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A COMPACT EMBEDDING OF A SOBOLEV SPACE IS

EQUIVALENT TO AN EMBEDDING INTO A BETTER SPACE

PIOTR HAJ�LASZ AND ZHUOMIN LIU

(Communicated by Nigel J. Kalton)

Abstract. We prove that the compact embedding of the Orlicz-Sobolev space
is equivalent to the existence of a bounded embedding into a higher Orlicz
space.

1. Introduction

If Ω ⊂ R
n is a bounded domain and the Sobolev space W 1,p(Ω) is embedded into

Lq(Ω), then for any 1 ≤ s < q, the embedding W 1,p(Ω) � Ls(Ω) is compact; see e.g.
[5, Theorem 4]. This result generalizes to the setting of Orlicz-Sobolev spaces. Let
A,Φ,Ψ be Young functions. If the embedding W 1,A(Ω) ⊂ LΨ(Ω) is bounded and Ψ
increases essentially faster than Φ, Ψ �� Φ, then the embedding W 1,A(Ω) � LΦ(Ω)
is compact; see [1]. The last statement contains the previous one since the function
tq grows essentially faster than ts for q > s. The proof given in [5, Theorem 4]
is based on the following consequence of the Rellich-Kondrachov theorem: Every
bounded sequence in W 1,p(Ω) (or W 1,A(Ω)) has a subsequence that is convergent
a.e., and thus it is not surprising that the results can be generalized to the setting
of abstract normed spaces W of measurable functions with the property that every
bounded sequence has a subsequence convergent a.e.; see Theorem 3.4 for a precise
statement. This is nothing really new. What is new is that the converse implication
is also true: If for a Young function the embedding W 1,A(Ω) � LΦ(Ω) is compact,
then there is a Young function Ψ that grows essentially faster than Φ such that
the embedding W 1,A(Ω) ⊂ LΨ(Ω) is bounded (in a special case a similar fact was
observed in [6, Remark 4]). Hence a compact embedding is equivalent with an
embedding into a better space; see Theorem 3.1. This result has several natural
consequences. In particular it shows that the optimal embedding is never compact;
see Corollary 3.2.

2. Notation and basic definitions

In this section we will recall basic definitions and facts from the theory of Orlicz
spaces. For more details, see [1], [9].

We say that Φ : [0,∞) → [0,∞) is a Young function if it is convex, continuous,
strictly increasing, Φ(0) = 0 and Φ(t) → ∞ as t → ∞. If Φ and Ψ are two Young
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functions, we say that Ψ grows essentially faster near infinity than Φ if for every
k > 0, Ψ(t)/Φ(kt) → ∞ as t → ∞. We denote it by Ψ �� Φ. Finally a Young
function Φ is said to satisfy the Δ2 condition near infinity if there are constants
K, t0 > 0 such that Φ(2t) ≤ KΦ(t) for all t > t0.

Observe that if Φ satisfies the Δ2 condition near infinity, then Ψ �� Φ if and
only if Ψ(t)/Φ(t) → ∞ as t → ∞.

Let Φ be a Young function and (X,μ) be a measure space. For simplicity we will
always assume that μ(X) < ∞. The Orlicz space LΦ(X) consists of all measurable
functions u on X such that∫

X

Φ(λ|u(x)|) dμ < ∞ for some λ > 0.

It follows from the convexity of Φ that LΦ(X) is a linear space, and one can prove
that this space, equipped with the Luxemburg norm

‖u‖Φ = inf

{
k > 0 :

∫
X

Φ

(
|u(x)|
k

)
dμ ≤ 1

}
,

is a Banach space. Note that∫
X

Φ

(
|u(x)|
‖u‖Φ

)
dμ ≤ 1 .

If Φ satisfies the Δ2 condition near infinity, then

LΦ(X) =

{
u :

∫
X

Φ(|u(x)|) dμ < ∞
}
,

but this claim is not true without the Δ2 condition.
Convexity of Φ implies that for 0 < ε ≤ 1, Φ(x) ≤ εΦ(x/ε), and hence it is easy

to see that convergence un → u in LΦ implies that

(2.1)

∫
X

Φ(|un − u|) dμ → 0 .

Convergence (2.1) is called convergence in mean, and we note here that convergence
in mean implies convergence in the Luxemburg norm only if Φ satisfies the Δ2

condition near infinity.
Given an open set Ω ⊂ R

n and a Young function A we can define in a natural
way the Orlicz-Sobolev space W 1,A(Ω). If A(t) = tp, then W 1,A(Ω) = W 1,p(Ω).

Convexity of A implies that A(t) ≥ at for t ≥ t0 and hence W 1,A(Ω) ⊂ W 1,1
loc (Ω).

Thus it follows from the Rellich-Kondrachov theorem and the standard diagonal
argument that every bounded sequence in W 1,A(Ω) has a subsequence that is con-
vergent a.e.

We say that a family of functions F ⊂ L1(X) is equi-integrable if for every ε > 0
there is δ > 0 such that

sup
f∈F

∫
E

|f |dμ < ε whenever μ(E) < δ.

Note that equi-integrability does not imply in general that the family F is bounded
in L1(X) even if μ(X) < ∞ (which is our standing assumption), because the
measure may have atoms.

We will need the following result of de la Vallée Poussin, which we state as a
lemma. For a proof, see [4], [9].
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Lemma 2.1 (de la Vallée Poussin). Let (X,μ) be a measure space with μ(X) < ∞
and let F ⊂ L1(μ) be bounded. Then F is equi-integrable if and only if there is a
Young function Φ, limt→∞ Φ(t)/t = ∞ such that

(2.2) sup
f∈F

∫
X

Φ(|f |)dμ ≤ 1 .

In most of the statements found in the literature the condition is that the integral
(2.2) is finite. Dividing Φ by an appropriate constant we may further require that
the integral is less than or equal to 1.

3. Main theorems

The following theorem is the main result of the paper.

Theorem 3.1. Let W 1,A(Ω) be an Orlicz-Sobolev space on Ω ⊂ R
n, |Ω| < ∞.

Then the following conditions are equivalent:

(a) W 1,A(Ω) is compactly embedded into LΦ(Ω), denoted W 1,A(Ω) � LΦ(Ω).
(b) There is a Young function Ψ �� Φ such that W 1,A(Ω) is continuously

embedded into LΨ(Ω), denoted W 1,A(Ω) ⊂ LΨ(Ω).

The following two corollaries follow immediately from the theorem.

Corollary 3.2. If a bounded embedding W 1,A(Ω) ⊂ LΦ(Ω) is optimal in the cate-
gory of Orlicz spaces, then it is not compact.

For sharp results regarding embeddings and compact embeddings into Orlicz
spaces in the case in which Ω is a bounded domain with Lipschitz boundary, see
[2], [7, Theorem 5.6].

Nečas [8, Théorème 1.4] proved that if Ω ⊂ R
n is a bounded domain with

continuous boundary (i.e. the boundary is locally a graph of a continuous function),
then the embedding W 1,2(Ω) ⊂ L2(Ω) is compact. As an immediate consequence
of this result and Theorem 3.1 we obtain

Corollary 3.3. If Ω ⊂ R
n is a bounded domain with continuous boundary, then

there is a Young function Φ that grows essentially faster at infinity than t2 such
that W 1,2(Ω) ⊂ LΦ(Ω).

A more precise description of the function Φ can be obtained from the infor-
mation about the modulus of continuity of the functions used to represent the
boundary as a graph, but it is interesting to observe that our argument implies the
existence of Φ without any careful investigation of the structure of the boundary.

We will prove Theorem 3.1 from more general results formulated for abstract
normed spaces. Theorem 3.1 is a direct consequence of Theorem 3.4 and Theo-
rem 3.8 below. The first result, which is a common generalization of some results
in [1], [5], proves the implication from (b) to (a) in Theorem 3.1.

Theorem 3.4. Let W (X) be a normed space of measurable functions on (X,μ),
μ(X) < ∞, with the property that every bounded sequence in W (X) has a subse-
quence that is convergent a.e. If Ψ is a Young function such that the embedding
W (X) ⊂ LΨ(X) is bounded, then for every Young function Φ such that Ψ �� Φ,
the embedding W (X) � LΦ(X) is compact.
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Proof. Since the embedding W ⊂ LΨ is bounded, there is a constant C > 0 such
that ‖f‖Ψ ≤ C‖f‖W for all f ∈ W . Let {fi} ⊂ W be a bounded sequence,
‖fi‖W ≤ M . By our assumptions, fi has a subsequence fij that is convergent a.e.

It suffices to prove that fij is a Cauchy sequence in LΦ. Fix ε > 0 and let ui = fi/ε.
Then

‖ui − uj‖Ψ ≤ C‖ui − uj‖W ≤ 2CMε−1

and hence ∫
X

Ψ

(
|ui − uj |
2CMε−1

)
dμ ≤ 1 for all i, j.

Since Ψ grows essentially faster than Φ, there is t0 > 0 such that

Φ(t) ≤ 1

4
Ψ

(
t

2CMε−1

)
for t > t0.

On the set {|ui − uj | ≤ t0} we have Φ(|ui − uj |) ≤ Φ(t0). Let δ = (4Φ(t0))
−1. If

E ⊂ X is such that μ(X \ E) < δ, then∫
X\E

Φ(|ui − uj |) dμ ≤
∫
{|ui−uj |>t0}

Φ(|ui − uj |) dμ+

∫
X\E

Φ(t0) dμ

≤ 1

4

∫
X

Ψ

(
|ui − uj |
2CMε−1

)
dμ+

Φ(t0)

4Φ(t0)

≤ 1

2
for all i, j.

By our assumptions, uij is convergent a.e. According to the Egorov theorem there
is a measurable set E ⊂ X such that μ(X \E) < δ and uij converges uniformly on
E. Hence there is N such that

|uij (x)− uik(x)| ≤ Φ−1

(
1

2μ(X)

)
for all x ∈ E and j, k ≥ N .

Then for j, k ≥ N we have∫
X

Φ

( |fij − fik |
ε

)
dμ =

∫
E

Φ(|uij − uik |) dμ+

∫
X\E

Φ(|uij − uik |) dμ

≤ μ(X)

2μ(X)
+

1

2
= 1

and hence

‖fij − fik‖Φ ≤ ε for all j, k ≥ N .

The proof is complete. �

The next result is a version of the implication from (a) to (b) in Theorem 3.1
formulated in the setting of normed spaces W (X). Observe that in the statement
we require that the Young function Φ satisfies the Δ2 condition, and Theorem 3.6
shows that it is not possible to avoid the Δ2 condition. On the other hand, no Δ2

condition is needed in Theorem 3.1. This will be explained in Theorem 3.8, where
we will show what additional property of W (X) (satisfied by W 1,A(Ω)) allows us
to remove the Δ2 condition from the statement.

Theorem 3.5. Let W (X) be a normed space of measurable functions on (X,μ),
μ(X) < ∞. Let Φ be a Young function that satisfies the Δ2 condition near infinity.
If W (X) is compactly embedded into LΦ(X), W (X) � LΦ(X), then there is a
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Young function Ψ �� Φ such that W (X) is continuously embedded into LΨ(X),
W (X) ⊂ LΨ(X).

Proof. Suppose that W (X) � LΦ and Φ satisfies the Δ2 condition near infinity.
Let C > 0 be such that ‖f‖Φ ≤ C‖f‖W for f ∈ W . Consider the unit sphere in W ,

S = {f ∈ W : ‖f‖W = 1}.

We claim that the family

F = {Φ(|f |/C) : f ∈ S}

is bounded and equi-integrable in L1(X). Boundedness follows from the definition
of the Luxemburg norm. Indeed, ‖f‖Φ ≤ C for f ∈ S and hence∫

X

Φ(|f |/C) dμ ≤ 1 .

Thus F is contained in the unit ball in L1(X). On the contrary, suppose that F is
not equi-integrable. Then there is ε > 0 and two sequences En ⊂ X, fn ∈ S such
that μ(En) < 1/n, while

(3.1)

∫
En

Φ

(
|fn|
C

)
dμ ≥ ε .

The sequence 2fn/C is bounded inW and since the embeddingW � LΦ is compact,
the sequence has a subsequence (still denoted by 2fn/C) convergent in LΦ to some
function g ∈ LΦ. The convergence in mean (2.1) gives∫

X

Φ

(∣∣∣∣2fnC − g

∣∣∣∣
)

dμ < ε for n ≥ n1.

Since g ∈ LΦ and Φ satisfies the Δ2 condition near infinity,
∫
X
Φ(|g|) dμ < ∞, and

hence there is n2 such that∫
En

Φ(|g|) dμ < ε for n ≥ n2

by absolute continuity of the integral. For n > max{n1, n2}, convexity of Φ gives∫
En

Φ

(
|fn|
C

)
dμ ≤

∫
En

Φ

(
1

2

∣∣∣∣2fnC − g

∣∣∣∣+ 1

2
|g|

)
dμ

≤ 1

2

∫
En

Φ

(∣∣∣∣2fnC − g

∣∣∣∣
)

dμ+
1

2

∫
En

Φ(|g|) dμ < ε,

which contradicts (3.1). We proved that the family F satisfies the assumptions of
the de la Vallée Poussin theorem, and hence there is a Young function η such that
η(t)/t → ∞ as t → ∞ and

sup
f∈S

∫
X

η

(
Φ

(
|f |
C

))
dμ ≤ 1 .

Hence for all 0 
= f ∈ W and Ψ = η ◦ Φ,∫
X

Ψ

(
|f |

C‖f‖W

)
dμ ≤ 1,
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which proves boundedness of the embedding W ⊂ LΨ with the same constant
‖f‖Ψ ≤ C‖f‖W . It remains to observe that Ψ �� Φ. Indeed, for any k > 0,

lim
t→∞

Ψ(t)

Φ(kt)
= lim

t→∞

η(Φ(t))

Φ(t)

Φ(t)

Φ(kt)
= ∞

since Φ(t)/Φ(kt) is bounded away from 0 by the Δ2 condition. �
The following example shows that we cannot avoid the Δ2 condition in Theo-

rem 3.5. In particular it shows that if we do not assume the Δ2 condition, the
optimal embedding for the space W (X) in the category of Orlicz spaces can be
compact, different from the case of Corollary 3.2.

Theorem 3.6. There is a Banach space W of measurable functions on [0, 1] with
the following properties:

(a) Every bounded sequence in W has a subsequence convergent a.e.
(b) W � LΦ([0, 1]) for Φ(t) = 2

π (e
t − 1).

(c) There is no Young function Ψ �� Φ such that W ⊂ LΨ([0, 1]).

Remark 3.7. We do not even require in (c) that the embedding W ⊂ LΨ([0, 1]) is
bounded. We only assume that every function in W belongs to LΨ([0, 1]).

Proof. First we will define auxiliary functions that will be used to construct the
space W . Let

f(x) = − log(x+ x log2 x), x ∈ (0, 1] .

Note that f is strictly decreasing from ∞ to 0. We have∫ 1

0

Φ(|f(x)|) dx =
2

π

∫ 1

0

(
ef(x) − 1

)
dx =

2

π

(π
2
− 1

)
< 1

since the antiderivative of ef(x) = (x+ x log2 x)−1 is arctan log x. It is easy to see
that for any 0 < k < 1, ∫ 1

0

Φ

(
|f(x)|
k

)
dx = ∞

and hence ‖f‖Φ = 1. For n ≥ 2 we define

gn = cnχ[0, 1
n ]
, where cn = − log

(
π

2
+ arctan log

1

n

)
.

Observe that cn > 0 for n ≥ 2. Finally let fn = f + gn. We have∫ 1

0

Φ(|fn(x)|) dx =
2

π

(∫ 1/n

0

(
ef(x)ecn − 1

)
dx+

∫ 1

1/n

(
ef(x) − 1

)
dx

)

≤ 2

π

(
1− 1

n
+

π

2
− 1

)
< 1

and for 0 < k < 1,∫ 1

0

Φ

(
|fn(x)|

k

)
dx >

∫ 1

0

Φ

(
|f(x)|
k

)
dx = ∞ ,

so ‖fn‖Φ = 1. Note also that fn → f in LΦ as n → ∞. Indeed, for every ε > 0,

lim
n→∞

∫ 1

0

Φ

(
|fn − f |

ε

)
dx = lim

n→∞

2

π

1

n

(
ecn/ε − 1

)
= 0

by a simple application of the l’Hospital rule.
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Let f1 = f and define a Banach space W of measurable functions on [0, 1] as

W =

{
h =

∞∑
i=1

aifi : (ai)
∞
i=1 ∈ �1

}

with the norm

‖h‖W =
∥∥∥ ∞∑

i=1

aifi

∥∥∥
W

:=

∞∑
i=1

|ai| .

Since for every x ∈ (0, 1], fi(x) = f(x) for all sufficiently large i, the series∑∞
i=1 aifi(x) converges at every x ∈ (0, 1], and hence it defines a measurable func-

tion. Considering intervals (1/(n+ 1), 1/n], n = 1, 2, 3, . . . one can easily check by
induction that if

∑∞
i=1 aifi = 0 a.e., then ai = 0 for all i, so the coefficients ai are

uniquely determined and hence ‖ · ‖W is a well-defined norm. Now it is obvious
that W is isometric to �1 and hence W is a Banach space.

The partial sums of the series
∑∞

i=1 aifi form a Cauchy sequence in LΦ because

∥∥∥ �∑
i=k

aifi

∥∥∥
Φ
≤

�∑
i=k

|ai|‖fi‖Φ =

�∑
i=k

|ai|,

and hence the series converges in the Banach space LΦ. This also shows that W is
continuously embedded into LΦ,

‖h‖Φ =
∥∥∥ ∞∑

i=1

aifi

∥∥∥
Φ
≤

∞∑
i=1

|ai|‖fi‖Φ =
∞∑
i=1

|ai| = ‖h‖W ,

but what is more interesting, the embedding is compact, W � LΦ([0, 1]). Before
we prove this fact, observe that compactness of the embedding implies that every
bounded sequence in W has a subsequence that is convergent a.e., which is the
property (a).

Recall that fn → f in LΦ as n → ∞, and hence the set

F = {fi}∞i=1 ⊂ LΦ, where f1 = f,

is compact. Then also the family of functions

K = {x �→ tfi(x) : t ∈ [−M,M ], i ≥ 1} ⊂ LΦ

is compact. Indeed, K is the image of a continuous mapping defined on a compact
set

λ : [−M,M ]× F → LΦ, λ(t, fi) = tfi, λ([−M,M ]× F ) = K .

According to Mazur’s theorem [3, Theorem 4.8], the convex hull co(K) is relatively
compact in LΦ. With this introduction we can complete the proof of (b) as follows.

Let hn =
∑∞

i=1 a
n
i fi ∈ W be a bounded sequence and let h̃n =

∑k(n)
i=1 ani fi be

such that ‖hn − h̃n‖W < 1/n. The sequence h̃n is bounded, say

‖h̃n‖W =

k(n)∑
i=1

|ani | ≤ M .

Then

h̃n =

k(n)∑
i=1

|ani |
‖h̃n‖W

(
sgn (ani )‖h̃n‖W fi

)
∈ co(K),
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and hence h̃n has a subsequence convergent in LΦ. This also implies that hn has a
subsequence convergent in LΦ to the same limit.

We are left with the proof of (c). Suppose that there is Ψ �� Φ such that
W ⊂ LΨ. It follows from the closed graph theorem that the embedding is bounded.
Indeed, if hn → h in W and hn → g in LΨ, then from the boundedness of the
embedding into LΦ, hn → h in LΦ and hence g = h.

Since ‖fn‖W = 1, the sequence fn is bounded in LΨ, say ‖f‖Ψ ≤ C, so

(3.2)

∫ 1

0

Ψ

(
|fn(x)|

C

)
dx ≤ 1 .

Note that

inf
x∈[0,1/n]

fn(x) ≥ f(1/n) → ∞, as n → ∞,

and therefore the condition Ψ �� Φ implies that

An = inf
x∈[0,1/n]

Ψ
(

|fn(x)|
C

)
Φ(|fn(x)|)

→ ∞ as n → ∞.

Thus ∫ 1

0

Ψ

(
|fn(x)|

C

)
dx ≥ An

∫ 1/n

0

Φ(|fn(x)|) dx

=
2

π
An

∫ 1/n

0

(
efn(x) − 1

)
dx

=
2

π
An

(
1− 1

n

)
→ ∞,

which contradicts (3.2). The proof is complete. �

The following result shows what additional property of the space W (X) allows
us to remove the Δ2 condition from the statement of Theorem 3.5.

We say that a normed space W (X) of measurable functions has the truncation
property if for very f ∈ W (X) and t > 0, the truncated function at the level t,

ft(x) =

⎧⎪⎨
⎪⎩
t if f(x) ≥ t,

f(x) if −t ≤ f(x) ≤ t,

−t if f(x) ≤ −t,

belongs to W (X) and

‖ft‖W ≤ ‖f‖W .

Clearly the space W 1,A(Ω) has the truncation property, while the space W con-
structed in Theorem 3.6 has not. Thus the theorem below shows the implication
from (a) to (b) in Theorem 3.1.

Theorem 3.8. Let W (X) be a normed space with the truncation property on (X,μ),
μ(X) < ∞. If Φ is a Young function such that the embedding W (X) � LΦ(X) is
compact, then there is a Young function Ψ �� Φ such that the embedding W (X) ⊂
LΨ(X) is bounded.

Proof. Suppose that the embedding given by the identity mapping e : W (X) →
LΦ(X) is compact. We first claim that essentially bounded functions are dense in
the embedding range e(W (X)) ⊂ LΦ(X); i.e. e(W (X)∩L∞) is dense in e(W (X)).
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Indeed, let fn(x) be the truncation of f at the level t = n, as defined above. Then
fn ∈ W (X)∩L∞ and ‖fn‖W ≤ ‖f‖W . Hence {fn} is a bounded sequence in W (X)
and thus it has a subsequence convergent to some f0 ∈ LΦ(X). Since fn → f a.e.,
it easily follows that f0 = f . This also implies that e(W (X) ∩ L∞) is dense in the

closure e(W (X)) in LΦ(X).
Our second claim is that∫

X

Φ(k|f |) dμ < ∞, for every f ∈ e(W (X)) and k > 0.

Indeed, given f ∈ e(W (X)) and k > 0, by the first claim we can find a sequence
fn ∈ W (X)∩L∞ such that fn → f in LΦ(X). Let n be so large that ‖f − fn‖Φ <
(2k)−1. Then∫

X

Φ(k|f |) dμ ≤ 1

2

∫
X

Φ(2k|f − fn|) dμ+
1

2

∫
X

Φ(2k|fn|) dμ

≤ 1

2
‖2k(f − fn)‖Φ

∫
X

Φ

(
2k|f − fn|

‖2k(f − fn)‖Φ

)
dμ+

1

2

∫
X

Φ(2k|fn|) dμ

≤ 1

2
‖2k(f − fn)‖Φ +

1

2

∫
X

Φ(2k|fn|) dμ < ∞ .

We used here the inequality Φ(x) ≤ εΦ(x/ε), 0 < ε ≤ 1, along with the estimate
‖2k(f − fn)‖Φ < 1, and the last inequality follows from the fact that 2k|fn| is
bounded.

Consider the unit sphere in W (X):

S = {f ∈ W (X) : ‖f‖W = 1} .

Fix k > 0. We claim that the family

F = {Φ(k|f |) : f ∈ S}

is bounded and equi-integrable in L1(X). Let fn ∈ S be a sequence that is conver-

gent in LΦ(X) to some f ∈ LΦ(X), so f ∈ e(W (X)). Let 0 < ε ≤ 1 and let n be
so large that ‖f − fn‖Φ < ε(2k)−1 ≤ (2k)−1. Then the same argument as the one
used above shows that for any measurable set E ⊂ X,

(3.3)

∫
E

Φ(k|fn|) dμ ≤ 1

2
‖2k(f − fn)‖Φ +

1

2

∫
E

Φ(2k|f |) dμ .

Note that the last integral is finite, because Φ(2k|f |) is integrable by the second
claim. Suppose that F is not bounded in L1(X). Then there is a sequence fn ∈ S
such that ‖Φ(k|fn|)‖1 → ∞ as n → ∞. Since the sequence {fn} is bounded
in W (X), it has a subsequence (still denoted by {fn}) convergent to some f ∈
LΦ(X) (by compactness of the embedding). Hence (3.3) with E = X implies that
‖Φ(k|fn|)‖1 is bounded, which is a contradiction. Thus F is bounded in L1(X). A
similar argument along with the absolute continuity of the integral

∫
E
Φ(2k|f |) dμ

implies equi-integrability of F .
We proved that the family F satisfies the assumptions of the de la Vallée Poussin

theorem, and hence for each k > 0 there is a Young function ηk such that ηk(t)/t →
∞ as t → ∞ and

sup
f∈S

∫
X

ηk (Φ(k|f |)) dμ ≤ 1 .



3266 PIOTR HAJ�LASZ AND ZHUOMIN LIU

If follows that

sup
f∈S

∞∑
k=1

∫
X

2−kηk (Φ(k|f |)) dμ ≤ 1.

We can find a decreasing sequence 0 < ak ≤ 2−k of positive numbers convergent to
0 so fast that the series

Ψ(t) :=

∞∑
k=1

akηk(Φ(kt))

converges uniformly on compact sets and hence defines a continuous function. Since
Φ is convex, Ψ is a Young function. Moreover

sup
f∈S

∫
X

Ψ(|f |) dμ ≤ 1,

so ‖f‖Ψ ≤ ‖f‖W and

lim
t→∞

Ψ(t)

Φ(kt)
= ∞

for all k > 0. The proof is complete. �
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The authors wish to thank Jan Malý for providing the reference [8]. We also wish
to express our deepest gratitude to the referee, whose comments led to a substantial
improvement of the main result of the paper.

References

[1] Adams, R. A., Fournier, J. J. F.: Sobolev spaces. Second edition. Pure and Applied
Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003. MR2424078
(2009e:46025)

[2] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J.
45 (1996), 39–65. MR1406683 (97h:46044)

[3] Conway, J. B.: A course in functional analysis. Second edition. Graduate Texts in Mathe-

matics, 96. Springer-Verlag, New York, 1990. MR1070713 (91e:46001)
[4] Dellacherie, C., Meyer, P.-A.: Probabilities and potential. North-Holland Mathemat-

ics Studies, 29. North-Holland Publishing Co., Amsterdam-New York, 1978. MR521810
(80b:60004)

[5] Haj�lasz, P., Koskela, P.: Isoperimetric inequalities and imbedding theorems in irregular
domains. J. London Math. Soc. 58 (1998), 425–450. MR1668136 (99m:46079)

[6] Ka�lamajska, A.: On compactness of embedding for Sobolev spaces defined on metric spaces.
Ann. Acad. Sci. Fenn. Math. 24 (1999), 123–132. MR1677969 (2000b:46061)

[7] Kerman, R., Pick, L.: Compactness of Sobolev imbeddings involving rearrangement-
invariant norms. Studia Math. 186 (2008), 127–160. MR2407972 (2009g:46061)
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