of the physical foundations 

of the general theory, using mathematical methods and notation that conforms with that of 

Einstein, but without employing the principles on which Einstein placed so much emphasis. 

2. Special Relativity 

 The best formulation of special relativity was provided by Minkowski with his 

conception of a four-dimensional spacetime. The theory is captured in a few ideas: 

Spacetime: Spacetime has four dimensions and events in spacetime are identified by the 

real valued coordinates t, x, y, z. 

Line element: The interval between two neighboring events, separated by coordinate 

differences dt, dx, dy, dz, is 

(1)                                 ds2 = c2dt2 – dx2 – dy2 - dz2 
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If ds2 > 0, then the events are timelike related and ds is (c x the proper time) elapsed 

between the two events, as measured by a co-moving clock. 

If ds2 < 0, then the events are spacelike related and |ds| is the proper distance between the 

two events, as measured by rods. 

If ds2 = 0, then the events are lightlike related and can be the connected by a light signal. 

Geodesics. Trajectories in spacetime that render the interval s extremal 

𝛿 "𝑑𝑠 = 0 

are the inertial trajectories of free bodies in spacetime, if the geodesics are timelike; and the 

straight lines of the Euclidean three-space, if the geodesics are spacelike. 

Free bodies moving along geodesics of the line element (1) conform with 

(2)                                    d2x/dt2 = d2y/dt2 = d2x/dt2 = 0. 

These assumptions are enough to deliver the content of special relativity. They also give us much 

of the content of general relativity. Only a few adjustments are needed to arrive at general 

relativity, as we shall see shortly. (Most importantly, the expression for the line element (1) will 

be generalized.) 

3. Properties of Special Relativity 

 The familiar content of special relativity is now recoverable. For example, the time 

dilation effect can be read off (1). If a body is moving with three velocity (v, 0, 0) = (dx/dt, 0, 0), 

then proper time t dilates with respect to the time coordinate t according to 

ds2 = c2dt2 = c2dt2 – dx2 

so that (dt/dt)2 = 1 – (1/c2)(dx/dt)2 = 1 – (v/c)2. We then have 

𝑑𝜏
𝑑𝑡 =

)1 −	𝑣!/𝑐! 

If we recall that the time coordinate t coincides with the proper time of clocks that have zero 

coordinate velocity in this coordinate system, we see that this last result is the familiar time 

dilation effect. 

 The most important result is that the line element admits the Lorentz transformation as a 

symmetry. That is, if we replace the coordinates (t, x, y, z) by (t’, x’, y’, z’) where 
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then the line element becomes 

(1)                                 ds2 = c2dt’2 – dx’2 – dy’2 – dz’2 

Crucially, the value of ds is unchanged. It is an invariant. This symmetry corresponds to the 

satisfaction of the principle of relativity of inertial motion. It is deduced and not postulated. 

 Trajectories of a point moving at the speed of light satisfy  

ds =0 

that is  

ds2 = c2dt2 – dx2 – dy2 - dz2 = 0 

If we suppress motion in the y and z  direction, this is equivalent to 

dx/dt = ±c 

Since the line element (1) is invariant under a Lorentz transformation, this result corresponds to 

the light postulate. Again, it is deduced and not postulated. 

4. Introduction of Arbitrary Coordinates 

 Special relativity can proceed using the special coordinates (t, x, y, z) and their Lorentz 

transforms. However, in order to introduce curvature into the spacetime geometry, it is 

convenient mathematically to introduce arbitrary coordinates. That is, we introduce four new 

coordinates xi = (x0, x1, x2, x3) by any suitably differentiable, invertible functions of the original 

coordinates. The raised indices 0, 1, 2, 3 are not powers but labels. Here I differ from Einstein’s 

notation. His labels commonly varied over 1, 2, 3, 4 and where I have a Latin index in xi, he 

would use a Greek index, xµ.) Transforming the line element into the new coordinates turns (1) 

into a huge expression with 16 terms: 

ds2 = A (dx0)2 + B dx0 dx1 + … + P (dx3)2 

The 16 coefficients are g00 = A, g01 = B,  … The expression for the line element can then be 

written as 

(3)                                      ds2 = gik dxi dxk 

Here the Einstein summation convention is used. If we repeat an index, then we sum over it. That 

means the expression is really 16 terms: 
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ds2 = g00 dx0 dx0 + g01 dx0 dx1 + … + g33 dx3 dx3 

These sixteen quantities, gik, are the components of the metric tensor and fix the geometric 

properties of the spacetime. We cannot have any metric tensor in special relativity. Rather we 

must have one that always allows us to transform back to the original simpler coordinate 

expression (1). Geometrically, this is the condition of flatness of the metric. A necessary and 

sufficient condition for flatness is the vanishing of the Riemann curvature tensor 

(4)                                           Riklm = 0 

The Riemann curvature tensor is a complicated expression in the derivatives of the gik and the 

full expression can readily be found in a relativity text of your choice. 

 The introduction of arbitrary coordinates means that the expression for the trajectory of 

an inertially moving body becomes more complicated. Equation (2) above becomes 
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where the Christoffel symbols of the second kind are 
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While equations (3), (4) and (5) look a great deal more complicated than equations (1) and (2), 

they are just saying the same thing, but in fancier mathematical clothing. The advantage is that 

now, formally, rather little new is needed to make the step to general relativity. 

5. General Relativity: From Flatness to Curvature 

 The step to general relativity consists in just one big idea. The geometrically flat metric 

defined by (3) and (4) above is replaced by metrics that can be curved geometrically. The 

geometrical curvature corresponds to familiar gravitational effects. Free bodies will still follow 

the geodesics of (5). Because of the curvature of the spacetime, they will behave rather 

differently from special relativity. They will be, for example, the orbital motions of planets. 

 The important question is how the condition of flatness (4) is to be relaxed. If we 

consider regions of spacetime where no ordinary matter is present, then there is a very simple 

answer. We just need to relax the flatness condition a little. The Riemann curvature tensor Riklm 

has 4 x 4 x 4 x 4 components.1 Instead of requiring each of them individually to vanish, 

 
1 That is an exaggeration. Many of them are duplicates so that there are only 20 independent components. 
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Einstein’s theory only requires that certain sums of them vanish. That is, the quantity Rik now 

called the Ricci tensor, is set to zero: 

(6)                       Rik  =  Rmimk = R0i0k + R1i1k + R2i2k + R3i3k = 0 

This relaxation opens up the metric fields possible just enough to those that capture gravitational 

waves in empty space and gravitational fields in the empty space surrounding massive objects 

like our sun and the earth. 

 The more complicated case arises if we ask after the metric field in regions of spacetime 

where ordinary matter is present. In Newtonian theory, in this case, we just need to know the 

density of matter to determine the corresponding gravitational field. In relativity theory, no 

single quantity represents the gravity producing matter. Rather the metric field is affected by the 

mass-energy density at the event, the momentum density and energy flux at the event and by any 

stresses that may be present. All these quantities are captured in the stress-energy tensor, Tik. 

 The easiest way to add it to Einstein’s source free gravitational field equations (6) would 

merely be in a simple equality: Rik  = k Tik, where k is a constant of proportionality. That 

simplest proposal fails since the stress-energy tensor must satisfy general relativity’s analog of 

the conservation of energy and momentum. It is written as 

ÑiTik = 0 

The operator Ñi is a natural generalization of the differential divergence operator, adapted to the 

context of curved spacetime geometries. There turns out to be an easy way to adjust the first 

guess of the gravitational field equations to accommodate this conservation result. It turns out 

that a structure now called the Einstein tensor 

Gik  =  Rik  - (1/2)gik R 

satisfies the condition ÑiGik = 0 identically, that is, no matter what gik is. (R is the fully 

contracted curvature scalar.) We then arrive at Einstein’s gravitational field equations of 

November 1915: 

Gik  = k Tik, 

6. Summing Up 

 There is much more to be said about Einstein’s theory. So far nothing has been said about 

how other matter fields, such as the electromagnetic field, might be incorporated into the theory. 
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However what has been covered so far is enough to pin down the essential content of Einstein’s 

theory. Two conclusions are important: 

(i) The basic structure of the theory is already present in special relativity. The major transition 

resides in one step: allowing the metric of spacetime to become geometrically curved. 

(ii) There has been no need to introduce discussion of principles, such as the principle of 

equivalence, a generalized principle of relativity or Mach’s principle. While some of these 

may be useful in understanding how Einstein came to discover general relativity and how he 

thought of it, they do not provide the simplest conception of the theory. 


