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Abstract. We prove that if f ∈ L1(Rn) is approximately differentiable a.e.,
then the Hardy-Littlewood maximal function Mf is also approximately differ-
entiable a.e. Moreover, if we only assume that f ∈ L1(Rn), then any open set
of Rn contains a subset of positive measure such that Mf is approximately dif-
ferentiable on that set. On the other hand we present an example of f ∈ L1(R)
such that Mf is not approximately differentiable a.e.

1. Introduction

Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function

Mf(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)| dy

is a bounded operator in the Sobolev space W 1,p(Rn), 1 < p < ∞. Recall that
W 1,p(Rn) is the space of all functions f ∈ Lp(Rn) such that weak (distributional)

partial derivatives ∂f/∂xi also belong to Lp(Rn), and similarly for W 1,p
loc (R

n). Since
the maximal function is not bounded in L1, there is no apparent reason to expect
any kind of boundedness of the maximal function in W 1,1(Rn). However, Tanaka
[25] proved that in the one dimensional case the noncentered maximal function of
f ∈ W 1,1(R) belongs locally to W 1,1(R). Since that time it has been an open prob-
lem to extend Tanaka’s result to the case of the Hardy-Littlewood maximal function
and to find analogous results in the higher dimensional case; cf. [8, Question 1]. To
the best of our knowledge there are no known higher dimensional results in the
case p = 1, and even in the one dimensional case it is still not known whether the
Hardy-Littlewood maximal function (i.e. the centered one) of f ∈ W 1,1(R) belongs
locally to W 1,1(R); see, however, [2], [3]. The results proved in the paper are clearly
motivated by this challenging problem.

Theorem 1. If f ∈ L1(Rn) is approximately differentiable a.e., then the maximal
function Mf is approximately differentiable a.e.
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Since every function f ∈ W 1,1(Rn) is approximately differentiable a.e., the result
implies a.e. approximate differentiability of Mf . This, in particular, implies (see
Lemma 5) that Mf coincides with a C1 function off an open set of arbitrarily
small measure. However, a.e. approximate differentiability of Mf is much less
than weak differentiability of Mf , which is still an open problem. On the other
hand, the assumption about f in the theorem is much weaker than f ∈ W 1,1. In
addition to this result, Theorem 2 provides a formula for the approximate derivative
of Mf when f ∈ W 1,1.

Let f ∈ Lp(Rn), 1 ≤ p < ∞. It is easy to see (cf. [20]) that for a.e. x ∈ R
n,

either

(1) Mf(x) =

∫
B(x,rx)

|f(y)| dy for some rx > 0

or

(2) Mf(x) = |f(x)| .
Denote by E and P the sets of points in R

n for which (1) and respectively (2) is
satisfied. The following result is due to Luiro [20] when p > 1 and is new when
p = 1. Our proof is new and simpler even in the case p > 1.

Theorem 2. Let f ∈ W 1,p(Rn), 1 ≤ p < ∞. Then the weak derivative, when
p > 1, and the approximate derivative, when p = 1, of the maximal function Mf
satisfy

∇Mf(x) =

∫
B(x,rx)

∇|f(y)| dy for a.e. x ∈ E,(3)

∇Mf(x) = ∇|f(x)| for a.e. x ∈ P .

Remark 3. If x ∈ E, then rx > 0 is not necessarily uniquely defined and (3) holds
for all such rx.

In the next result we deal with differentiability properties of Mf for any f ∈
L1(Rn).

Theorem 4. If f ∈ L1(Rn), then any open set Ω ⊂ R
n contains a subset E ⊂ Ω

of positive Lebesgue measure such that Mf is approximately differentiable a.e. in
E.

Again, Lemma 5 implies that for any open set Ω ⊂ R
n there is a function

g ∈ C1(Rn) such that the set {x ∈ Ω : f(x) = g(x)} has positive measure.
In view of Theorem 4 it is natural to inquire whether for every f ∈ L1(Rn)

the maximal function Mf is approximately differentiable a.e. Unfortunately the
answer is in the negative, as an example presented at the end of the paper shows.

While the proofs of Theorems 1 and 2 are completely elementary, the proof of
Theorem 4 requires some advanced potential theory.

Let us also mention that the result of Kinnunen [10] has been applied and gen-
eralized by many authors ([2], [3], [6], [7], [8], [11], [12], [14], [15], [16], [17], [18],
[20], [21], [25]).

The notation used in the paper is pretty standard. The volume of the unit ball
in R

n is denoted by ωn, and we use a barred integral to denote the integral average∫
B(x,r)

f(y) dy =
1

|B(x, r)|

∫
B(x,r)

f(y) dy .
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By C we will denote a generic positive constant whose actual value may change
even in a single string of estimates.

2. Approximate differentiability

Let f be a real-valued function defined on a set E ⊂ R
n. We say that f is

approximately differentiable at x0 ∈ E if there is a vector L = (L1, . . . , Ln) such
that for any ε > 0 the set

Aε =

{
x :

|f(x)− f(x0)− L(x− x0)|
|x− x0|

< ε

}

has x0 as a density point. If this is the case, then x0 is a density point of E and L
is uniquely determined. The vector L is called the approximate differential of f at
x0 and is denoted by ∇f(x0).

In what follows we will need the following theorem of Whitney [26], which pro-
vides several characterizations of a.e. approximate differentiability of a function.
We state it as a lemma.

Lemma 5. Let f : E → R be measurable, E ⊂ R
n. Then the following conditions

are equivalent.

(a) f is approximately differentiable a.e.
(b) For any ε > 0 there is a closed set F ⊂ E and a locally Lipschitz function

f : Rn → R such that f |F = g|F and |E \ F | < ε.
(c) For any ε > 0 there is a closed set F ⊂ E and a function g ∈ C1(Rn) such

that f |F = g|F and |E \ F | < ε.

Remark 6. To illustrate the relevance of the maximal function in this part of the
real analysis, let us mention a useful Lipschitz type estimate valid for Sobolev
functions:

(4) |f(x)− f(y)| ≤ C|x− y|(M|∇f |(x) +M|∇f |(y)) a.e.;

see [1], [4], [5]. As an almost immediate consequence of (4) one obtains a well

known result that each f ∈ W 1,1
loc (R

n) is approximately differentiable a.e.; cf. [22].

Investigating the positive and negative parts of a function separately, one can
easily prove

Lemma 7. A measurable function f : E → R is a.e. approximately differentiable
if and only if |f | is a.e. approximately differentiable.

3. Proof of Theorem 1

We consider a restricted version of the maximal function

Mεf(x) = sup
r≥ε

∫
B(x,r)

|f(y)| dy .

Lemma 8. If f ∈ L1(Rn), then

|Mεf(x)−Mεf(y)| ≤ n

ε
|x− y| (Mεf(x) +Mεf(y)) ≤ 2n

ωnεn+1
‖f‖1 |x− y| .
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Proof. The second inequality of the lemma is obvious because

Mεf(x) ≤ 1

ωnεn

∫
Rn

|f(y)| dy =
1

ωnεn
‖f‖1 .

Thus we are left with the proof of the first inequality. For a, r > 0 the function
ϕ(r) = r/(r + a) is increasing, and hence, applying Bernoulli’s inequality, we have
for r ≥ ε,(

r

r + |x− y|

)n

≥
(

ε

ε+ |x− y|

)n

≥ 1− n
|x− y|/ε

1 + |x− y|/ε ≥ 1− n

ε
|x− y| .

Fix x, y ∈ R
n. Then for any r ≥ ε we have B(y, r) ⊂ B(x, r + |x− y|) and hence

Mεf(x) ≥
(

r

r + |x− y|

)n ∫
B(y,r)

|f | ≥
(
1− n

ε
|x− y|

)∫
B(y,r)

|f | .

Passing to the supremum over r ≥ ε we obtain

Mεf(x) ≥
(
1− n

ε
|x− y|

)
Mεf(y) .

Since the inequality is also true if we replace x by y and y by x, one easily concludes
the first inequality from the lemma. �

Lemma 9. If f ∈ L1(Rn), then

{x : Mf(x) > |f(x)|} = Z ∪
∞⋃
k=1

Ek,

where |Z| = 0 and Mf |Ek
is Lipschitz continuous for k = 1, 2, . . . . In particular

Mf is a.e. approximately diferentiable in the set {x : Mf(x) > |f(x)|}.

Proof. Let Z be the set of points that are not Lebesgue points of |f |. Clearly
|Z| = 0. Assume that x ∈ R

n \ Z and Mf(x) > |f(x)|. Let ri > 0 be a sequence
such that ∫

B(xi,ri)

|f | → Mf(x) .

The sequence ri is bounded (because Mf(x) > 0 and f ∈ L1), and hence we can
select a subsequence (still denoted by ri) such that ri → r. Clearly r > 0 as
otherwise we would have Mf(x) = |f(x)|. Thus

Mf(x) =

∫
B(x,r)

|f | for some r > 0.

This easily implies that

{x : Mf(x) > |f(x)|} ⊂ Z ∪
∞⋃
k=1

{x : Mf(x) = M1/kf(x)} .

Since the function M1/kf is Lipschitz continuous by Lemma 8, the first part of the
result follows. The second part is a direct consequence of Lemma 5. �

Now we can complete the proof of Theorem 1. Let f ∈ L1(Rn) be approximately
differentiable a.e. Then also |f | is approximately differentiable a.e. (Lemma 7).
According to Lemma 9,

R
n = {x : Mf(x) = |f(x)|} ∪ Z ∪

∞⋃
k=1

Ek,
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where |Z| = 0 and Mf |Ek
is Lipschitz continuous. Since Mf |Ek

is approximately
differentiable a.e. and Mf = |f | is approximately differentiable a.e. in the set
{x : Mf(x) = |f(x)|}, the theorem follows. �

4. Proof of Theorem 2

Since Mf(x) = |f(x)| in P , clearly ∇Mf(x) = ∇|f(x)| a.e. in P . Thus let
x ∈ E and rx > 0 be such that equality (1) holds. Assume also that Mf is
approximately differentiable at x. Note that the function

ϕ(y) = Mf(y)−
∫
B(y,rx)

|f(z)| dz = Mf(y)−
∫
B(0,rx)

|f(y + z)| dz

is approximately differentiable at x and

∇ϕ(x) = ∇Mf(x)−
∫
B(0,rx)

∇|f |(x+ z) dz

= ∇Mf(x)−
∫
B(x,rx)

∇|f(z)| dz.

Indeed, Mf is approximately differentiable at x, and since f ∈ W 1,p we can differ-
entiate in the second term under the sign of the integral. Note also that ϕ ≥ 0 and
ϕ(x) = 0, so ϕ attains a minimum at x, and hence its approximate derivative at x
must be equal to 0, which is the claim we wanted to prove. �

5. Proof of Theorem 4

This proof requires some results from potential theory. We say that a locally
integrable function u : Ω → [0,∞] defined on an open set Ω ⊂ R

n is superharmonic
if it is lower semicontinuous and

(5) u(x) ≥
∫
B(x,r)

u(y) dy

whenever B(x, r) � Ω.
The following regularity result has been established in the setting of weak so-

lutions of the p-Laplace equation in [19]. For the convenience of the reader, we
include a short proof based only on a knowledge of classical potential theory.

Lemma 10. If a locally integrable function u : Ω → [0,∞], Ω ⊂ R
n, is super-

harmonic, then u ∈ W 1,p
loc (Ω) for all 1 ≤ p < n/(n − 1). In particular u is a.e.

approximately differentiable.

Proof. Let u : Ω → [0,∞] be superharmonic and let U � Ω. According to the Riesz
decomposition theorem [23], [9], u restricted to U can be represented as

(6) u(x) = h(x)−
∫
Rn

Φ(x− y) dµ(y), for x ∈ U,

where h is harmonic, Φ is the fundamental solution to the Laplace equation and µ
is a finite positive measure supported in U . It is easy to see that we can compute
the weak first-order partial derivatives of u in U by differentiating the right-hand
side of (6) under the sign of the integral

∂u

∂xi
(x) =

∂h

∂xi
(x)− 1

nωn

∫
Rn

(xi − yi)

|x− y|n dµ(y) .
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By Young’s convolution inequality (cf. [24, II.1.1, p. 27]), the convolution is as
integrable as the kernel. Since the measure µ has a bounded support and the
function x 
→ x

|x|n is clearly in Lp
loc(R

n), we deduce that ∇u ∈ Lp(U). �

For an open set Ω ⊂ R
n and f ∈ L1

loc(Ω) we define a local maximal function

MΩf(x) = sup

∫
B(x,r)

|f(y)| dy,

where the supremum is over all balls B(x, r) � Ω.
The following characterization of superharmonic functions will be very useful;

see [13].

Lemma 11. A locally integrable function u : Ω → [0,∞], Ω ⊂ R
n, is superhar-

monic if and only if
MΩu(x) = u(x) for all x ∈ Ω.

Proof. If u is superharmonic, then taking the supremum over all balls in (5) gives
u(x) ≥ MΩu(x) for all x ∈ Ω. On the other hand, lower semicontinuity of u yields

MΩu(x) ≥ lim sup
r→0

∫
B(x,r)

u(y) dy ≥ lim inf
y→x

u(y) ≥ u(x)

for all x ∈ Ω. Hence u(x) = MΩu(x) for all x ∈ Ω.
Now suppose that MΩu(x) = u(x) for all x ∈ Ω. Since the maximal function is

lower semicontinuous we conclude lower semicontinuity of u. The superharmonicity
of u follows from the inequality∫

B(x,r)

u(y) dy ≤ MΩu(x) = u(x),

which is satisfied on every ball B(x, r) � Ω. �
Corollary 12. If f ∈ L1(Rn) and |f(x)| = Mf(x) a.e. in an open set Ω ⊂ R

n,
then we can redefine f on a set of measure zero in such a way that |f | becomes
superharmonic in Ω.

Proof. It follows from the Lebesgue differentiation theorem that |f(x)| ≤ MΩ|f |(x)
a.e. in Ω. Hence

MΩ|f |(x) ≤ M|f |(x) = Mf(x) = |f(x)| ≤ MΩ|f |(x)
a.e. in Ω and thus |f(x)| = MΩ|f |(x) a.e. in Ω. Now it is clear that we can modify
f on a set of measure zero in such a way that

|f(x)| = MΩ|f |(x) everywhere in Ω,

which makes the function |f | superharmonic. �
Now we can complete the proof of the theorem. Let f ∈ L1(Rn) and let Ω ⊂ R

n

be open. According to Lemma 9, Mf is a.e. approximately differentiable in the set

{x ∈ Ω : |f(x)| < Mf(x)} .
If this set has positive measure, the theorem follows. If it has measure zero, then

|f(x)| = Mf(x) a.e. in Ω,

and hence |f(x)| coincides a.e. with a superharmonic function in Ω; see Corol-
lary 12. Now Lemma 10 gives a.e. approximate differentiability of |f | in Ω and
hence that of f ; see Lemma 7. The proof is complete.
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6. Example

In this section we will construct a bounded integrable function f ∈ L1(R) such
that the set of points where the maximal function Mf is not approximately differ-
entiable is of positive measure. In our construction Mf will coincide with f on a
contact set P of positive length, and f will not be approximately differentiable on
P . This will imply the lack of approximate differentiability of Mf at the Lebesgue
points of P .

In the first step we will construct a bounded periodic function f with period 1
such that Mf is not approximately differentiable a.e., and then it will be clear that
also for f̃ = fχ[0,1] ∈ L1(R) the maximal function is not approximately differen-
tiable a.e.

6.1. Construction. We denote

rk = 3−k(k+1), αk = exp(−9−k−2).

For k = 1, 2, . . . , on the interval
[
0, rk−1

)
we define

gk(x) =

⎧⎪⎨
⎪⎩
1, x ∈

[
(i− 1)rk, irk

)
, i ∈ {2, 4, . . . , 9k − 1},

αk, x ∈
[
(i− 1)rk, irk

)
, i ∈ {3, 5, . . . , 9k − 2},

0, x ∈
[
(i− 1)rk, irk

)
, i ∈ {1, 9k}.

We extend gk to R periodically with the period rk−1. Finally we set

f0 = 1, fn =

n∏
k=1

gk, f = lim
n→∞

fn.

Observe that the function gk is constant on the intervals [(i− 1)rk, irk), i ∈ ZZ, and
hence fn is constant on the intervals [(i− 1)rn, irn), i ∈ ZZ.

6.2. Maximal function. We will now estimate the maximal function of f . We
denote

P =
⋂
k

{fk > 0}.

Let x ∈ R and ρ > 0. We consider the smallest n ∈ N such that Mn(x, ρ) =
(x− ρ, x+ ρ) ∩ rnZ �= ∅. In this situation (x− ρ, x+ ρ) is contained in one of the
intervals [(i− 1)rn−1, irn−1), and hence fn−1 equals a constant β on (x− ρ, x+ ρ).
Let us write M = Mn(x, ρ). Now we will distinguish two cases.

Case 1. Let ρ ≤ rn+1. Then there is only one point z ∈ M . By reason of
symmetry, we may assume that x ≥ z. Then x ∈ [z, z + rn+1). Since gn+1 = 0 on
[z, z + rn+1), fn+1 = 0 on that interval and hence x /∈ P .

Case 2. Let ρ > rn+1. We split (x − ρ, x + ρ) into intervals (x − ρ, x + ρ) ∩
[(i−1)rn, irn). For each interval I of the partition, with an endpoint z ∈ M , either
[z, z + rn+1) ⊂ I, [z − rn+1, z) ⊂ I or I ⊂ (z − rn+1, z + rn+1). Since fn+1 = 0 on
(z − rn+1, z + rn+1) we have (z − rn+1, z + rn+1) ∩ P = ∅. In each case

|I ∩ P | ≤
(
1− rn+1

rn

)
|I|.

Summing over I we obtain

|(x− ρ, x+ ρ) ∩ P | ≤ 2ρ
(
1− rn+1

rn

)
.
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It follows that

−
∫ x+ρ

x−ρ

f ≤ β

2ρ
|(x− ρ, x+ ρ) ∩ P | ≤ β

(
1− rn+1

rn

)
.

On the other hand, if x ∈ P , then

f(x) ≥ βαnαn+1 . . . .

Since

1−rn+1

rn
= 1− 9−n−1 ≤ e−9−n−1

< e−9−n−2−9−n−3−9−n−4−... = αnαn+1 . . . ,

we obtain

Mf(x) ≤ f(x) on P,

and hence Mf(x) = f(x) a.e. in P .

6.3. The contact set. On the set P we have

f(x) ≥ β∞ := α1α2α3 · · · = exp(−9−3 − 9−4 − 9−5 − . . . ) > 0.

We will estimate the size of the set P ∩ [0, 1]. We see that∣∣{f1 > 0} ∩ [0, 1]
∣∣ = 1− 2r1,∣∣{f2 > 0} ∩ [0, 1]
∣∣ = ∣∣{f1 > 0} ∩ [0, 1]

∣∣ (1− 2
r2
r1

)
= (1− 2r1)

(
1− 2

r2
r1

)
,

. . . ,

so that

(7) |P ∩ [0, 1]| = (1− 2r1)
(
1− 2

r2
r1

)(
1− 2

r3
r2

)
· · · > 0

as ∑
k

rk+1

rk
=

∑
k

9−k−1 < +∞.

6.4. Differentiability. Let us consider x ∈ P , k ∈ N and an interval [z, z + rk)
such that z ∈ rkZZ and

x ∈ [z, z + rk) ⊂ {fk > 0} .
This interval is contained in an interval [(i−1)rk−1, irk−1), where the function fk−1

has constant value β ∈ (β∞, 1]. Since z ≥ (i − 1)rk−1 + rk (otherwise fk(z) = 0)
we have that

[z − rk, z + rk) ⊂ [(i− 1)rk−1, irk−1)

and hence fk−1 = β on [z − rk, z + rk). There are three possibilities:

fk =

{
0 on [z − rk, z) = I,

β on [z, z + rk) = J,

fk =

{
β on [z − rk, z) = J,

αkβ on [z, z + rk) = I,

fk =

{
αkβ on [z − rk, z) = I,

β on [z, z + rk) = J.

In each case

f ≤ βαk = β exp(−9−k−2) on I,
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whereas

f ≥ βαk+1αk+2αk+3 . . . = β exp
(
− 9−k−2

8

)
on J ∩ P.

Hence

(8) |f − f(x)| ≥ 1

2
β
(
exp

(
− 9−k−2

8

)
− exp(−9−k−2)

)
on at least one of the sets I or J ∩ P . Since the infinite product at (7) converges,
for sufficiently large k we have

|J ∩ P | = |J |
(
1− 2

rk+1

rk

)(
1− 2

rk+2

rk+1

)
· · · > 1

2
|J | = rk

2
,

and hence inequality (8) is satisfied on a set Ek ⊂ [z − rk, z + rk) of length |Ek|
> rk/2. To estimate the right hand side of (8), observe that e−x − e−y ≥
e−y(ey−x − 1) ≥ (1− y)(y − x), 0 < x < y, and thus

exp
(
− 9−k−2

8

)
− exp(−9−k−2) ≥ 7

8

(
1− 9−k−2

)
9−k−2 > 4 · 9−k−3 .

Accordingly

(9)
|f(y)− f(x)|

|y − x| ≥ 4β 9−k−3

4rk
= β 3k

2−k−6 for y ∈ Ek.

Set E∗
n =

∞⋃
k=n

Ek. Since

lim sup
h→0+

|E∗
n ∩ (x− h, x+ h)|

2h
≥ lim sup

k→∞

|Ek|
4rk

≥ 1

8
,

the approximate limit-superior of |f(y)−f(x)|
|y−x| as y → x is at least β 3n

2−n−6 for each

n, and thus it is ∞. Hence f cannot be approximately differentiable at x. If x is a
density point of P , then also Mf cannot be approximately differentiable at x.

6.5. An integrable function. Finally let f̃ = fχ(0,1). Then Mf̃(x) ≤ Mf(x) ≤
f(x) = f̃(x) in P ∩ (0, 1) and hence Mf̃(x) = f̃(x) = f(x) a.e. in P ∩ (0, 1). Since

f is not approximately differentiable on P ∩ (0, 1), Mf̃ cannot be approximately
differentiable a.e.
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[7] Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Amer. Math. Soc.
136 (2008), 4395-4404. MR2431055

[8] Haj�lasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann.
Acad. Sci. Fenn. Math. 29 (2004), 167–176. MR2041705 (2005a:42010)

[9] Hayman, W. K., Kennedy, P. B.: Subharmonic functions. Vol. I. London Mathematical
Society Monographs, No. 9. Academic Press, London-New York, 1976. MR0460672 (57:665)

[10] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math.

100 (1997), 117–124. MR1469106 (99a:30029)
[11] Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat.

Iberoamericana 18 (2002), 685–700. MR1954868 (2004c:46054)
[12] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math.

503 (1998), 161–167. MR1650343 (99j:42027)
[13] Kinnunen, J., Martio, O.: Maximal operator and superharmonicity. In: Function spaces,

differential operators and nonlinear analysis (Pudasjärvi, 1999), pp. 157–169, Acad. Sci.
Czech Repub., Prague, 2000. MR1755307 (2001f:31005)

[14] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. London
Math. Soc. 35 (2003), 529–535. MR1979008 (2004e:42035)

[15] Kinnunen, J., Tuominen, H.: Pointwise behaviour of M1,1 Sobolev functions. Math. Z. 257
(2007), 613–630. MR2328816 (2008e:46042)

[16] Korry, S.: A class of bounded operators on Sobolev spaces. Arch. Math. (Basel) 82 (2004),
40–50. MR2034469 (2004k:42033)

[17] Korry, S.: Extensions of Meyers-Ziemer results. Israel J. Math. 133 (2003), 357–367.
MR1968435 (2004c:46055)

[18] Korry, S.: Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-
Triebel spaces. Rev. Mat. Complut. 15 (2002), 401–416. MR1951818 (2004a:42020)

[19] Lindqvist, P.: On the definition and properties of p-superharmonic functions. J. Reine Angew.
Math. 365 (1986), 67–79. MR826152 (87e:31011)

[20] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. Proc. Amer. Math. Soc.
135 (2007), 243–251. MR2280193 (2007i:42021)
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