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Abstract. We study p-harmonic functions on metric measure spaces, which
are formulated as minimizers to certain energy functionals. For spaces support-
ing a p-Poincaré inequality, we show that such functions satisfy an infinitesmal
Lipschitz condition almost everywhere. This result is essentially sharp, since
there are examples of metric spaces and p-harmonic functions that fail to be
locally Lipschitz continuous on them.

As a consequence of our main theorem, we show that p-harmonic functions
also satisfy a generalized differentiability property almost everywhere, in the
sense of Cheeger’s measurable differentiable structures.

1. Introduction

A celebrated theorem of Ural’tseva [Ura68] states that p-harmonic functions, for
1 < p < ∞, are locally C1,α-smooth (cf. [Lew83]). Recall that for an open set
Ω ⊂ Rn, a function u0 ∈ W 1,p

loc (Ω) is called p-harmonic if it is a local minimizer of
the p-energy functional

F [u] :=
∫

Ω

|∇u|p dx. (1.1)

Since ∇u0 is only locally p-integrable, it may happen that F [u0] = ∞. We therefore
define local minimizers u0 as follows: for every open set U ⊂⊂ Ω and v ∈ W 1,p

0 (U),∫
U

|∇u|p dx ≤
∫

U

|∇(u + v)|p dx.

Equivalently, u0 ∈ W 1,p
loc (Ω) is a local minimizer of F if and only if u0 is a solution

to the p-harmonic equation

div
(
|∇u|p−2∇u

)
= 0. (1.2)

This regularity result has been extended to more general equations of the form

div A(x, u,∇u) = B(x, u,∇u) (1.3)

under certain structure conditions on A : Ω×R×Rn → Rn and B : Ω×R×Rn → R;
see [LU68], [Uhl77], [DiB83]. As a direct consequence of Ural’tseva’s result, we see
that p-harmonic functions are locally Lipschitz continuous.

Our aim is to investigate the regularity of p-harmonic functions in the setting of
metric measure spaces, i.e. metric spaces equipped with a Borel measure. Analysis
on such spaces has been a subject of much investigation for the last two decades.
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In particular, a suitable notion of (upper) gradient, Sobolev space, and p-harmonic
function has been developed in this setting.

General metric measure spaces are too rough for such analysis to be interesting,
but the class of spaces that support a p-Poincaré inequality turns out to be partic-
ularly rich. Many results related to analysis of first-order derivatives, known in the
Euclidean setting, can be generalized to spaces that support a p-Poincaré inequality.
This class of spaces was introduced by Heinonen and Koskela [HK98] in their study
of quasiconformal mappings between metric spaces. Subsequently, Cheeger [Che99]
proved that such spaces admit a measurable differentiable structure. For the theory
of Sobolev spaces on metric spaces supporting Poincaré inequalities, see [HK95],
[HK98], [HK00] [Che99], [Sha00], [Haj03] and the theory of p-harmonic functions
has been investigated in [KS01], [Sha01], [KM03], [Sha03], [BBS03a], [BBS03b],
[BM06], and [GMP10].

Here the relevant question is: which regularity results of p-harmonic functions,
known for Euclidean spaces, also hold true for spaces supporting Poincaré inequal-
ities? The Moser iteration technique and the De Giorgi method can be adapted
to such spaces. This implies that on spaces that support a p-Poincaré inequal-
ity, p-harmonic functions satisfy the Harnack inequality and are therefore locally
Hölder continuous [KS01], [BM06]. The C1,α-regularity, on the other hand, cannot
be generalized; the differentiable structure of Cheeger is only measurable and we
do not consider continuity properties of differentials. However, it does make sense
to ask whether p-harmonic functions are locally Lipschitz continuous.

The difficulty here is that standard proofs of Lipschitz continuity of p-harmonic
functions involve estimates for second-order derivatives. In contrast, it is not pos-
sible to define second-order derivatives in the general setting of spaces supporting
Poincaré inequalities. A new technique is therefore needed. We know of two such
approaches: Koskela, Rajala, and Shanmugalingam [KRS03] proved that if the
space supports a 2-Poincaré inequality and a certain heat kernel estimate, then 2-
harmonic functions are locally Lipschitz continuous. Petrunin [Pet03] proved that
2-harmonic functions on Alexandrov spaces are also locally Lipschitz continuous.

Neither of the two approaches, however, can be generalized to the general case
of spaces supporting a p-Poincaré inequality. An example provided in [KRS03, p.
150] shows a space that supports a 2-Poincaré inequality and a 2-harmonic function
which fails to be Lipschitz continuous at one point.

Let u be a p-harmonic function on a metric measure space (X, d, µ) that supports
a p-Poincaré inequality. Although u is not necessarily (locally) Lipschitz continuous,
in our main result (Theorem 3.1) we nonetheless prove that the pointwise Lipschitz
constant is finite µ-almost everywhere. More precisely, for µ-a.e. x ∈ X,

Lip[u](x) := lim sup
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
r

< ∞.

Together with a generalization of the Stepanov theorem [BRZ04], this implies that
p-harmonic functions are µ-a.e. Cheeger differentiable (Corollary 3.2). In fact, our
argument is not only restricted to p-harmonic functions; we also prove the result
for quasi-minimizers of the functionals

F [u] :=
∫

X

F (x, u, gu) dµ
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where gu is the minimal p-weak upper gradient of u and F satisfies certain growth
conditions, as discussed in §2.3.

In fact, Bojarski [Boj85] and Reshetnyak [Res87] proved that under certain
growth and structure conditions, solutions to the nonlinear elliptic equation (1.3)
are also a.e. differentiable, even if the equation does not allow for the estimates
of second-order derivatives. For other Euclidean generalizations of this result, see
[Str92a], [Str92b], [HS93], [Jež94], [KR97], [Bjö01], and [HM02]. Our proof is an
adaptation of the technique presented in [HS93] to the metric measure space setting.

The paper is organized as follows. In Section 2 we recall basic facts about upper
gradients and Newtonian spaces, an analogue of Sobolev spaces on metric spaces.
We also discuss several weak differentiability theorems, as well as several useful
properties of quasi-minimizers. We state our main result in Section 3. To prove
it, we will use a rescaling principle to control the “difference quotients” of quasi-
minimizers, which reduces the setting to that of existing differentiability theorems.

The authors would like to thank Juha Kinnunen and Niko Marola for helpful
conversations that led to several improvements of this work.

2. Preliminaries: Analysis on Metric Spaces

In this section, we discuss a generalization of Sobolev spaces to metric spaces,
as introduced in [Sha00]; an equivalent formulation can be found in [Che99]. Other
standard references are [Haj96], [HK98], [HK00], [Hei01], and [Haj03].

To fix terminology, a metric measure space (X, d, µ) consists of a metric space
(X, d) equipped with a Borel measure µ on X. Given a ball B = B(x, r) and λ > 0,
we write λB = B(x, λr). We write Lp(X) for the space of all p-intergrable functions
on X with respect to µ, and ‖ · ‖p denotes the usual norm on Lp(X). For a locally
integrable function u : X → R, its average value over a ball B is

uB := −
∫

B

u dµ =
1

µ(B)

∫
B

u dµ.

(By a locally integrable function, we are referring here to functions that are inte-
grable on every ball in their domains.)

Unless otherwise stated, the letter C will denote a positive constant that depends
on certain parameters to be specified. The exact value of C may change, even within
the same line.

2.1. Generalized Sobolev spaces. We begin with line integrals on metric spaces
and proceed to upper gradients, which are defined in terms of line integrals and a
generalized Fundamental Theorem of Calculus.

For a rectifiable curve γ : [a, b] → X (with respect to the metric d on X) and a
Borel function ρ : X → [0,∞], we define the line integral of ρ on γ to be∫

γ

ρ ds :=
∫ `(γ)

0

ρ(γ̂(t)) dt

where `(γ) is the length of γ and γ̂ : [0, `(γ)] → [0,∞] is the arc-length parametriza-
tion of γ. For u : X → R we say that a Borel function g : X → [0,∞] is an upper
gradient of u if

|u(γ(b))− u(γ(a))| ≤
∫

γ

g ds (2.1)

holds for every rectifiable curve γ : [a, b] → X.
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As examples, every smooth function u : Rn → R admits |∇u| as an upper
gradient (with respect to the Euclidean metric and the Lebesgue measure). More
generally, for each Lipschitz function f on a metric space X, the pointwise Lipschitz
constant

Lip[f ](x) := lim sup
r→0

sup
y∈B(x,r)

|f(y)− f(x)|
r

is an upper gradient of f [Sem95, Lem 1.20] (see also [Che99, Prop 1.11]).
For technical reasons we also consider p-weak upper gradients, which are defined

similarly but allow an exceptional class of curves to the condition in (2.1). This in
turn requires a means of measuring families of rectifiable curves. Unlike upper gra-
dients, p-weak upper gradients enjoy the property that their µ-a.e. representatives
are also p-weak upper gradients [Haj03, Lem 6.2].

Motivated by this, let Γ be a collection of non-constant rectifiable curves on X.
For p ≥ 1, the p-modulus of Γ is defined as

modp(Γ) := inf
ρ

∫
X

ρp dµ

where the infimum is taken over all Borel functions ρ : X → [0,∞] satisfying∫
γ

ρ ds ≥ 1 for all γ ∈ Γ. It is well known that for each p ≥ 1, the p-modulus is an
outer measure on M, the family of all rectifiable curves on X.

Definition 2.1. For u : X → R, we say that a Borel function g : X → [0,∞] is a p-
weak upper gradient of u if Equation (2.1) holds for modp-a.e. curve γ ∈M — that
is, if the sub-collection of curves in Γ for which the property fails has p-modulus
zero.

We now define analogue of Sobolev spaces on metric measure spaces.

Definition 2.2. Let p ≥ 1. We say that a function u : X → R lies in the space
N̂1,p(X) if u ∈ Lp(X) and if the quantity

‖u‖1,p := ‖u‖p + inf
g
‖g‖p (2.2)

is finite, where the infimum is taken over all p-weak upper gradients g of u. Fur-
thermore, for u, v ∈ N̂1,p(X), we write u ∼= v whenever ‖u− v‖1,p = 0.

The Newtonian space N1,p(X) consists of equivalence classes of functions in
N̂1,p(X) with respect to the equivalence relation (∼=).

For a domain Ω ⊂ X, the space N1,p(Ω) is defined similarly, and N1,p
0 (Ω) denotes

the functions in N1,p(Ω) with zero boundary values; for details, see [Sha00], [KS01].
We conclude this section with several basic properties of the Newtonian space.

They are, respectively, [Sha00, Thm 3.7] and [Haj03, Thm 7.16].

Theorem 2.3. Let (X, d, µ) be a metric measure space and let p ≥ 1.
(1)

(
N1,p(X), ‖ · ‖1,p

)
is a Banach space.

(2) For each u ∈ N1,p(X), there is a unique p-weak upper gradient gu ∈ Lp(X)
with the following property: for every p-weak upper gradient g ∈ Lp(X) of
u, we have gu ≤ g µ-a.e. on X.

We refer to gu as the minimal p-weak upper gradient of u.
For Euclidean spaces, we have W 1,p(Rn) = N1,p(Rn) as sets and their norms are

equal [Sha00, Thm 4.5]. Each u ∈ W 1,p(Rn) satisfies gu = |∇u|.
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2.2. Poincaré Inequalities & Generalized Differentiability. For metric mea-
sure spaces under certain hypotheses, a generalized version of Rademacher’s theo-
rem holds. We begin with the first hypothesis: a growth condition for measures.

Definition 2.4. We say that a Borel measure µ on X is doubling if balls have finite
and positive µ-measure, and there is a constant κ ≥ 1 so that the inequality

µ(B(x, 2r)) ≤ κµ(B(x, r)) (2.3)

holds, for all x ∈ X and 0 < r < diam(X).
As a shorthand, we call Q := log2 κ the doubling exponent of X.

The Lebesgue measure on Rn is clearly doubling. On a Riemannian manifold
with non-negative Ricci curvature, the volume element is also doubling; this follows
from the Bishop-Gromov comparison theorems [CE75].

As a consequence of the doubling condition (2.3), the µ-measures of balls are
locally bounded from below by powers of their radii [Haj03, Lem 4.7].

Lemma 2.5. Let (X, d) be a metric space and let µ be a κ-doubling measure, for
some κ ≥ 1. Then for each ball B0 := B(x0, r0) in X,

4−s
( r

r0

)s

≤ µ(B(x, r))
µ(B0)

(2.4)

for all x ∈ B(x0, r0) and all 0 < r ≤ r0.

On Euclidean spaces, the Poincaré inequality states that the mean oscillation of
a smooth function is controlled by the average of its gradient. Below, we formulate
this property in the case of metric measure spaces.

Definition 2.6. Let p ≥ 1. A complete metric measure space (X, d, µ) is said to
support a p-Poincaré inequality if there exist C > 0 and Λ ≥ 1 so that

−
∫

B

|u− uB | dµ ≤ C diam(B)
(
−
∫

ΛB

gp
u dµ

)1/p

(2.5)

holds for all u ∈ N1,p(X) and all balls B in X.

Standard Hypotheses 2.7. Here and in what follows, we assume that all metric
spaces (X, d) are complete and support both a doubling measure µ and a p-Poincaré
inequality; that is, Equations (2.3) and (2.5) hold with fixed parameters κ, C, Λ.

We also say that a constant C > 0 depends on the parameters of the space and
write C = C(X), if it depends on the parameters κ, C, Λ from the above hypotheses.

The following result, due to Cheeger [Che99], extends the classical Rademacher
theorem to metric measure spaces. With respect to certain choices of “coordinate”
functions, Lipschitz functions satisfy a generalized differentiability property.

Theorem 2.8 (Cheeger, 1999). For a metric measure space (X, d, µ) satisfying
Standard Hypotheses 2.7, there exist N = N(X) ∈ N, and

(1) a collection of µ-measurable, pairwise-disjoint subsets {Xk}∞k=1 of X with

µ
(
X \

∞⋃
k=1

Xk

)
= 0,

(2) a collection of numbers {nk}∞k=1, with 0 ≤ nk ≤ N ,
(3) a family of Lipschitz mappings ξk : X → Rnk , with k ∈ N,
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with the following property: for each k ∈ N and each Lipschitz function f : X → R,
there is a unique map Dkf ∈ L∞(Xk; Rnk) ⊂ L∞(Xk; RN ) so that, for µ-a.e.
x ∈ Xk,

lim
y→x

f(y)− f(x)−Dkf(x) ·
(
ξk(y)− ξk(x)

)
d(x, y)

= 0. (2.6)

Remark 2.9. By Keith’s theorem [Kei04, Thm 2.7], the maps ξk can be chosen as
distance functions; that is, their component functions are of the form x 7→ d(x, xk).
It follows that the family of functions {ξk}∞k=1 is uniformly 1-Lipschitz.

By the uniqueness part of Theorem 2.8, the operator

f 7→ Df :=
∞∑

k=1

χXk
·Dkf

is linear, with Df ∈ L∞(X; RN ). We refer to Df as the (Cheeger) differential of f .
Combining [Sha00, Thm 4.1] with Standard Hypotheses 2.7, we see that Lipschitz

functions are norm-dense in N1,p(X). The differential Du is therefore well-defined
for all functions in u ∈ N1,p(X), as proven in [FHK99, Thm 10]; see also [BRZ04,
Thm 4.4]. However, for p < n not every function f ∈ W 1,p(Rn) is a.e. differentiable
with respect to the Lebesgue measure. Similarly, Equation (2.6) may fail to hold
for functions in N1,p(X). This leads to the following definition.

Definition 2.10. For a function f : X → R, we say that f is Cheeger differentiable
at a point x ∈ Xk if Equation (2.6) holds for f at x.

As in the case of Rn and the gradient map f 7→ ∇f , similar properties hold for
the differential u 7→ Du on metric spaces. The first theorem gives generalizations
of the classical Stepanov and Calderón theorems [BRZ04, Thm 3.1 & Cor 4.3].

Theorem 2.11 (Balogh-Rogovin-Zürcher, 2004). If (X, d, µ) is a metric measure
space satisfying Standing Hypotheses 2.7, then

(1) each function f : X → R is Cheeger differentiable at µ-a.e. point of the set

S(f) :=
{

x ∈ X : lim sup
r→0

sup
y∈B(x,r)

|f(x)− f(y)|
r

< ∞
}

,

(2) for p > Q, each f ∈ N1,p(X) has a locally Hölder continuous representative
that is Cheeger differentiable µ-a.e. on X.

The next fact states that Cheeger differentials satisfy a first-order Taylor ap-
proximation property, in terms of integral averages [Bjö00, Cor 4.6]. To clarify, the
original result is formulated for the space H1,p(X), which is defined as the closure
of locally Lipschitz functions on X with respect to the norm

‖f‖H1,p(X) := ‖f‖Lp(X) + ‖Df‖Lp(X).

However, from the hypothesis of a p-Poincaré inequality and from [Haj03, Thms
10.2 & 11.2], it follows that H1,p(X) = N1,p(X), so the same result also holds for
N1,p(X). We state this version below.

Theorem 2.12 (Björn, 2000). Let (X, d, µ) be a metric measure space satisfying
Standard Hypotheses 2.7, with 1 < p < ∞, and let {Xk}∞k=1 and {ξk}∞k=1 be as in
Theorem 2.8. For each u ∈ N1,p(X) and µ-a.e. x ∈ Xk, we have

lim
r→0

1
r

(
−
∫

B(x,r)

∣∣∣u(y)− u(x)−Dku(x) ·
(
ξk(y)− ξk(x)

)∣∣∣p dµ(y)
) 1

p

= 0.
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2.3. Quasi-minimizers and Local Boundedness. We now formulate a varia-
tional problem on metric measure spaces. For a domain Ω ⊂⊂ X and a function
F : X × R× R → R, consider functionals on N1,p

loc (X) of the form

F
(
u; Ω

)
:=

∫
Ω

F
(
x, u(x), gu(x)

)
dµ(x). (2.7)

Definition 2.13. A function u ∈ N1,p
loc (X) is called a (K-)quasi-minimizer (of the

functional (2.7)) if there exists K ≥ 1 so that

F
(
u; Ω ∩ {u 6= v}

)
≤ K F

(
v; Ω ∩ {u 6= v}

)
for all Ω ⊂⊂ X and all v ∈ N1,p

loc (X) with u − v ∈ N1,p
0 (Ω). If K = 1, then u is

called a minimizer (of (2.7)).

For the case of X = Rn and F = |∇u|p, it is well known that u is a weak solution
of (1.2) if and only if it is a minimizer of the functional (2.7). The same holds true
for equations (1.3) with a vector field A : Ω×R×Rn → Rn and a non-homogeneous
term B : Ω × R × Rn → R, where A and B satisfy certain growth and structure
conditions; for details, see [Giu03, Chap. 5].

Structure Conditions 2.14. Motivated by this, in what follows we will focus
exclusively on functionals whose integrand F satisfies

|z|p − b(x)|y|p − a(x) ≤ F (x, y, z) ≤ L|z|p + b(x)|y|p + a(x) (2.8)

where L ≥ 1, 1 < p < Q, s > Q/p, and a, b ∈ Ls(X) with a, b ≥ 0 µ-a.e. on X. (As
before, Q denotes the doubling exponent of X.)

We call the parameters s, L, a(x), and b(x) the data of the functional F . We
will also say that a constant C > 0 depends on data and write C = C(data), if C
depends on s, L, a(x), and b(x) from (2.8).

As an example, the non-homogeneous p-energy functional

u 7→
∫

Ω

(
gp

u + ub + a
)
dx (2.9)

corresponds to the p-Laplace equation (1.2) on Rn, with b replacing 0 on the RHS
and with a = 0. From the elementary identity t ≤ tp + 1 for t ≥ 0, we easily see
that the functional satisfies Structure Conditions 2.14.

Remark 2.15 (p-harmonicity vs. Cheeger p-harmonicity). Recall from [Che99]
that there exists C = C(X) ≥ 1 so that the µ-a.e. inequality

C−1gu ≤ |Du| ≤ Cgu

holds for all Lipschitz functions u (and by density, for all u ∈ N1,p(X)) where
| · | indicates the standard Euclidean norm (on RN ). As a result, for b = 0 the
K-quasi-minimizers u of (2.9) are C2pK-quasi-minimizers to

u 7→
∫

Ω

(
|Du|p + a

)
dµ. (2.10)

Similarly, K-quasi-minimizers of the functional (2.10) are C2pK-quasi-minimizers
to (2.9).

For K = 1 and a = b = 0, the corresponding minimizers to (2.9) and (2.10)
are known as p-harmonic functions and Cheeger p-harmonic functions, respectively
[BBS03b].
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The next result [GMP10, Lemma 4.2] is a local boundedness lemma for quasi-
minimizers and is crucial to the proof of Theorem 3.1; see [KS01] for the original
case of a = b = 0. Roughly speaking, it states that quasi-minimizers are locally
bounded by their integral averages, up to an additive term that depends on the data
of the functional. Below, we assume that Standing Hypotheses 2.7 and Structure
Conditions 2.14 are in force.

Lemma 2.16 (Gong-Manfredi-Parviainen, 2010). Let Ω be a domain in X and fix
K ≥ 1. There exist C = C(X, data) > 0 and β = β(p, Q, s) ∈ (0, 1) so that

sup
B
|u| ≤ C

{(
−
∫

2B

|u|p dµ
)1/p

+
(
‖a‖Ls(X) + ‖b‖Ls(X)

)
rβ

}
(2.11)

holds for all K-quasi-minimizers u ∈ N1,p
loc (Ω) and all balls B = B(x, r) in X.

3. Differentiability Properties of Quasi-Minimizers

We now state our main result in terms of pointwise Lipschitz constants.

Theorem 3.1. Let (X, d, µ) be a metric measure space satisfying Standard Hy-
potheses 2.7. If the functional in (2.7) satisfies Structure Conditions 2.14, then
every quasi-minimizer u ∈ N1,p

loc (X) satisfies

Lip[u](x) < ∞ (3.1)

for µ-a.e. x ∈ X.

Using the notion of Cheeger differentiability from Definition 2.10, the next result
follows easily from Theorems 2.11 and 3.1.

Corollary 3.2. Under the same hypotheses, every quasi-minimizer is Cheeger dif-
ferentiable µ-a.e. on X. In particular, p-harmonic and Cheeger p-harmonic func-
tions are Cheeger differentiable µ-a.e. on X.

The proof of Theorem 3.1 follows a similar idea in [HS93]. Instead of rescaling the
PDE, however, we show that generalized difference quotients of quasi-minimizers
are themselves quasi-minimizers to appropriately rescaled energy functionals. Since
arbitrary metric spaces do not admit Euclidean dilations of the form x 7→ λx, we
will instead rescale the metric d.

In what follows, we will see that many crucial properties of metric measure spaces
are preserved under rescalings of the metric. The rescaled energy functionals will
also satisfy local bounds similar to Lemma 2.16. We will later see that the constants
for these bounds will be independent of the scaling parameter, from which Theorem
3.1 follows.

3.1. Rescalings of Metric Spaces. Given a metric measure space (X, d, µ) and
λ ∈ (0, 1), put dλ := λ−1d. We also write Xλ for the rescaled metric measure space
(X, dλ, µ). To fix notation, Bλ = Bλ(x, r) denotes the ball(s)

Bλ(x, r) := {y ∈ Xλ : dλ(x, y) < r}
= {y ∈ X : d(x, y) < λr} = B(x, λr)

and diamλ(A) refers to the diameter of A ⊂ Xλ. Clearly the diameter functions of
X and Xλ are related by the formula

diamλ(Bλ(x, r)) = λ−1 diam(B(x, λr)). (3.2)
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If γ : [a, b] → (X, d) is a curve then we write γλ : [a, b] → (X, dλ) for the same curve
in Xλ; the subscript λ only indicates the change in the metric. Clearly, the length
`λ(γλ) of γλ satisfies

`λ(γλ) ≡ λ−1`(γ)

from which we conclude that, for all Borel functions ρ : X → [0,∞],∫
γ

ρ ds = λ

∫
γλ

ρ dsλ. (3.3)

Here sλ denotes the arc-length parameter of γλ.
Regarding the Standard Hypotheses, it is easy to see that if X is κ-doubling,

then so is Xλ. The next fact asserts that p-weak upper gradients of functions
are rescaled whenever the metric is rescaled; in contrast, Poincaré inequalities are
preserved under rescalings, with the same parameters as before.

To fix notation, the minimal p-weak upper gradient of u on Xλ is denoted by gλ
u .

Lemma 3.3. Let λ ∈ (0, 1) and let u : X → R.

(1) A Borel function g : X → [0,∞] is a p-weak upper gradient for u in X if
and only if λg : Xλ → [0,∞] is a p-weak upper gradient for u in Xλ.

(2) Let µ be a doubling measure on X. Then X supports a p-Poincaré inequality
if and only if Xλ supports a p-Poincaré inequality with the same parameters
C > 0 and Λ ≥ 1.

Proof. Let g : X → [0,∞] be a p-weak upper gradient of u : X → R. For a
rectifiable curve γ : [0, L] → X, Equation (3.3) implies

|u(y)− u(x)| ≤
∫

γ

g ds =
∫

γλ

gλ dsλ

so λg is an upper gradient of u : Xλ → R. The other direction is symmetric, so
this proves (1).

For (2), if u ∈ N1,p
loc (X) then (1) implies that u ∈ N1,p

loc (Xλ) and that

gu = λ−1gλ
u .

Using this and Equation (3.2), we obtain the identities

diamλ(Bλ)
(
−
∫

ΛBλ

(gλ
u)p dµ

) 1
p

= λ−1 diam(λB)
(
−
∫

Λ(λB)

(gλ
u)p dµ

) 1
p

= diam(λB)
(
λ−p−

∫
Λ(λB)

(gλ
u)p dµ

) 1
p

= diam(λB)
(
−
∫

Λ(λB)

gp
u dµ

) 1
p

.

Moreover, it is clear that we have the identities uBλ
= uλB and

−
∫

Bλ

|u− uBλ
| dµ = −

∫
λB

|u− uλB | dµ.

So by replacing the balls λB with B, the lemma follows. �
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3.2. Difference Quotients are Quasi-Minimizers. To determine the differen-
tiability properties of quasi-minimizers, we now study their generalized difference
quotients. Given a ball B = B(x0, r) in X, a function u : X → R, and a fixed
number τ ∈ R, we define

QBu(x) :=
u(x)− τ

r
.

Clearly u ∈ N1,p
loc (X) implies QBu ∈ N1,p

loc (X) and we have the identities

Q2Bu = 2(QBu) (3.4)
u = r (QBu) + τ (3.5)

gu = r g(QBu). (3.6)

Lemma 3.4. Let K ≥ 1, fix a ball B = B(x0, r) in X, and put λ = r. Suppose
that the functional (2.7) satisfies Structure Conditions 2.14 with data s, L, and
a, b ∈ Ls(X).

(1) If u ∈ N1,p
loc (X) is a K-quasi-minimizer of the functional (2.7), then QBu ∈

N1,p
loc (Xλ) is a K-quasi-minimizer of the functional

F0(w; Ω) :=
∫

Ω

F0

(
x,w(x), gλ

w(x)
)
dµ(x)

where F0(x, y, z) := F
(
x, ry + τ, z

)
.

(2) F0 satisfies the modified structure conditions

|z|p − b̂(x)|y|p + â(x) ≤ F0(x, y, z) ≤ L|z|p + b̂(x)|y|p + â(x) (3.7)

with respect to the data

â(x) := 2p−1
(
|τ |pb(x) + a(x)

)
b̂(x) := 2p−1rpb(x)

Proof. To prove (1), note first that Lemma 3.3 and Equations (3.5)-(3.6) imply that

gλ
(QBu) = λg(QBu) = λr−1gu = gu

from which it follows that

F0

(
x, QBu(x), gλ

QBu(x)
)

= F
(
x, u(x), gu(x)

)
.

Let V ∈ N1,p
loc (X) be such that QBu − V ∈ N1,p

0 (Ω). The function v := rV + τ

satisfies QBv = V and therefore u − v ∈ N1,p
0 (Ω). Using the above identities, we

obtain

F0

(
QBu; Ω ∩ {QBu 6= V }

)
=

∫
Ω∩{QBu 6=V }

F0

(
x,QBu(x), gλ

(QBu)(x)
)
dµ(x)

=
∫

Ω∩{u 6=v}
F

(
x, u(x), gu(x)

)
dµ(x)
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and using the quasi-minimizing property of u, we further obtain

F0

(
QBu; Ω ∩ {QBu 6= V }

)
≤ K

∫
Ω∩{u 6=v}

F
(
x, v(x), gv(x)

)
dµ(x)

= K

∫
Ω∩{QBu 6=V }

F0

(
x, QBv(x), gλ

(QBv)(x)
)
dµ(x)

= K F0(V ; Ω ∩ {QBu 6= V }).

Hence QBu is a K-quasi-minimizer of F0.
Since F from the functional (2.7) satisfies Structure Conditions 2.14, the con-

vexity of the function t 7→ |t|p, for p > 1, gives

F0(x, y, z) = F
(
x, ry + τ, z

)
≤ L|z|p + b(x)

∣∣∣ry + τ
∣∣∣p + a(x)

≤ L|z|p + b(x)2p−1
(
rp|y|p + |τ |p

)
+ a(x).

The other inequality is similar, which proves (3.7). �

We are now ready to prove our main result. As before, gλ
u denotes the minimal

p-weak upper gradient of u in Xλ.

Proof of Theorem 3.1. Let u ∈ N1,p
loc (X) be a K-quasi-minimizer. In particular, we

have |u(x0)| < ∞ and |Du(x0)| < ∞ for µ-a.e. x0 ∈ X. For such points x0 ∈ X,
let r ∈ (0, 1

2 ) and put λ = r. It follows that

Bλ := Bλ(x0, 1) = B(x0, r) =: B.

With τ = u(x0), the difference quotient

QBu(x) =
u(x)− u(x0)

r

is a K-quasi-minimizer of the modified functional F0 from Lemma 3.4.
By hypothesis, (X, d, µ) satisfies Standard Hypotheses 2.7, so by Lemma 3.3 the

rescaled space Xλ satisfies the same hypotheses and with the same parameters κ,
C, and Λ.

For the functions â and b̂ from Lemma 3.4 and using the ball 2Bλ of radius 2,
observe that the expression (

‖â‖Ls(X) + ‖b̂‖Ls(X)

)
2β

in inequality (2.11) is bounded by a constant c0 > 0 that is independent of r. Hence
Lemma 2.16 and equation (3.4) imply that

sup
B
|QBu| = sup

Bλ

|QBu| ≤ C
(
−
∫

2Bλ

|QBu|p dµ
) 1

p

+ c0

≤ C
(
−
∫

2B

2−p|Q2Bu|p dµ
) 1

p

+ c0

(3.8)

for constants C, c0 > 0 independent of r.
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Let {Xk}∞k=1 and {ξk}∞k=1 be as in Theorem 2.8. Theorem 2.12 implies that for
µ-a.e. x0 ∈ Xk, we have(

−
∫

2B

∣∣∣Q2Bu−Dku(x0)
ξk(y)− ξk(x0)

r

∣∣∣p dµ
) 1

p ≤ 1.

for sufficiently small r > 0. Since each ξk is 1-Lipschitz (Remark 2.9) we further
obtain(

−
∫

2B

∣∣Q2Bu
∣∣p dµ

) 1
p ≤

(
−
∫

2B

∣∣∣Q2Bu−Dku(x0)
ξk(y)− ξk(x0)

r

∣∣∣p dµ
) 1

p

+
(
−
∫

2B

∣∣∣Dku(x0)
ξk(y)− ξk(x0)

r

∣∣∣p dµ
) 1

p

≤ 1 + |Dku(x0)|

which, combined with Equation (3.8), implies that

sup
B

∣∣QBu
∣∣ ≤ C

(
−
∫

2B

∣∣Q2Bu
∣∣p dµ

) 1
p

+ c0 ≤ C
(
1 + |Dku(x0)|

)
+ c0.

In particular, the upper bound is independent of r = λ. Taking limits as r → 0,
the LHS converges to Lip[u](x0), so the theorem follows. �
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145(688), 2000.
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