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Newton's equations of motion retain their form when one transforms to a
new system of coordinates that is in uniform translational motion relative to
the system used originally according to the equations

' = 3 - vl
z' =y
2! =2 .

As long as one believed that all of physics can be founded on Newton's
equations of motion, one therefore could not doubt that the laws of nature are
the same without regard to which of the coordinate systems moving uniformly
(without acceleration) relative to each other they are referred. However,
this independence from the state of motion of the system of coordinates used,
which we will call "the principle of relativity," seemed to have been suddenly
called into question by the brilliant confirmations of H. A. Lorentz's
electrodynamics of moving bodies.! That theory is built on the presupposition
of a resting, immovable, luminiferous ether; its basic equations are not such
that they transform to equations of the same form when the above
transformation equations are applied.

After the acceptance of that theory, one had to expect that one would
succeed in demonstrating an effect of the terrestrial motion relative to the
luminiferous ether on optical phenomena. It i1s true that in the study cited

[2]  Lorentz proved that in optical experiments, as a consequence of his basic
assumptions, an effect of that relative motion on the ray path is not to be
expected as long as the calculation i1s limited to terms in which the ratio

[1] M. A. Lorentz, Versuch einer Theorie der elektrischen und optischen
Frscheinungen in bewegten Korpern. [Attempt at a theory of electric and
optical phenomena in moving bodies] Leiden, 1895. Reprinted Leipzig, 1906.
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v/e¢ of the relative velocity to the velocity of light in vacuum appears in
the first power. But the negative result of Michelson and Morley's experi-
ment! showed that in a particular case an effect of the second order
(proportional to v2/¢?) was not present either, even though it should have
shown up in the experiment according to the fundamentals of the Lorentz
theory.
[t is well known that this contradiction between theory and experiment
was formally removed by the postulate of H. A. Lorentz and FitzGerald, [4]
according to which moving bodies experience a certain contraction in the
direction of their motion. However, this ad hoc postulate seemed to be only
an artificial means of saving the theory: Michelson and Morley's experiment
had actually shown that phenomena agree with the principle of relativity even
where this was not to be expected from the Lorentz theory. It seemed
therefore as if Lorentz's theory should be abandoned and replaced by a theory
whose foundations correspond to the principle of relativity, because such a
theory would readily predict the negative result of the Michelson and Morley
experiment . [5]
Surprisingly, however, it turned out that a sufficiently sharpened
conception of time was all that was needed to overcome the difficulty
discussed. One had only to realize that an auxiliary quantity introduced by
H. A. Lorentz and named by him "local time" could be defined as "time" in [6]
general. If one adheres to this definition of time, the basic equations of
Lorentz's theory correspond to the principle of relativity, provided that the
above transformation equations are replaced by ones that correspond to the new
conception of time. H. A. Lorentz's and FitzGerald's hypothesis appears then
as a compelling consequence of the theory. Only the conception of a lumini-
ferous ether as the carrier of the electric and magnetic forces does not fit
into the theory described here; for electromagnetic forces appear here not as
states of some substance, but rather as independently existing things that are
similar to ponderable matter and share with it the feature of inertia. [7]
The following is an attempt to summarize the studies that have resulted

to date from the merger of the H. A. Lorentz theory and the principle of
relativity.

—

IA. A. Michelson and E. W. Morley, Admer. J. of Science 34, (1887): 333. [3]
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The first two parts of the paper deal with the kinematic foundations as
well as with their application to the fundamental equations of the Maxwell-
Lorentz theory, and are based on the studies! by H. A. Lorentz (Versl. Kon.
Adkad. v. Wet., Amsterdam (1904)) and A. Einstein (4an. d. Phys. 16 (1905)).

In the first section, in which only the kinematic foundations of the
theory are applied, I also discuss some optical problems (Doppler's principle,
aberration, dragging of light by moving bodies); I was made aware of the
possibility of such a mode of treatment by an oral communication and a paper
by Mr. M. Laue (4nn. d. Phys. 23 (1907): 989), as well as a paper (though in
need of correction) by Mr. J. Laub (4nn. d. Phys. 32 (1907)).

In the third part I develop the dynamics of the material point (elec-
tron). In the derivation of the equations of motion I used the same method as
in my paper cited earlier. Force 1s defined as in Planck's study. The
reformulations of the equations of motion of material points, which so clearly
demonstrate the analogy between these equations of motion and those of
classical mechanics, are also taken from that study.

The fourth part deals with the general inferences regarding the energy
and momentum of physical systems to which one is led by the theory of
relativity. These have been developed in the original studies,

A. Einstein, 4Ann. d. Phys. 18 (1905): 639 and Ann. d. Phys. 23 (1907):

371, as well as M. Planck, Sitzungsber. d. Kgl. Preuss. Akad. d.

Kissensch. XXIX (1907),
but are here derived in a new way, which, it seems to me, shows especially
clearly the relationship between the above application and the foundations of
the theory. 1 also discuss here the dependence of entropy and temperature on
the state of motion; as far as entropy is concerned, I kept completely to the
Planck study cited, and the temperature of moving bodies I defined as did Mr.
Mosengeil in his study on moving black-body radiation.?

The most important result of the fourth part is that concerning the
inertial mass of the energy. This result suggests the question whether energy
also possesses heavy (gravitational) mass. A further question suggesting

IE. Cohn's studies on the subject are also pertinent, but I did not make use
of them here.

2Kurd von Mosengeil, Ann. d. Phys. 22 (1907): 867.
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itself is whether the principle of relativity is limited to nonaccelerated
moving systems. In order not to leave this question totally undiscussed, I
added to the present paper a fifth part that contains a novel consideration,
based on the principle of relativity, on acceleration and gravitation.

I. KINEMATIC PART

§1. Principle of constancy of the velocity of light.
Definition of time. Principle of relativity.

To be able to describe a physical process, we must be able to evaluate

the changes taking place at the individual points of the space as functions of

position and time.

To determine the position of a process of infinitesimally short duration

that occurs in a space element (point event) we need a Cartesian system of
coordinates, i.e., three mutually perpendicular rigid rods rigidly connected
with each other, and a rigid unit measuring rod.! Geometry permits us to
determine the position of a point, i.e., the location of a point event, by
means of three numbers (coordinates =z, y, 2).2 To evaluate the time of a
point event, we use a clock that is at rest relative to the coordinate system
and in whose immediate vicinity the point event takes place. The time of the
point event is defined by the simultaneous clock reading.

Imagine that clocks at rest with respect to the coordinate system are
arranged at many points. Let all these clocks be equivalent, i.e., the
difference between the readings of two such clocks shall remain unchanged if
they are arranged next to each other. If these clocks are imagined to be set
in some manner, then the totality of the clocks, provided they are arranged
sufficiently closely, will permit the temporal evaluation of any point event,
say by using the nearest clock.

IInstead of speaking of "rigid" bodies, we could equally well speak, here,
as well as further on, of solid bodies not subjected to deforming forces.

2For this one also needs auxiliary rods (rulers, compasses).

[16]
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df = F}dx + ngy + F;dz - pdV + TdS (28) [90]
dGé
Fz = =7 etc. (29)

Keeping in mind that

F&dz = Féi dt = 2d6 = d(iﬂi) B Gidi .. €hC. [91]
and
Tdn = d(Tn) - ndT ,

one obtains from the above equations the relation

d(-E + Tn + ¢6) = G di + G’ydi/ + G, dz + pdV + ndT .

Since the right-hand side of this equation must also be a total
differential, and taking into account (29), it follows that

d [0 d [d d [d
— =2 —_—l = ¥ —] = F
”[aﬂ ; ”[a:] v W[aﬂ 7

But these are the equations derivable by means of the principle of least
action which Mr. Planck had used as his starting point. [92]

V. PRINCIPLE OF RELATIVITY AND GRAVITATION

§17. Accelerated reference system and gravitational field

So far we have applied the principle of relativity, i.e., the assumption
that the physical laws are independent of the state of motion of the reference
system, only to nonaccelerated reference systems. Is it conceivable that the
principle of relativity also applies to systems that are accelerated relative
to each other?



[93]

[94]

302 THE RELATIVITY PRINCIPLE

While this is not the place for a detailed discussion of this question,
it will occur to anybody who has been following the applications of the
principle of relativity. Therefore I will not refrain from taking a stand on
this question here.

We consider two systems X, and ¥, in motion. Let X, be accelerated
in the direction of its Jf-axis, and let 7 be the (temporally constant)
magnitude of that acceleration. ¥, shall be at rest, but it shall be located
in a homogeneous gravitational field that imparts to all objects an
acceleration -7 in the direction of the J-axis.

As far as we know, the physical laws with respect to X; do not differ
from those with respect to X,; this is based on the fact that all bodies are
equally accelerated in the gravitational field. At our present state of
experience we have thus no reason to assume that the systems %, and I,
differ from each other in any respect, and in the discussion that follows, we
shall therefore assume the complete physical equivalence of a gravitational
field and a corresponding acceleration of the reference system.

This assumption extends the principle of relativity to the uniformly
accelerated translational motion of the reference system. The heuristic value
of this assumption rests on the fact that it permits the replacement of a
homogeneous gravitational field by a uniformly accelerated reference systenm,
the latter case being to some extent accessible to theoretical treatment.

§18. Space and time in a uniformly accelerated reference system

We first consider a body whose individual material points, at a given
time ¢ of the nonaccelerated reference system S, possess no velocity
relative to S, but a certain acceleration. What is the influence of this
acceleration 4 on the shape of the body with respect to S7

If such an influence is present, it will consist of a constant-ratio
dilatation in the direction of acceleration and possibly in the two directions
perpendicular to it, since an effect of another kind is impossible for reasons
of symmetry. The acceleration-caused dilatations (if such exist at all) must
be even functions of %; hence they can be neglected if one restricts oneself
to the case in which 9 1s so small that terms of the second or higher power
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in 7 may be neglected. Since we are going to restrict ourselves to that
case, we do not have to assume that the acceleration has any influence on the
shape of the body.

We now consider a reference system ¥ that is uniformly accelerated
relative to the nonaccelerated system S in the direction of the latter's
X-axis. The clocks and measuring rods of X, examined at rest, shall be
identical with the clocks and measuring rods of §. The coordinate origin of
Y shall move along the f-axis of &, and the axes of ¥ shall be
perpetually parallel to those of §. At any moment there exists a
nonaccelerated reference system S' whose coordinate axes coincide with the
coordinate axes of ¥ at the moment in question (at a given time {' of
§'). If the coordinates of a point event occurring at this time ¢' are ¢,
7, ( with respect to X, we will have

B =
y' =1n ¢
z2' = (

because 1n accordance with what we said above, we are not to assume that
acceleration affects the shape of the measuring instruments used for measuring
¢, ns (. We shall also imagine that the clocks of ¥ are set at time {¢' of
§' such that their readings at that moment equal ¢'. What about the rate of
the clocks in the next time element 77

First of all, we have to bear in mind that a specific effect of
acceleration on the rate of the clocks of ¥ need not be taken into account,
since 1t would have to be of the order 42. Furthermore, since the effect of
the velocity attained during 7 on the rate of the clocks is negligible, and
the distances traveled by the clocks during the time 7 relative to those
traveled by S' are also of the order 72, i.e., negligible, the readings of
the clocks of ¥ may be fully replaced by readings of the clocks of S' for
the time element 7. [95]

From the foregoing it follows that, relative to X, light in vacuum is
propagated during the time element 7 with the universal velocity ¢ if we
define simultaneity in the system S' which is momentarily at rest relative
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to X, and if the clocks and measuring rods we use for measuring the time and
length are identical with those used for the measurement of time and space in
nonaccelerated systems. Thus the principle of constancy of the velocity of
light can be used here too to define simultaneity if one restricts oneself to
very short light paths.

We now imagine that the clocks of ¥ are adjusted, in the way
described, at that time ¢ =0 of § at which ¥ 1is instantaneously at rest
relative to S. The totality of readings of the clocks of ¥ adjusted in
this way is called the "local time" ¢ of the system X. It is immediately
evident that the physical meaning of the local time ¢ 1is as follows. If one
uses the local time ¢ for the temporal evaluation of processes occurring in
the individual space elements of ¥, then the laws obeyed by these processes
cannot depend on the position of these space elements, i.e., on their coordi-
nates, 1f not only the clocks, but also the other measuring tools used in the
various space elements are identical.

However, we must not Simply refer to the local time ¢ as the "time" of
Y, because according to the definition given above, two point events occurring
at different points of ¥ are not simultaneous when their local times ¢ are
equal. For if at time ¢ = 0 two clocks of ¥ are synchronous with respect
to S and are subjected to the same motions, then they remain forever
synchronous with respect to §. However, for this reason, in accordance with
84, they do not run synchronously with respect to a reference system S’
instantaneously at rest relative to ¥ but in motion relative to &, and
hence according to our definition they do not run synchronously with respect
to XY either.

We now define the "time" 7 of the system ¥ as the totality of those
readings of the clock situated at the coordinate origin of ¥ which are,
according to the above definition, simultaneous with the events which are to
be temporally evaluated.!

We shall now determines the relation between the time 7 and the local
time ¢ of a point event. It follows from the first of equations (1) that

IThus the symbol "7" is used here in a different sense than above.
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two events are simultaneous with respect to S', and thus also with respect to
2 it

tl"'c‘leztz‘ngy

where the subscripts refer to the one or to the other point event, respec-

tively. We shall first confine ourselves to the consideration of times that

are so short! that all terms containing the second or higher power of 7 or

v can be omitted; taking (1) and (29) into account, we then have to put [98]

v =9t = 97 , [99]

so that we obtain from the above equation

02"¢H.=¢%%:(§k - &) -

If we move the first point event to the coordinate origin, so that o, = 7
and ¢, = 0, we obtain, omitting the subscript for the second point event,

o = r[l + %5] . (30)

This equation holds first of all if 7 and ¢ 1lie below certain
limits. It is obvious that it holds for arbitrarily large 7 if the acceler-
ation 7 1s constant with respect to X, because the relation between ¢ and
7 must then be linear. Equation (30) does not hold for arbitrarily large ¢.
From the fact that the choice of the coordinate origin must not affect the
relation, one must conclude that, strictly speaking, equation (30) should be
replaced by the equation

S

Nevertheless, we shall maintain formula (30).

g = Te€

IIn accordance with (1), we thereby also assume a certain restriction with
respect to the values of ¢ = z'.



306 THE RELATIVITY PRINCIPLE

——

According to §17, equation (30) is also applicable to a coordinate
system in which a homogeneous gravitational field is acting. In that case we
have to put ® = 9¢, where @ 1is the gravitational potential, so that we
obtain

g = 7[1 + g%] : (30a)

We have defined two kinds of times for X. Which of the two definitions
do we have to use in the various cases? Let us assume that at two locations
of different gravitational potentials (7¢) there exists one physical system
each, and we want to compare their physical quantities. To do this, the most
natural procedure might be as follows: First we take our measuring tools to
the first physical system and carry out our measurements there; then we take
our measuring tools to the second system to carry out the same measurement
here. If the two sets of measurements give the same results, we shall denote
the two physical systems as "equal." The measuring tools include a clock with
which we measure local times ¢. From this it follows that to define the
physical quantities at some position of the gravitational field, it is natural
to use the time .

However, if we deal with a phenomenon in which objects situated at posi-
tions with different gravitational potentials must be considered simultan-
eously, we have to use the time 7 1in those terms in which time occurs
explicitly (i.e., not only in the definition of physical quantities), because
otherwise the simultaneity of the events would not be expressed by the equal-
ity of the time values of the two events. Since in the definition of the time
7 a clock situated in an arbitrarily chosen position is used, but not an
arbitrarily chosen instant, when using time 7 the laws of nature can vary
with position but not with time.

819. The effect of the gravitational field on clocks

If a clock showing local time is located in a point P of gravitational
potential @, then, according to (30a), its reading will be (1 + g;) times

greater than the time 7, i.e., it runs (1 + g;) times faster than an
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identical clock located at the coordinate origin. Suppose an observer located
somewhere in space perceives the indications of the two clocks in a certain
way, e.g., optically. As the time Ar that elapses between the instants at
which a clock indication occurs and at which this indication is perceived by
the observer is independent of 7, for an observer situated somewhere in space

the clock in point P runs (1 + g;) times faster than the clock at the
coordinate origin. In this sense we may say that the process occurring in the
clock, and, more generally, any physical process, proceeds faster the greater
the gravitational potential at the position of the process taking place.

There exist "clocks" that are present at locations of different gravita-
tional potentials and whose rates can be controlled with great precision;
these are the producers of spectral lines. It can be concluded from the
aforesaid! that the wave length of light coming from the sun's surface, which
originates from such a producer, is larger by about one part in two millionth
than that of light produced by the same substance on earth. [100]

§20. The effect of gravitation on electromagnetic phenomena

I[f we refer an electromagnetic process at some point of time to a non-
accelerated reference system S' that is instantaneously at rest relative to
the reference system ¥ accelerated as above, then the following equations
will hold according to (5) and (6):

1 ox' oN' oK'
z[p'u;+m-r]=a'ir-a';r;etc.

and

AR ) U VAN
o T P U

In accordance with the above, we may readily equate the §'-referred
quantities p', u', X', L', z', etc., with the corresponding X-referred

| c— - —— e — — -

While assuming that equation (30a) holds for an inhomogeneous gravitational
field as well.
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quantities p, u, X, L, &, etc., if we limit ourselves to an infinitesimally
short period! that is infinitesimally close to the time of relative rest of
§' and Y. Further, we have to replace t¢' by the local time ¢. However,
we must not simply put

J J

T = s
because a point which is at rest relative to X, and to which equations
transformed to ¥ should refer, changes its velocity relative to §' during
the time element dt' = do, to which change, according to equations (7a) and

(7b), there corresponds a temporal change of the ZX-related field component.
Hence we have to put

aX' ok L'  dl
3T = T 3T = %
oy oy T
il i R Wweg el
7' 07 oN'  oN
Tl 7 T A R

Hence the X-referred electromagnetic equations are

AR CRE B

Ll o o2l -8

n ~ do a(  0¢

1 a7 o 0]
gm0 -5
1 0L odY 07

c% =0 W

1 (oK a7 0X
w17 -%-%

1 (N X aY

AU RERIRE B

IThis restriction does not affect the range of validity of our results because
inherently the laws to be derived cannot depend on the time.
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We multiply these equations by [1 + ] and put for the sake of brevity

=x[1+c], pe = [ %é] , etc.
p*=p[l+%§].

Neglecting terms of the second power in 7%, we obtain the equations

1
¢ |7t +
1 Y dL*  ON*
e [y W) - T s1a)
1 7%\ oW oI*
e ) s
190* _ I op
¢ do ~ 9 " In
1 oK 97 ot
-E'-a'a,-:—az--'az- (323)
o 9
c 77— dn ~ O0E

These equations show first of all how the gravitational field affects the
static and stationary phenomena. The same laws hold as in the gravitation-
free field, except that the field components X, etc. are replaced by

X[l + %é], etc., and p 1is replaced by p[l - %5].
Furthermore, to follow the development of nonstationary states, we make
use of the time 7 1n the terms differentiated with respect to time as well

as in the definition of the velocity of electricity, i.e., we put according to
(30)

wf = [1 + %%] 3 [102]

and
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[104]

[105]

[106]

[107]

310 THE RELATIVITY PRINCIPLE

We thus obtain
e [p*w£ + %%;] = %%; - %ﬁ; etc. (31b)
c[l + ]

c
and

1 _]-%?z%?—z%hzi etc. (32b)

c[l + %g

These equations too have the same form as the corresponding equations of
the nonaccelerated or gravitation-free space; however, ¢ 1s here replaced by

the value
¢
c[l+%§]=c[1+z§] .

From this it follows that those light rays that do not propagate along the
§-axis are bent by the gravitational field; it can easily be seen that the

change of direction amounts to 277 sin ¢ per cm light path, where ¢
denotes the angle between the direction of gravity and that of the light ray.
With the help of these equations and the equations relating the field
strength and the electric current of one point, which are known from the
optics of bodies at rest, we can calculate the effect of the gravitational
field on optical phenomena in bodies at rest. 0One has to bear in mind,
however, that the above-mentioned equations from the optics of bodies at rest
hold for the local time ¢. Unfortunately, the effect of the terrestrial
gravitational field is so small according to our theory (because of the

smallness of %%) that there is no prospect of a comparison of the results of
the theory with experience.

If we successively multiply equations (31a) and (32a) by é; ----- 'g;

and integrate over infinite space, we obtain, using our earlier notation,

J [1+%§]2£;(u1+ u"h- uZ)daHJ [1 + %5]2 81—1- -30;(1'24- 2 4+ccod )dw = 0 .

i%(ul i unY'+ ueZ) 1s the energy N, supplied to the matter per unit
volume and unit local time ¢ if this energy is measured by measuring tools
situated at the corresponding location. Hence, according to (30),
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7, = q”[l + %é] is the (similarly measured) energy supplied to the matter per [108]

unit volume and unit local time 7; g%(17+-Y2---+-N2) is the electromagnetic

energy € per unit volume, measured the same way. If we take into account

d

that according to (30) we have to set % = [1 - %5]5;, we obtain

J[“g;],,,dwg;[] [1+g;]fdw]=o.

This equation expresses the principle of conservation of energy and
contains a very remarkable result. An energy, or energy input, that, measured
locally, has the value F = edw or F = g dwdr, respectively, contributes to

the energy integral, in addition to the value F that corresponds to its

magnitude, also a value f%»yf = g%'i that corresponds to its position.

Thus, to each energy F in the gravitational field there corresponds an

energy of position that equals the potential energy of a "ponderable" mass of

magnitude f;.

Thus the proposition derived in §11, that to an amount of energy F

there corresponds a mass of magnitude f%, holds not only for the imertial but

also for the gravitational mass, if the assumption introduced in §17 is
correct.

(Received on 4 December 1907)
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