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Introduction. In this note we will be concerned with the geometric properties of the
functions from the Sobolev space

WmP(Q) = {u e LP(Q) | D*u € LP(Q), |a| < m}.

Here Q2 C IR" is an open set. In the most part of the paper we will be concerned with the
case of the first order derivatives m = 1.

We will see that it is possible to find an equivalent characterization of the space W17 (Q)
which does not make use of the notion of derivative. This characterization leads to a
definition of the Sobolev space, with the first order derivatives, on an arbitrary metric
space equipped with a Borel measure. There are three particular interesting cases: Sobolev
spaces on a fractal type sets, on graphs, and the Sobolev spaces with respect to the Carnot—
Carathéodory metric.

The geometric point of view, which is presented here, seems to be important in the
study of traces of Sobolev functions on fractal type sets, boundary behaviour of solutions
to elliptic equations, the regularity theory for solutions to strongly degenerated elliptic
equations, in the nonlinear potential theory, diffusions on fractal type sets, analysis on
graphs and probably in the finite element method.

In the last section we will see how to extend the “pointwise inequalities” — the basic
tool for the development of Sobolev spaces on metric spaces — to the case of higher order
derivatives.

It was professor Bogdan Bojarski who pointed my attention on the importance of
“pointwise inequalities”.

*This work was partially supported by KBN grant no 2-PO3A-034-08.



Most of the results are given here without proofs. Some of them announces forthcoming
papers [41], [44], [45], [46], [11]. For the simplicity of presentation, very often, we deal with
the most simple cases.

The paper is divided into four sections which concern slightly different aspects of the
same geometric approach. For reader’s convenience we tried to make these sections as
independent as possible. This paper is addressed also to the people who are familiar with
the basic concepts of the theory of Sobolev spaces, but who does not work in the field.

The structure of the paper is the following. In Section 1 we are concerned with the
“pointwise inequalities” for Sobolev functions with the first order derivatives. We show
some elementary applications. The main result stated this section is Theorem 3, which
provides a characterization of the Sobolev space, without using the notion of derivative.
This result is a starting point for the Section 2, where we develop the theory of Sobolev
spaces on metric spaces, initiated in [41]. In Section 2 we remark relations to diffusions on
fractals, to the analysis on infinite graphs, and to the theory of infinite resistive networks.
Then we explain, following the recent results of the author and Koskela [44], [45], how the
metric approach to Sobolev spaces applies to nonlinear potential theory and to strongly
degenerated elliptic equations. The last part of Section 2 contains a survey of the theory of
strongly degenerated elliptic equations related to Hormander’s vector fields. In Section 3,
following the forthcoming paper of the author and Martio, [46], we remark the applications
of the Sobolev spaces on metric spaces to the theory of traces on fractal type sets. Finally
in Section 4 we show, following the papers of the author and Bojarski [9] and the author,
Bojarski and Strzelecki [11], how to extend the pointwise inequalities to the higher order
derivatives. We also show some applications of these higher order inequalities.

We will very often consider bounded domains with the sufficiently regular boundary,
without specifying what we mean by sufficient regularity. Boundary which is locally a
graph of a Lipschitz function is sufficiently regular in all our considerations, however in
most of the cases the results apply to much more irregular domains. Since we do not want
to deal with the problems of the regularity of the boundary, we leave the assumptions
indefinite.

We will frequently write ug = fyudu = p(K)™' [r udu to denote the average of u over
K. By u =~ v we mean there exists two positive constants ¢y, ¢y such that ciu < v < cou.
If A C IR" is a measurable subset, then |A| denotes its Lebesgue measure. Symbol B is
reserved for a ball, and Bg, B(R) for a ball with the radius R. By kB we will denote a
ball concentric with B and with the radius & times that of B. Finally by C' we denote a
general constant which can change from line to line.

Acknowledgement. Part of the research was carried out while the author was a Visiting
Fellow in the International Centre for Theoretical Physics in Trieste, 1995. He wishes to
thank the Centre for the support and the hospitality.

1. Pointwise inequalities. The above mentioned characterization of the Sobolev
space (Theorem 3 below) is based on the following elementary inequality. If u € W,oP(IR")
and 0 < X\ < 1 then the inequality

[u(x) = u(y)| < Cla — y|' ™ (M| Vul () + M)y [Vul(y) (1)

holds for almost all  # y. Here Mpg(x) = sup, . 75, 19(2)| dz denotes the fractional
maximal function. We put the assumption = # y in (1) only because the expression Mgy
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is not defined. Proof of (1) is elementary and is given in [42]. This inequality generalizes
the inequality given in [8] (the case A = 0). Various versions of (1), with A = 0, appear
also in [40], [50], [61].

Obviously (1) generalizes also to u € W1P(Q), where © is a bounded domain with the
sufficiently regular boundary. In particular (1) implies

[u(z) = u(y)] < Clo = yI'"* (Mamal V(Ew)|(@) + MiumalV(EW)(y) . (2)

almost everywhere in Q, where E : W'?(Q) — W!P(IR") is a bounded extension operator
(i.e., Bulg = u), and diam {2 denotes the diameter od Q. Sufficient regularity of 02
guarantees existence of E.

In the last section we will show following [9], [11] how to generalize (1) to the higher
order derivatives.

Before we state the above mentioned characterization, we show some direct applications
of (2).

First we note that one can regard (2) as a refined form of Morrey’s lemma. Namely, as
a direct consequence of (2), we obtain the following corollary.

Corollary 1 (Morrey’s lemma [78] [79], [80]). Let u € WP(Q), where Q@ C IR" and
1 < p < oco. Suppose that for some constants pu, M, 0 < pu <1, M >0,

/ ’Vu’p < MpRn*erpu’
B(z,R)

holds whenever B(z, R) C Q. Then u € C2*(Q), and in each ball B(x, R) such that

loc

B(z,3R) C Q) the estimate for the oscillation

osc u= sup |u(y)—u(z)] < CMR*
B(z,r) y,2€B(z,r)

holds with a constant C'" which depends on n, p and u only.

Indeed, the hypothesis of the corollary implies that the suitable fractional maximal function
with A = 1 — p is finite.

Sobolev function v € WP(Q) is defined except the set of measure zero. On the
other hand it is possible to restrict u to a (n — 1)-dimensional subspace (trace theorem). It
suggests that one can prescribe values of u, in a reasonable way, outside the set of Hausdorff
measure H"™ ! zero, or even more precisely. This is well known fact. It seems that the
first comprehensive treatment of this problem was made by Fuglede [36]. There are also
many other approaches, different from that of Fuglede. However most of these methods
are rather technical and involve the notion of capacity or extremal length. Current sources
to the topic are e.g., [104], [28], [49].

We will show one tricky and elementary argument which allows us to avoid the use of
capacity in many important cases. We will follow [40], [9], [42].

Ifue VVll’p (IR™), then we define values of @ everywhere by the formula

ocC

@(z) = limsup u(z)dz. (3)
r—0 B(x,r)
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By the Lebesgue differentiation theorem (see [93, Chapter 1]) integral averages converge
to u(x), as r — 0, for almost all z, and hence @ is a Borel measurable representative of u
(u is an equivalence class of functions which differ on a set of measure zero). Function 4
is a natural representative of u, however one should be very careful since, for example, it
may happen that for some x, i(z) # —(—u)(x). In what follows we will very often identify
u with v and omit tilde sign, however we will always point it out.

Now one can prove [40], [9], [42], that such representative of u satisfies the inequalities
(1) and (2) for all x # y (maybe with the slightly worse constant C'). It may happen that
the left hand side of (1) or (2) is of the indefinite form like |00 — oo|, then we adopt the
convention |oo — co| = 0o. In such a case the inequalities are still valid since @(z) = foo
implies Mp|Vu|(z) = oo for any R > 0. Now we show an application.

Assume for a moment that u € W1P(IR") has compact support with diameter less than
1/2. Than it easily follows from (1) that

u(@) — u(y)| < Clo —y|' (MY Vul(z) + M| Vul(y)) (4)

for all x,y € R", x # y. Let By, = {x € R"| M{}|Vu|(z) < t}. Obviously ulg,, is C*'~*
Holder continuous with the constant 2¢tC. Note, we used that (4) holds everywhere.

A Lipschitz function defined on an arbitrary subset of an arbitrary metric space can be
extended to the entire space with the same Lipschitz constant (see [91, Theorem 5.1}, [31,
2.10.4]). Hence such result holds also for the extensions of C%*~Hdlder continuous functions
(indeed, C%* function is Lipschitz with respect to a new metric d'(z,y) = d(z,y)*). This
implies that there exists a C%'~* function uy; defined on the entire IR™ such that u,|g, , =
u | Ex

For aset A C IR" we define H% (A) = inf " 7¢, where infimum is taken over all coverings
of A by balls B; with radius r;. The number HZ(A) is sometimes called Hausdorff d-
content. By H? we will denote the standard Hausdorff d-dimensional measure. Contrary
to the properties of the measure H? content HZ is finite on all bounded sets, however
H?(A) = 0 if and only if H (A) = 0.

Standard application of Vitali type covering lemma (see [49, Lemma 2.29], see also [93,
Chapter 1]) leads to the following weak type estimate.

Lemma 1 HY Y (IR"\ E\;) < Ct7P [gn [Vu(2)[P dz.

If A\ — 1 and t — oo, then IR" \ E); is a decreasing sequence of open sets and it follows
from the lemma that the intersection of these sets has Hausdorff dimension less than or
equal to n — p.

Using the partition of unity this argument can be applied to u € W.?(Q), where
Q C R" is an arbitrary open set. This leads to the following theorem.

Theorem 1 If u € W,5P(Q) is defined everywhere by the formula (3), then there exists
a sequence of compact sets X1 C Xy C ... C X C ... C Q and a sequence of Holder
continuous functions ug on Q such that u|x, = u|x, and Q\ U, Xy has the Hausdorff
dimension less than or equal to n — p.

This theorem shows that it is reasonable to talk about values of u € W1P(Q) except the
set of dimension n — p. Hence if p > 1, we can define a trace of the Sobolev function on a
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(n—1)-dimensional submanifold of €2 just as a restriction. If we want to define the trace on
the boundary of © (provided it is sufficiently regular), we first extend the Sobolev function
to WIP(IR™) and then we proceed as above. In the case p = 1 one also can define a trace,
but the above approach does not cover that case. We will come back to the problem of
traces in Section 3, where we will be concerned with the traces on fractal type subsets.

More sophisticated version of Theorem 1 was proven by Maly [71] (see [74], [72] for
applications). For the case of higher order derivatives see [11] and Section 4.

In general, the Holder exponent of the functions u; in Theorem 1 has to go to 0 as
k — oo. If we make the assumption that all the functions u; have a fixed Holder exponent
1 — A, then by the same argument as above we get H"*?(Q \ U, X}) = 0, which is more
than to say that the Hausdorff dimension is less than or equal to n — Ap. In particular we
get the classical imbedding into Hélder continuous functions: if p > n and A = n/p, then
n— Ap =0 and hence u € C1""?(Q) (cf. Corollary 1).

On the other hand if A =0 and 1 < p < oo, we get that the Sobolev function coincide
with a Lipschitz function outside a set of an arbitrary small measure. Lipschitz functions
belong also to the Sobolev spaces WP for all p. Careful study of the W? norm of these
Lipschitz functions shows that they approximate our Sobolev function in the Sobolev norm.
Hence we can approximate given Sobolev function in the norm by a Lipschitz functions
which coincide with our Sobolev function outside the set of an arbitrary small measure. It
appears that the same phenomen holds in the general setting of Sobolev spaces on metric
spaces (these spaces will be introduced in the next section). Theorem 5 covers both,
Euclidean and metric case.

It seems that in the case of classical Sobolev spaces the property 1. of Theorem 5
(with p being the Lebesgue measure) was known (even in the slightly stronger form) since
the paper by Whitney [100]. By an analogy with the Lusin’s theorem, this property is
called a Lusin type property of a Sobolev function. In the classical setting, Calderén and
Zygmund [18, Theorem 13] extended part 1. of Theorem 5 to the case of W™ functions,
with h € C™(Q). Liu [66] extended the result of Calderén and Zygmund and proved that
both 1. and 2. hold for suitable h € C™, with the approximation in 2. taken with respect
to the W™P norm. We will come back to this type results for higher order derivatives in
Section 4 and we will discuss then some further generalizations.

Theorem 5 shows that Sobolev functions inherit many properties of Lipschitz functions.
Hence it is not surprising that this result (in the setting of classical Sobolev spaces) found
many applications in P.D.E. and Calculus of Variations [1], [20], [65], [63], [38], [70], [50],
[43], [101], [61].

Also one can use the above Lusin type property to extend change of variables formula
to the case when the change is made by a Sobolev mapping u : ; — 5 (i.e., components
of u = (uy,...,u,) belong to the Sobolev space u; € W'?(€)) [40], [96], however change
of variables formula of that type seems to be known for a long time. Also as shown
in the author’s paper [43], Federer’s co—area formula [30], [31, Theorem 3.2.12], [17] (the
generalization of the change of variables formula) extends to the case of Sobolev mappings.
This extension is useful in the Calculus of Variations, (see [43]).

Now as an application of Theorem 5 (still in the setting of classical Sobolev spaces)
we show how to extend Brouwer fixed point theorem to the case of discontinuous Sobolev



mappings. It is known that Brouwer theorem is equivalent with the nonexistence of con-
tinuous retraction from the ball onto its boundary. We will state our theorem in that
form.

Theorem 2 For u € WY (B", B"), u|gp» = id, there is |B™ \ u(B")| = 0.

Of course u € WH™(B™ B") means u = (uq,...,Uy,), u; € WH(B") for i = 1,2,....n
and |u| < 1. The restriction of u to the boundary is understood as a trace of a Sobolev
function. More sophisticated results, related to the degree theory for traces of Sobolev
mappings were proven (using different methods) by Bethuel [2]. Results of this type are
important in the Ginzburg-Landau theory [3], and in the nonlinear elasticity [96], [82].
Proof. By Theorem 5, there exists a sequence u, € Lip (B™, B"), such that u;, — u
in W™ and |[{uy # u}| — 0 as k — oo. It is not difficult to see that we can assume
in addition that ug|spn = id (restriction in the classical sense). According to Brouwer’s
theorem uy(B™) = B", and hence there exists E, C B"™ with ux(Ey) = B"™ \ u(B").
Obviously Ej C {uy # u}, and hence |Ey| — 0, as k — 0o. Now we have

B\ u(B")| = [un(BQ)| < [ | det Duy| 0,
k

since det Duy, — det Du in L' and |E,| — 0. We used here the change of variables formula
for Lipschitz mappings, which implies the inequality |up(Ex)| < [p, |det Duy| (cf. [31,
Theorem 3.2.3], [17], see also [12, Theorem 8.3], [40]).

As a last topic of this section we will give a characterization of the Sobolev space, which
does not make use of the notion of derivative.

If 1 < p < oo, then the Theorem of Hardy, Littlewood and Wiener (see [93, Chapter 1],
[97], [104, Theorem 2.8.2]) states that the maximal operator Mu(x) = sup, .o Fp( . |u(z)| dz
is bounded in LP(IR") i.e., ||[Mul|, < C||ul|,. Obviously ||u||, < |[Mul|,. This in connec-
tion with (2) for A = 0, implies that to every u € W?(Q2), where 2 C R" is a bounded
domain with sufficiently regular boundary, and 1 < p < oo, there exists g € LP(Q2), g > 0,
such that

u(z) —u(y)| < |z —yl(g(z) +9(y)), (5)
almost everywhere in €. It appears that this inequality characterizes W1?(Q). Namely we
have the following result.

Theorem 3 (Hajtasz [41]). Let Q2 be a bounded domain with the sufficiently regular bound-
ary and 1 < p < co. Then u € WHP(Q) if and only if there exists g € LP(Q), g > 0 such
that (5) holds. Moreover

IVullzri) = inf [|g] @),

where the infimum is taken over all functions g which satisfy (5).

In the case p = oo we recover a classical result which states that W1>°(Q) = Lip (Q).
Hence it is natural to call the above theorem a Lipschitz type characterization of Sobolev
functions.

We have already explained the implication =. Now we will give a new proof of the
converse implication <. The following proposition and the example are the outcomes of
my discussions with Jan Maly.



Proposition 1 If Q is as above, and u satisfies (5), with g € LP(), g > 0, where
1 <p<oo, thenu € WH(Q) and |Vu(x)| < 4y/ng(z) a.e

Of course it suffices to consider the case p = 1, but before we will do it we answer a
natural question which arise now. It is natural to ask whether for u € W1(Q) there exists
g € L*(Q) such that (5) holds. The answer is negative, as the following example shows.
EXAMPLE. Let Q = (—1/2,1/2), and u(z) = —z/(|z|log |z|). Hence u € WH1(Q), since
u'(z) = |x|(log|z])™* € L'(—1/2,1/2). Suppose that there exists g € L'(—1/2,1/2),
such that (5) holds. For 0 < z < 1/2; we have |u(z) — u(—2x)| < 2z(g(x) + g(—=x)) and
hence

log 2 < 2z(g(x) + g(—x)),

[ o= [ o)+ g an > [T 2

—1/2 xlog x

thus

This contradicts the summability of g.

Proposition 1, together with the example, show that the set of all functions u satisfying
(5) with certain nonnegative g € L', forms a strict subspace of W1(2) (one can expect
that such functions locally belong to the Hardy space (cf. [23], [89]), however as was proven
by Jan Maly, [73], this is not true).
Proof of Proposition 1. In the proof we need so called ACL characterization of the
Sobolev space. We say that v € ACL(Q) if the function w is Borel measurable and
absolutely continuous on almost all lines parallel to coordinate axes. Since absolutely
continuous functions are differentiable almost everywhere, u € ACL (Q2) has partial deriva-
tives a.e., and hence the gradient Vu is defined a.e. Now we say that u € ACL? (Q2) if
u e LP(Q)NACL(Q) and |Vu| € LP. The following characterization of the Sobolev space
is due to Nikodym.

Theorem 4 (Nikodym [84], [64, Theorems 5.6.2-3], [76, Section 1.1.3]). WhP(Q) =
ACL? (Q).

Since maybe it is not evident how to understand this theorem, we shall comment it now.
This theorem states that each ACLP () function belongs to W1P(2) and the gradient
Vu, which is defined a.e. for u € ACL? () is just the distributional gradient. On the
other hand, each element u € W'?(Q) (which is an equivalence class of functions equal
except the set of measure zero) admit a Borel representative, which belongs to the space
ACL? (Q).

According to the ACL characterization it suffices to consider the case Q = (0,1) C IR
and prove that u is absolute continuous with |u/| < 4g. It would follow if we proved
lu(a) — u(b)| < 4 [°g(z)dx for almost all a,b € (0,1), a < b. Fix such a and b with the
additional condition g(a), g(b) < co. Divide |[a, b] into n segments I;, i = 1,...,n, each of
the length (b —a)/n. To every i there exists x; € I; with g(z;) < ; g. Let 10 = a and
Tni1 = b. We have

n

(@) — u®)] < 3 ules) — e < 20D S () + glai)

1=0 1=0




4(b — a)

LS f g 2 gy o) — 4 [

which completes the proof.

2. Sobolev spaces on metric spaces. The above characterization (Theorem 3)
hints the way how one should define the Sobolev space on an arbitrary metric space.
DEFINITION (Hajtasz [41]). Let (X,d,p) be a metric space (X,d), p a Borel measure,
finite on bounded sets, and 1 < p < co. We define the Sobolev space on the triple (X, d, 1)
as follows

WY (X,d,p) = {u€ LX(X,pu) | 3B C X, u(E) =0, and 3g € L(X, 1), g >0,

such that |u(z) —u(y)| < d(z,y)(g(z) + 9(y)),
for all z, y € X \ E}.

Moreover we set ||ully1e = ||ullze + ||u||z10, where ||u]|pie = inf,||g]|l. Y C X
is a measurable subset of a positive measure then by ||u||w1s) We denote the norm of
uly € WH(Y,d, p). For our convenience we will often call the above definition a metric
definition of the Sobolev space.

fX=0Q=IR"or X =Q CIR"is a bounded domain with the sufficiently regular
boundary, d is the Euclidean metric, p is the Lebesgue measure, and 1 < p < oo, then
the space W1P(X,d, i) is equivalent with the classical Sobolev space W1P(Q). Moreover
||| 1.0 1s equivalent with ||Vul|,. In the case p = 1 the metric and the classical definitions
are not equivalent (see the example after Proposition 1). However for some reasons it is
natural to consider metric definition in the case p = 1 as well. We will see later how to
define a Sobolev type space, in a reasonable way, for 0 < p < 1.

It is not difficult to prove (see [41]) that WP(X,d, i) is a Banach space. Moreover if
Y C X is a subset of positive measure and finite diameter, then using pointwise inequality
from the definition and Holder’s inequality, we get a version of the Poincaré inequality

=y ll oy < 2(diam V)]l Loy, (6)
The following theorem is the already mentioned Lusin type approximation.

Theorem 5 (Hajtasz [41]). If u € W'P(X,d, ), where 1 < p < oo, then to every e > 0
there exists a Lipschitz function h such that

1o p({zu(z) # h(z)}) < ¢
2. |lu—hlwis < .

It is natural to ask whether the Sobolev imbedding theorems extend to the metric case.
The problem is that in the imbedding theorems the dimension of the space plays a crucial
role of critical exponent. This shows that we have to add a condition which will be a
counterpart of the dimension in the metric setting. The condition is the following.
DEFINITION. Let (X,d, u) be as above. We say that the measure u restricted to a mea-
surable subset Y C X is s-reqular (s > 0) if there exists a constant b > 0 such that for all
z€Y and all r < diamY
w(B(z,r)NY) > bre.
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We do not require diamY < oo. Of course IR" and any bounded domain in IR" with
sufficiently regular boundary are n-regular with respect to the Lebesgue measure. Also
many natural fractal sets are s-—regular. For example the standard ternary Cantor set is
log, 2-regular with respect to the natural Hausdorff measure. Many important domains
and their boundaries, which are useful in the theory of Sobolev spaces, are regular with
respect to the Hausdorff measure (see [59] for details). Consult also [75] for related results.
Later we will see that measures from a large class of the so called doubling measures are
s—regular for a suitable s, which depend on a measure.

On certain fractal type subsets of IR™, Jonsson and Wallin, [59], defined Hardy and
Besov type spaces. Their resluts are somehow related to that of ours, but involve different
methods and work in the Euclidean setting only. Quite recently Han and Sawyer [48],
and in a more general form Han [47], defined Besov and Triebel-Lizorkin spaces on quasi-
metric spaces equipped with a doubling measure. One should also mention a recent work of
Semmes [90], which seems to be strongly related to the approach presented in this section.

Now we state the imbedding theorem.

Theorem 6 (Hajtasz [41]). Let w € W'P(X,d, i), where 1 < p < oco. Assume that p
restricted to a measurable subset Y C X with diamY < oo is s—reqular.

1. If p<s, then u € L¥ (Y, i), where p* = % and

lu =y || vy < Cllullireyy.

2. If p = s, then there exist constants C7 and Cy such that

1/s _
7[ exp <C’1M(Y) [v = uy] ) dp < Cs.
Y

diam Y [Jul| g1« (v

3. If p > s, then u s bounded on'Y and

® =

u(e) — ()| < Cu(Y) 5 ull gy ace.

Here the constants C', Cy, Cy depend on p, s and b only.

REMARKS. 1) generalizes the classical Sobolev imbedding theorem. In the Euclidean case
2) is just the inequality of John and Nirenberg (see [57], [97]) applied to W (Q") € BMO.
Also in the Euclidean case inequality 3) leads to Holder continuity of u. Later we will see
that we also have Holder continuity in the metric setting.

Assume that the measure p is s-regular on the entire space X, and let B C X be a
ball. If x € Bg, and r < R, then by the hypothesis p(B(z,7)) > br®, however in general
it is not true that u(B(x,r) N Br) > Cr® with a constant C' which does not depend on
x and r. That means in general a s-regular measure on X does not has to be s-regular
when restricted to a certain ball B. In such a case the assumptions of the above theorem
are not satisfied for Y = B, and hence one can doubt if the theorem extends to this case.
Fortunately one can prove then a slightly weaker version of the above result. Detailed



statement and the proof will be given in the forthcoming paper of the author and Koskela
[45]. Now we give only a rough statement.

If the measure p is s-reqular on X and v € WYP(X d, ), 1 < p < s, then for any ball
B C X the following weak version of the Sobolev inequality

lu —up|| o5y < Ollullprir2m)

holds. If p=s orp > s, then also “weak” counterparts of the other two cases of Theorem 6
hold. In particular if p > s, then this “weak” inequality leads to Holder continuity of wu,
just as in the Euclidean case.

Sobolev type inequality with the norm on the right hand side in a bigger ball than that
on the left hand side will be called weak Sobolev inequality. If the ball on both sides is
the same, we will simply say Sobolev inequality or strong Sobolev inequality.

The above metric approach to Sobolev spaces applies when one deals with the analysis
on “nonsmooth” spaces like fractals or graphs. There are many papers which deal with
diffusions on fractal sets, see [62] and references therein. Given the “Brownian motion” on
a fractal set one obtains the “Laplace” operator — the infinitesimal generator of “Brownian
motion”. It would be interesting to explain in details how the Sobolev spaces on fractal
sets apply in this setting. This is also strongly related to the analysis on graphs (roughly
speaking Brownian motion on a fractal set can be defined as a certain limit of random
walks on graphs which approximate given fractal).

Given a graph and a function u defined on its vertices, one can define Dirichlet norm of
u (a counterpart of ||Vul|2), replacing differentiation by a differences and the integration
by summation. Also the Laplace opeartor can be defined on a graph via the mean value
property of a harmonic function, see [98], [92] and references therein. This approach found,
in particular, applications to infinite electrical networks (Soardi [92] and references therein).
Namely it is easy to show that, when the total power available in the infinite resistive
network, is finite, the solutions to Kirchoff’s equations (which define electric current) are
unique if and only if the only harmonic function with finite Dirichlet norm is constant equal
to zero. It also applies to random walks on graphs, and to the theory of finite generated
groups (such a group can be represented as a graph), see [98].

In such setting it is important to have the imbedding theorem on a graph. There are
plenty of papers dealing with this problem. For Varopoulos’ contribution see [98, Chapter
6] and references therein, see also papers of Coulhon [25] and Coulhon and Saloff-Coste
[26] and the paper of Saloff-Coste [88]. In fact the imbedding theorems are usually reduced
to the verification of a certain discrete version of the isoperimetric inequality. Since the
graph is a metric space (metric is a length of a shortest path), equipped with a counting
measure, Theorem 6 provides another approach. Details will be given in the forthcoming
paper. The s-regularity condition is also natural in this setting, in fact condition of this
type is required in the above mentioned papers dealing with the imbedding theorems on
graphs.

Now let’s come back to the metric theory of Sobolev spaces. The classical Poincaré and
Sobolev inequalities do not hold for 0 < p < 1. An elementary counter example, in the
setting of the spaces on an interval, in provided in [15]. However if one carefully study the
proof of Theorem 6 and its “weak” generalization, it is clear that the assumption p > 1 is
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used only in the one step. It is possible to avoid this step, thus obtaining the imbedding
(in the metric setting), with the slightly modified statement, even for 0 < p < 1. This
approach to Sobolev inequalities for p > 0 is presented in details in the forthcoming paper
of the author and Koskela [45]. Motivation for consideration of the Sobolev inequalities in
the range 0 < p < 1 comes from the paper by Buckley and Koskela [15] where the authors
prove Sobolev inequality for u for 0 < p < 1 provided wu is a solution to a suitable elliptic
equation (or more generally: provided |Vu| satisfies weak reverse Holder inequality). The
result of Buckley and Koskela was extended to the setting of more general equations
related to vector fields satisfying so called Hérmander’s condition (which is defined below),
by Buckley, Koskela and Lu [16]. We will come back to the case 0 < p < 1 later.

A very big and a very important class of measures satistying s-regularity condition is a
class of measures satisfying so called doubling condition. There are several modifications
of the notion of a doubling condition, depending on a given context, so we will not give a
formal definition, but we explain this notion in the statement of the following lemma.

Lemma 2 Let i be a Borel measure on a metric space X, finite on bounded sets. Assume
that p is doubling on a bounded subset Y C X, in the following sense: there is a constant
Cq > 1, such that

p(B(x,2r)) < Cap(B(x, 1)),

whenever x € Y, and r < diamY. Then
u(Bla.r)) > (2diam¥) u(Y ),
for s =log, Cy, x € Y and r < diam Y.

The constant Cy is called doubling constant. This lemma shows that properties of p
strongly rely on the exact value of the doubling constant. If y is the Lebesgue measure on
IR", then Cy = 2", and hence s = n is just dimension.

Metric space (or more generally quasi-metric, whatever it means) equipped with a
doubling measure is called a space of homogeneous type. This notion was introduced by
Coifman and Weiss [24].

It is known that doubling measures inherit many properties of the Lebesgue measure,
and it is possible to extend many results from the classical Harmonic Analysis, including
for example singular integrals (Coifman Weiss [24]), into the general setting of spaces of
homogeneous type (see also [22]). The class of doubling measures is very large, since as
was proven by Volberg and Konyagin [102], [103], every compact subset of IR™ supports a
doubling measure. Moreover it is possible to construct an example of a doubling measure, in
the whole IR", singular with respect to the Lebesgue measure, and an absolutely continuous
doubling measure which vanishes on a set of positive Lebesgue measure, see [94, pp. 40-41].

Later we will give one more example of a doubling measure, on the so called Carnot—
Carathéodory space. This example is very important in the regularity theory of strongly
degenerated elliptic equations. For further examples of doubling measures see [22], [94].

The above lemma is well known. Proof is very easy, and we sketch it now. Iterating k
times the doubling inequality, we get u(2¥B) < C*u(B). Now for any B we can find the
smallest integer k, with Y C 2¥B, and hence we can estimate u(Y) in terms of u(B), but
this is just the statement of the lemma. This iteration argument resembles that used in
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the proof of the fact that Harnack’s inequality implies Holder continuity (cf. [81] and later
in this section).

It was proven in Section 1 that w is in the Sobolev space if and only if certain pointwise
inequality is satisfied (Theorem 3). However one can prove a stronger result. Roughly
speaking it was proven by the author and Koskela [44], [45] that if 4 is a doubling measure
on X, ue Ll (X,u),g€ Ll (X,u), g >0, and the following weak version of the Poincaré

loc loc

inequality
1/p
f\u—uB!duér(f gpdu) , (7)
B 2B

holds, whenever B is a ball with radius r, then v € Wh4(X,d, u) for all ¢ < p. Thus
applying imbedding theorem we obtain that there is p* > p, such that the weak Sobolev

inequality
. 1/p* 1/p
(flu—usl"an) " <cr (£ odn) )
B 2B

holds for all balls B. Moreover if we add certain conditions concerning the geometry of the
balls (it suffices, for example, to assume that every two points in the ball can be connected
by the shortest path), then we obtain also the strong Sobolev imbedding

(][\ 7 d )W<C (][ > )W (9)
o —upl”dp ) < Cr(f, g"du)

This result extends also to the case 0 < p < 1.

For our convenience the inequality of the type (9), with p* = p will be called Poincaré
inequality, and when p* > p, Sobolev—Poincaré inequality.

Note that in the classical setting, when u € W'P(2B), g = |Vul, and p is the Lebesgue
measure, (7) follows from the classical Poincaré inequality.

One could expect that if he assumed the strong version of (7), replacing 2B by B, he
would obtain the strong Sobolev—Poincaré inequality (9), for general doubling measure,
without making any requirements concerning the geometry of the balls. However it seems
to be not true. According to our proof, even strong version of (7) leads only to the weak
inequality (8), unless one makes some additional assumptions.

The paper of the author and Koskela [44] contains also another proof of the above result,
which states that under certain assumptions concerning the geometry of balls, family of
weak Poincaré inequalities (7) implies the family of strong Sobolev—Poincaré inequalities
(9), for all 0 < p < oo. This proof is direct, surprisingly elementary, and it involves
different idea from that presented above. In particular it avoids the use of the theory of
Sobolev spaces on metric spaces.

The just stated result generalizes a part of related results of Saloff-Coste [87], Biroli
and Mosco [4], [5], [6] and Maheux and Saloff-Coste [68], (see later in this section).

Moreover, roughly speaking, if |Vu| satisfies weak reverse Holder inequality, then one
can prove inequality of the type (7) (with ¢ = |Vu|), for any p > 0, and hence our result
applies to the previously mentioned result of Buckley and Koskela [15]. This application
is presented in details in the paper by the author and Koskela [45].

Also the “chain technique” developed in [44], [45], in order to deduce strong inequalities
from its weak form, simplifies, in many cases, an earlier techniques based on the so called
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Boman chain condition, and developed in the papers of Boman [13], Iwaniec and Nolder
[54], Bojarski [7], Chua [27], Jerison [55], Franchi Gutiérrez and Wheeden [34] and many
others.

The above theorem directly applies to the regularity theory of degenerated elliptic
equations. Consider the following degenerate equation in €2 C IR"

div A(z, Vu) = 0, (10)

where A(z,&) - & > Ciw(2)|E[P, |A(z,&)] < Cow(z)|€P7!, and w > 0, w € LL.(Q). The
prototype equation is the weighted p-Laplacian

div (w(z)|Vu[P2Vu) = 0.

Weak solutions of (10) are defined in the weighted Sobolev space WLP(Q,w) (where the
LP norms of u and |Vu| are taken with respect to the measure w(z)dz). It was observed
by Fabes, Kenig and Serapioni, [29], that in order to extend Moser’s technique, [81], to
the degenerated linear equation of the form (10), p = 2, it suffices to put conditions upon
w which are collected in the definition below. Moser’s iteration technique implies that, for
suitable w, there exists a constant C' = C(n,p, Cy/C},w), such that whenever 2B C ,
and u is a weak solutions of (10), nonnegative in 2B, then the following scale invariant
(s.i.) Harnack’s inequality

supu < C'infu, (11)

B B

holds (since the constant C' does not depend on the radius of B we call this inequality scale
invariant). Then iterating s.i. Harnack’s inequality one easily obtains Holder continuity of
the solution. As we already mentioned this last step resembles the iteration used in the
proof of Lemma 2.

DEFINITION (Heinonen, Kilpeldinen and Martio [49]). We say that w € LL _(IR"), w > 0
a.e. is p-admissible, 1 < p < oo, if the measure defined by du = w(x)dz satisfies the
following four conditions:

1. (Doubling condition) u(2B) < Cyu(B) for all balls B C IR".

2. (Uniqueness condition) If € is an open subset of IR" and ¢; € C*°(Q2) is a sequence
such that [, ||’ dp — 0 and [, |Ve; — [P dp — 0, where v € LP(u), then v = 0.

3. (Sobolev inequality) There exists an exponent p* > p, such that for all balls B C IR"

and all ¢ € C{°(B)
. 1/p* 1/p
(7[ |of? du) < Cyr (7[ |V90|”du>
B B

4. (Poincaré inequality) If B C IR" is a ball and ¢ € C*(B), then

/ [ — pplPdu < Cgrp/ |Vl? dp.
B B
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During the 1980’s Granlund, Heinonen, Kilpeldainen, Lindqvist, Maly, Martio and the
others (see [49] and references therein) shown that not only Moser’s technique extends to
the general case of (10), when w is p-admissible weight, 1 < p < oo, but also one obtains
a rich potential theory.

It appears that above theorem which asserts that (7) implies (9) leads to the following
elementary characterization of p-admissible weights.

Theorem 7 (Hajlasz and Koskela [44]) Let w > 0 be a locally integrable function. Then
the weight w is p-admissible if and only if the measure u associated with w is doubling,

(i.e., u(2B) < Cyu(B) for all balls B C IR") and

1/p
][ |u —up|dp < Cyr <][ \Vu\’%lu) )
B 2B

whenever B is a ball with radius v and u € C*>(2B).

In the above application we were concerned with the Euclidean metric, so we didn’t use
full power of our “metric” result.

Now we show that equations degenerated in a different way than that above lead
to Sobolev spaces with respect to a non Euclidean metric. First consider an example.
Elliptic operator Lu = 8%u/dz3 + x30*u/0r3 degenerates along the line x; = 0. It is of
a divergence form div A(z, Vu), with A(z,§) = [&,23&). If we try to apply the above
described approach to degenerated equations via weighted Sobolev spaces we fail, since we
have bad estimates (assume |z| < 1)

Ax,€) - € =& +aigy > 27lEf, Az, ] < €]

Problem is that in the above approach to degenerated elliptic equations of the type (10),
conditions describing how strongly the equation is degenerated, were isotropic with respect
to all variables, while the operator L is degenerated in an “anisotropic” way. Hence
we have to find a different approach. The idea is to consider a certain non Euclidean
metric (so called Carnot—Carathéodory metric) which reflects the anisotropic degeneracy
of the operator. Then we will see that our metric approach to Sobolev spaces applies to
Carnot—Carathéodory metric, and hence applies to the regularity theory of related elliptic
equations. First let us define a certain, general class of degenerated elliptic equations.
DEFINITION (see [98], [83], [55]). Let Q C IR" be an open, connected set, and let the vector
fields X1, Xs,..., X} be defined in a neighborhood of €2, real valued, and C*°-smooth. We
say that these vector fields satisfy Hormander’s condition, provided there is an integer p
such that the family of commutators of X, Xs,..., X up to length p i.e., the family of
vector flelds Xy,... . X, [Xi, Xoplo oo, [Xo, [(Xag, [, XG,)] -], 45 = 1,2,...,k, span the
tangent space IR" at every point of (2.

For example the vector fields X; = 0/0x1, Xy = 2,0/0x3 do not span IR? along the line
z; = 0. However X, X, and [X1, X,] = 0/0x, span IR? everywhere. Hence X; and X,
satisfy Hormander’s condition. We leave as an exercise verification that the vector fields
Y) = 0/0z; and Y, = 2§0/0xy, k-positive integer, also satisfy Hormander’s condition (one
has to consider commutators of length k + 1).
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Celebrated theorem of Hérmander, [53], states that if the vector fields Xo, X7,..., Xk
satisfy Hormander’s condition, then the operator L = Xy + Zf;l X? is hypoelliptic, that
is u must be C'*° function in every open set where Lu is a C* function.

A huge amount of papers related to Hormander’s condition has been written after
Hormander’s theorem, see [98], [39] and references therein.

Using the above example we get the hypoellipticity of the Grushin operator L = Y +
Y2 = 0%/02% + 22%0%/0x3. We want to emphasize that Hormander’s theorem applies
also to operators which are far from the elliptic type: we leave as an exercise verification
that Hormander’s theorem applies to the heat operator 9/0t — A and to the Kolmogorov
operator 9%/9z* + x0/0y — 0/ 0t.

The above class of operators is to large and we will restrict our attention to the so called
sub-Laplacians which are of the form Ay = — Z?:l X7 X;, where the family Xy,..., X
satisfy Hormander’s condition and X7 is a formal adjoint of X; on L?ie.,

/Q(X;u)vdx: —/Qquvdx,

for all u,v € Cg°(€2). Note that X7 does not have to be a vector field, in general it is of
the form X7 = —Xj; + f;, where f; is a suitable smooth function. Thus — 2?:1 X7 X; =
le XJ2 +Y, where Y = Z"jzl f;X;, and hence Ax is a Hormander’s operator.

Note that Grushin’s operator 82/0X? + 23¥9? /0x3 is a sub-Laplacian, while the heat
operator is not (why?).

The results we shall discuss below can be generalized to the much more general class
of operators, however we will be concerned with sub-Laplacians, just for simplicity sake.
At the end of the section we will mention some of the further generalizations.

It seems, the first indication that many properties of non degenerated elliptic equations
extend to sub-Laplacians, was the result of Bony [14], who proved the strong maximum
principle: if Ayu = 0 in © and u is continuous in €, then u(z) < maxag u, for all x € Q,
unless u is identically constant.

As we already said, in the case of equation (10) one obtains s.i. Harnack’s inequality
(11) via Moser’s iteration technique. Bony [14] used the above strong maximum principle
to deduce the Harnack inequality with C' depending on the radius of a ball B. This
inequality is much weaker than its s.i. version. In particular one cannot deduce Holder
continuity from it.

In fact, in general, the s.i. Harnack’s inequality does not hold for positive solutions
to Axu = 0. Here is a very simple example. Function u(z,y) = 6y* — x* + ¢ satisfies
(0?/0x? + 220%/0y*)u = 0. For a suitable ¢, function u is positive in Qy. = [—2¢, 2¢]™.
Now it remains to make some elementary computations which we recommend to the reader.

However it appears that one can prove such s.i. Harnack’s inequality for general sub-
Laplacian, if he replaces Euclidean balls by balls with respect to the Carnot-Carathéodory
metric which we shall define now.

DEFINITION (cf. [98]). Let the family of C*°, real valued vector fields Xj,. .., X}, defined
in the neighbourhood of €, satisfy Hormander’s condition. Let I'y denote the set of
all Lipschitz paths v : [0,1] — Q satisfying 4(t) = 2%, a;(t) Xi(y(t)), for almost every
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t € [0,1]. Define the “length” of v as follows

b= (Z a§<t>)m it

Now the Carnot—Carathéodory (C.-C.) distance between x,y € ) is defined as a “geodesic”
distance

p(z,y) =inf{|y] | v € Tx, v(0) =z, (1) =y}

(Iy] would be the length if the vector fields Xi,...,X were orthonormal in every point,
but we do not require even that they are lineary independent.)

This distance is related to the paper of Carathéodory [19]. It is not clear whether every
two points can be connected by a curve v € I'y. Fortunately we have.

Theorem 8 (Chow [21], [98, Theorem II1.4.1]). If  is a connected domain, and the
family of vector fields satisfy Hormander’s condition, then every two points of £ can be
connected by a curve v € U'x, thus p is a metric. This metric induces standard topology.

A weaker version of Chow’s theorem was first proved by Carathéodory [19]. In order to
learn what exactly Carathéodory and Chow proved, see [52, Chapter 18].

Now with given sub-Laplacian we can associate the C.-C. metric.

We want also to point out that applications of the C.-C. metric go far beyond the
setting of Hérmander’s theorem, see Gromov [39], Strichartz [95] and references therein.
In fact as we could see, metric of this type had already been considered a long time
before Hormander’s work. In the literature the C.-C. metric is sometimes called a sub-
Riemannian, or singular Riemannian metric.

By B we will denote a ball with respect to the C.-C. metric. Results of Nagel, Stein
and Waigner [83] give quite precision estimates for the metric p. In particular they proved
that there is 0 < A < 1, such that for any compact K C €2, there is a constant C', such
that

z —y| < pla,y) < Clz —y* (12)

for all x,y € K. Moreover for any compact K C §Q, there is ro > 0, and C > 1, such that
|B(z,2r)| < C|B(z, )| (13)

for all x € K, and all v < roq. Here |§| denotes the Lebesgue measure of the C.-C. ball.
It seems that it was Franchi and Lanconelli [32], who first realized that one can prove
Holder continuity of solutions to certain strongly degenerated elliptic equations via s.i.
Harnack’s inequality with respect to the C.-C. metric. In fact they were concerned with
slightly different equations than sub-Laplacians: they worked with measurable coefficients,
but on the other hand the algebraic structure of the equation was much simpler than that
of general sub-Laplacian. Still they could define a variant of the C.-C. metric, and they
proved a version of (12), and (13), for that particular metric. Then they proved the s.i.
Harnack’s inequality for the C.-C. balls, using Moser’s technique. It was known (more or
less) that in order to run Moser’s technique, one had to check just a doubling property
for C.-C. balls and a suitable version of Sobolev—Poincaré inequality on C.-C. balls (see
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notation introduced after (9)), and they proved it — in the particular case of the equations
considered by them. Thus they obtained s.i. version of Harnack’s inequality (11), where
Euclidean balls were replaced by the C.-C. balls.

We could see above that the solutions u.(z,y) = 6y*> — ' + ¢ of the equation (92 /92> +
220%/0y*)u = 0 do not satisfy s.i. Harnack’s inequality on Euclidean balls (or squares),
with center at (0,0). We suggest the reader to sketch the shape of the C.-C. balls with
center at (0,0), associated to this particular operator (i.e., defined by the vector fields
0/0z, and x0/Jy), and deduce (at least heuristically), that positive solutions of the form
u, satisfy s.i. Harnack’s inequality on these C.-C. balls.

Jerison [55] extended the idea of Franchi and Lanconelli to general sub-Laplacian. He
proved the following version of the Poincaré inequality

1/p

1/p k
- |u—up | de <(Cr ][ Xiupdx> 14
(o= wsio b ae) (£, 3 1w (14)

for all 1 < p < oo (see also Jerison and Sanchez-Calle [56]). Here the integration is taken
with respect to the Lebesgue measure. Since the related Sobolev inequality for compactly
supported functions was known (see Theorem 13 and inequality (17.20) in Rothschild and
Stein [86]), and the doubling property was also known (the above mentioned result of
Nagel, Stein and Waigner), the Moser technique applied. It seems that the main problem
in establishing the Poincaré inequality (14) was the problem with the boundary of the
C.-C. balls. Jerison provided an example of a domain with smooth boundary for which
Poincaré inequality fails! Note that the problem with boundary does not appear when one
works with the compactly supported functions.

Saloff-Coste [87] proved that in a very general setting of subelliptic operators, which
are formally self adjoint and positive with respect to a doubling measure, family of related
Poincaré inequalities on the C.-C. balls, for p = 2, implies the family of Sobolev—Poincaré
inequalities (with p* > p = 2) on the C.-C. balls (in these inequalities the integration is
taken with respect to the doubling measure). We want to emphasize that Saloff-Coste
didn’t prove the Poincaré inequalitry. He just proved the implication. He found a lot of
important applications of this result in the context of parabolic version of Moser’s iteration.

His proof, that the Poincaré inequalities imply Sobolev—Poincaré, uses the theory of
submarkovian semigroups. This result was generalized by Biroli and Mosco [4], [5], [6]
to the setting of metric spaces with doubling measure. They replaced the “gradient”

¥ |Xiu|? by a suitable Dirichlet norm a(u), and then they proved only a weak Sobolev
inequality. In the paper [6] they also consider the case 1 < p < oo. Note that mentioned
above result of the author and Koskela [44] (which states that (7) implies (9)) generalizes
both results of Saloff-Coste and Biroli and Mosco. We do not require any relationship
between u and the “gradient” ¢, beside the weak Poincaré inequality, we prove strong
version of the Sobolev—Poincaré inequality, and we prove it for all 0 < p < oo. Because
of the generality, there are chances that our result can be applied to Moser’s iteration in
much more general setting. We should also mention the papers of Saloff-Coste [88] and
Maheux and Saloff-Coste [68], which contains further generalizations of the theorem of
Saloff-Coste. Moreover the papers of Lu [67] and Franchi Lu and Wheeden [35] contains
many Sobolev type imbedding theorems for Hormander vector fields. Later we will mention
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further generalizations.

Once we have s.i. Harnack’s inequality for the C.-C. balls, we obtain Holder continuity
(of solutions) with respect to the C.-C. metric, and then applying (12) we get Hoélder
continuity with respect to the Euclidean metric. Of course in the case of sub-Laplacians
it is not necessary to use this argument in order to deduce Holder continuity, since by
Hormander’s theorem we already have C'*° smoothness! But it appears that this scheme:
s.i. Harnack’s inequality with respect to C.-C. metric plus d(z,y) < |z —y|* implies Holder
continuity, can be applied to obtain the Holder continuity of solutions for much larger class
of operators than sub-Laplacians. One such example was the above mentioned result of
Franchi and Lanconelli [32].

The typical example of operators considered in [32] is the Grusin type operator A u +
|z|* Ayu, 0 > 0, (x,y) € R™™. This operator is a sub-Laplacian only if ¢ is a positive
integer. However still one can associate C.-C. metric to the vector fields V, and |z|7V,,
and prove suitable Sobolev—Poincaré inequality.

Following Franchi and Serapioni [33], one can consider even more degenerated operators
for which the typical example is the following.

Lu = div (w(z, y)(Veu + |2 V,u)), (15)

with suitable w € Li_, w > 0 a.e. Here 0 > 0 and (x,y) € IR"*"™. This operator mix both
ways the operator can be degenerated: one considered in (10) and that for sub-Laplacians.
In order to extend Moser’s technique to operators of the form (15) one has to deal with the
Sobolev-Poincaré inequalities with respect to suitable C.-C. metric and weighted doubling
measure. Thus it is suitable setting to apply our metric approach to Sobolev spaces.

The far reaching generalization of (15) has been considered recently by Franchi, Gutier-
rez and Wheeden [34]. Also a very general form of quasilinear equations related to vector
fields with Hormander’s condition is considered by Lu [67].

We want to emphasize that, because of the simplicity reason, we didn’t mention the

most general form of the quoted results. Also sometimes we omited some technical as-
sumptions. Moreover we didn’t mention all the contributors to this subject. In any case it
is not possible to put the right chronological order in the above events, since similar results
independently grown up in many papers.
3. Traces on fractal type sets. It was suggested to the author by Pawet Strzelecki
that Sobolev spaces on metric spaces can be useful in description of traces of Sobolev
functions. Classical trace theorem gives the description of traces on smooth submanifolds.
We will see how to describe traces on much more general subsets. The results presented
in this section announces the forthcoming paper of the author and Martio [46]. Here, for
simplicity sake, we will be concerned with the most simple cases only, just to show the
idea. The approach to traces of Besov spaces on fractal type subsets was developed by
Jonsson and Wallin [59] and in a more general form by Jonsson [58]. Their results apply
to the Sobolev space W12, Although their approach involves different ideas, concerns
Besov spaces rather than the Sobolev spaces, and is much more technical, their results are
strongly related to that of ours.

Let’s recall the trace theorem in the classical setting. Assume that 2 C IR" is a bounded
domain with the sufficiently regular boundary. It is well known theorem of Gagliardo [37],
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[64, Theorems 6.8.13 and 6.9.2] that there is a trace operator for 1 < p < 0o
v WWP(Q) — WP (9Q),
and the extension operator
Ext : W'=VPr(90Q) — whr(Q),

where the space W'~1/P?(9Q) is the Slobodeckii space and is defined as follows

)P
we WHPr(oQ)  iff / / Ju(z) = uly) | dzx dy < o0. 16
( 00 Jog \:L*— \"ﬂ’ 2 Y (16)
Thus the space W!=1/PP(9Q) characterizes traces of the W'P(Q) functions. We will see
that using Sobolev spaces on metric spaces one can almost characterize the space of traces.

Theorem 9 (Hajlasz and Martio [46]).
W=re(9Q) ¢ Whe(oQ, | - |*Vr, H ) ¢ WiV mae=e(9Q), (17)
for any € > 0.

Here the space W7 is the Sobolev space on the metric space 9 with the metric d(z,y) =
|z — y|*~'/, and with respect to the measure H"~'. Theorem 9 leads to the trace and
extension operators

v W(Q) — WR(OQ, | [V H Y (18)
£ WPOQ, |- VP B — WE(Q) (19)

for any ¢ > 0. Hence W'P(9€,| - |'~1/P, H"~1) almost characterizes traces of a Sobolev
functions from WP (Q).

The space W'=1/PP(9Q) gives the sharp characterization of traces, but its definition is
of essentially different character than that of classical Sobolev space WP, The “metric”
approach is a unified approach to Sobolev spaces and trace spaces, but on the other hand
it does not lead to a sharp characterization of traces — this is the price one has to pay.

To see how (18) works, we will apply the imbedding Theorem 6 to the right hand
side of (18). First let’s compute s with respect to which the space (99, |- |71/, H"1) is
s-regular.

If B(r) denotes a ball (subset of 9Q) with respect to the metric | - ['=*/?, then B(r) =
B(r?/®=1)) where the last ball is taken with respect to the Euclidean metric (induced from
IR"). Now H" Y(B(r)) = H* Y(B(r?/®=1)) a rP(»=1/-1) which means the space is s
regular for s = p(n —1)/(p — 1). Now applying imbedding theorem we get for p <n

WO, |-V B © LS (09),

and this is just a classical imbedding theorem for traces [64, Theorem 6.4.1].

One of the possible methods to obtain trace theorems on fractal type sets is the fol-
lowing. Assume that u € W'?(Q), K C Q is a compact set, ;1 a Borel measure on K and
0 < X < 1. If the operator

M(i\iamK : Lp<Rn> - L(I(K’ /1“)7 (20)
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is bounded, then the pointwise inequality (2) immediately gives that u|x € WhH(K,| -
|1=A u) i.e., this leads to the following trace operator

Tr : WhP(Q) — WH(K, |- 774 ).

Using Marcinkiewicz interpolation theorem it is not difficult to prove theorems of the
form (20). This leads, in particular, to the following theorem.

Theorem 10 (Hajtasz and Martio [46]). Ifu € W'P(IR"),0 <A< 1,1 < (n—d)/X <
p < n/\, and u is a Borel measure with compact support, such that u(B(x,r)) < Cr? for
all € R"™ and all v > 0, then there is a continuous trace operator

Te  WHP(IR') — W55 (supp g, | - |, ).

Note that this theorem applies when supp p is a suitable d—dimensional fractal type
set and p is a d—dimensional Hausdorff measure restricted to that fractal. Note also that
we can apply a Lusin type approximation (Theorem 5) to W'P(9€, | - [*=/7, H*~1). This
shows that we can approximate traces by a Holder continuous functions in a Lusin sense.
Argument of this type has been used by the author in the study of boundary behaviour of
conformal, quasiconformal and, more generally, Sobolev mappings [42]. The main result
was a generalization and simplification of the proof of @ksendal’s theorem [85], [51] on
harmonic measure. This is one of the example which shows how useful is the approach to
traces via Sobolev spaces on metric spaces.

The paper [46] contains more sophisticated results than that cited above. Also an

extension type results are studied in a general setting there.
4. Higher order derivatives. Now we present a “pointwise inequalities” for
higher order derivatives. It will be a generalization of the inequality (1). For simplicity
sake we will be concerned with the counterparts of (1) for A = 0 only. Then we show
some applications. Finally we make some comments on the pointwise inequalities for an
arbitrary 0 < \ < 1.

First some notation. Tru(y) = X<k Du(z)(y — x)*/a! will stand for Taylor’s poly-
nomial. Here u € W}"”, and the derivatives D®u are in the weak sense. By V™u we denote
the vector with components D%, |a| = m, and |V™u| stands for its Euclidean length.

If u e WP, then we assume that v and all its derivatives up to order m are defined
everywhere by the formula

D%u(z) = lim sup ) D%u(y) dy, (21)

for || < m. This extends the previous convention (3) to the higher order derivatives.
Since W™ ¢ W™, it suffices to consider, in many interesting cases, the space W)™
only. Main result — a higher order pointwise inequalities reads as follows.

Theorem 11 (Bojarski and Hajlasz [9]). Let u € W5 (IR") and its derivatives be defined
at every point by (21), moreover let a = (aa)jaj=m, b = (ba)jaj=m be an arbitrary vectors
with real components. Then the following pointwise inequalities

[u(y) = T uy)] < Cla = y|™ (Mia—y | V™ ul(x) + Mipey [ V™ ul (1) )
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and
[uly) = T u(y)| < Clo —y|™ (Mip—y| V"0 = a|(2) + Mjp—yy[V™u = b]() )
hold for all x # y. Both constants C' depend on n and m only.

Some comments. Of course |V"u — a| is the Euclidean length of the vector V"u — a =
(D*u — aq)jaj=m- If m = 1, then the first inequality reduces to (1) with A = 0, while
the second inequality is new. Here we adopt the same convention as in Section 1: if the
expression on the left hand side, in the one of the above inequalities, is of the indefinite
form like, for example, [oo—o0|, then we set the left hand side equal to co. The inequality is
still valid in such a case, since D*u(z) = o0, for certain |a| < m, implies Mz|V™u|(z) =
Mpg|V™u — ¢|(z) = oo for any R > 0 and any vector c.

In particular the second inequality of the above theorem holds with a = V™u(z) and
b = V™u(y) (if |a|] = oo or |b] = oo, it is not dangerous, since then the right hand
side is equal to infinity and the inequality is trivial). We can apply the above theorem
to D*u € W, M in place of u. This leads to the following corollary. Let Mbg(z) =
SUD,« p F (2. |9(2) — g(x)| dz for vector valued g, provided g is defined everywhere.

Corollary 2 (Bojarski and Hajtasz [9]). If u € W' (R"™) and its derivatives are defined
everywhere by (21), then for |a| < m and all x # vy
[D%u(y) = T Du(y)] < Clo — g™ (M, (V") () + Mf,_ (V") (y)) .

lz—y|

This corollary gives the pointwise estimates for Taylor’s remainder of u and of its deriva-
tives. These estimates are very similar to that required in the statement of the following
Whitney extension theorem.

Theorem 12 (Whitney [99], [69]). Given a family (uq)jaj<m of continuous functions on
a compact set K C IR". Then there exists a function h € C"™(IR"), such that D*h|x = uq,
for all |a| < m if and only if

—2)8
ua(y) — E|ﬂ\§mf|a| an(x) Ly 51) ‘

la]<m |z — y|m_|a|

_>O

uniformly on K as |z —y| — 0.

Now it is clear that if we proved M%(Vmu) — 0 uniformly on a compact set K, as R — 0,
we would have that there exists h € C™(IR") such that h|x = u|k. It appears that it is
not difficult to prove such convergence on “big” compact sets. This method was used by
Bojarski and the author [9] to give an elementary proof of the following theorem of Michael
and Ziemer.

Theorem 13 (Michael and Ziemer [77], [104, Theorem 3.11.6], [9]). Let 2 C IR"™ be an
arbitrary open set, 1 < p < oo, 1 <m < k, m, k integers, and u € VV{ZC”(Q) Assume that
u and its derivatives are defined everywhere by the formula (21). Then for every e > 0,
there ezists a closed set F' C Q and a function h € C™(2) such that

Bi—mp(Q\ F) <,
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D%u(z) = D*h(z), for x € F and |a] <m,
u—h e Wy (Q),
||U — ]’LHWm,p < €.

If k = m, then we replace By_p,, by the Lebesgque measure.

By Wy () we denote the closure of C§°(Q2) in the W™P norm, hence in some sense it
is a subspsce of W™P(Q) consisting of functions which vanish on the boundary. Symbol
By, is reserved for Bessel capacity. For definition we refer the reader to [104]. Here are
some properties. Capacity By, is an outer measure, and it is finite on all bounded sets. If
kp < n, then

H""(A) <00 = By,(A) =0,

Bip(A) =0 = Ve>0H""4) =0

If kp > n, then there exists a constant C' > 0, such that
A 7é @ = Bk’p(A) > (. (22)

This shows, By, has properties analogous, in some sense, to that of Hausdorft’s content
Hwe,

If (kK —m)p > n, the condition on the capacity of 2\ F' (in the above theorem) means
Q\ F is the empty (see (22)), thus u € CJ.(2). This particular case is also a direct
consequence of the Sobolev imbedding theorem [104, Theorem 2.5.1]. However Sobolev
theorem provides a stronger result in that case. Indeed, it gives the imbedding into C{)2"
functions (m-th derivatives are u-Holder continuous), for suitable p > 0. One can regard
the theorem of Michael and Ziemer as an extension of the Sobolev imbedding into C™, to
the subcritical case (k —m)p < n. In a moment we will show how to obtain an analogous
extension of the “full” Sobolev imbedding into C"*#. Theorem of Michael and Ziemer
generalizes former results of Calderén and Zygmund [18, Theorem 13] and Liu [66], see the
discussion in Section 1, after Theorem 1.

The above presented simplified approach to Michael and Ziemer’s theorem is based on
Theorem 11, which generalizes (1) with A = 0, to higher order derivatives. The already
mentioned higher order generalization of (1), with an arbitrary 0 < A < 1 leads to a
generalization of Corollary 2, which in turn applies to C"™!~*-Whitney extension theorem.
Hence as an application we obtain in the paper by Bojarski, Hajtasz and Strzelecki [11]
a generalization of Theorem 13 with the approximation of u by C™~* functions (instead
of C™). Note that we have already discussed, in details, result of this type, for k = 1,
and m = 0 in Section 1 (see the neighborhood of Theorem 1). Bojarski and the author,
[10], apply Theorem 13, and its generalization, [11], in the investigation of the geometric
structure of the preimage of a point for a Sobolev mapping between manifolds.
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