EDITED BY PAUL ARTHUR SCHILPP

Albert Einstein Philosopher-Scientist

Volume VII in the Library of Living Philosophers

MJF BOOKS NEW YORK ALBERT EINSTEIN AUTOBIOGRAPHICAL NOTES kinetic energy of which equals $\frac{1}{2}(R/N)T$ (R = constant of the gas-equation for one gram-molecule, N equals the number of the molecules per mol, T = absolute temperature). If radiation were not subject to local fluctuations, the mirror would gradually come to rest, because, due to its motion, it reflects more radiation on its front than on its reverse side. However, the mirror must experience certain random fluctuations of the pressure exerted upon it due to the fact that the wave-packets, constituting the radiation, interfere with one another. These can be computed from Maxwell's theory. This calculation, then, shows that these pressure variations (especially in the case of small radiation-densities) are by no means sufficient to impart to the mirror the average kinetic energy $\frac{1}{2}(R/N)T$. In order to get this result one has to assume rather that there exists a second type of pressure variations, which can not be derived from Maxwell's theory, which corresponds to the assumption that radiation energy consists of indivisible point-like localized quanta of the energy hv (and of momentum (hv/c), (c = velocity of light)), which are reflected undivided. This way of looking at the problem showed in a drastic and direct way that a type of immediate reality has to be ascribed to Planck's quanta, that radiation must, therefore, possess a kind of molecular structure in energy, which of course contradicts Maxwell's theory. Considerations concerning radiation which are based directly on Boltzmann's entropy-probability-relation (probability taken equal to statistical temporal frequency) also lead to the same result. This double nature of radiation (and of material corpuscles) is a major property of reality, which has been interpreted by quantum-mechanics in an ingenious and amazingly successful fashion. This interpretation, which is looked upon as essentially final by almost all contemporary physicists, appears to me as only a temporary way out; a few remarks to this [point] will follow later. - - -

Reflections of this type made it clear to me as long ago as

shortly after 1900, i.e., shortly after Planck's trailblazing work, that neither mechanics nor electrodynamics could (except in limiting cases) claim exact validity. By and by I despaired of the possibility of discovering the true laws by means of constructive efforts based on known facts. The longer and the more despairingly I tried, the more I came to the conviction that only the discovery of a universal formal principle could lead us to assured results. The example I saw before me was thermodynamics. The general principle was there given in the theorem: the laws of nature are such that it is impossible to construct a perpetuum mobile (of the first and second kind). How, then, could such a universal principle be found? After ten years of reflection such a principle resulted from a paradox upon which I had already hit at the age of sixteen: If I pursue a beam of light with the velocity c (velocity of light in a vacuum). I should observe such a beam of light as a spatially oscillatory electromagnetic field at rest. However, there seems to be no such thing, whether on the basis of experience or according to Maxwell's equations. From the very beginning it appeared to me intuitively clear that, judged from the standpoint of such an observer, everything would have to happen according to the same laws as for an observer who, relative to the earth, was at rest. For how, otherwise, should the first observer know, i.e., be able to determine, that he is in a state of fast uniform motion?

One sees that in this paradox the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, viz., of simultaneity, unrecognizedly was anchored in the unconscious. Clearly to recognize this axiom and its arbitrary character really implies already the solution of the problem. The type of critical reasoning which was required for the discovery of this central point was decisively furthered, in my case, especially by the reading of David Hume's and Ernst Mach's philosophical writings.