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Abstract

There are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embed-
ding theorem holds in Ω , in any of all the possible cases, then Ω satisfies the measure density condition.
The second main result, Theorem 5, provides several characterizations of the Wm,p-extension domains for
1 < p < ∞. As a corollary we prove that the property of being a W1,p-extension domain, 1 < p � ∞, is
invariant under bi-Lipschitz mappings, Theorem 8.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we deal with various properties of the Sobolev space Wm,p(Ω) of functions on a
domain Ω ⊂ R

n whose distributional partial derivatives of all orders up to m are Lp-integrable.
This is a Banach space with the norm ‖u‖p,m;Ω = ∑

|α|�m ‖Dαu‖p;Ω. Here and in what follows
we write ‖f ‖p;Ω = ‖f ‖Lp(Ω). There are two main results in the paper. In the first one, Theo-
rem 1, we prove that if the Sobolev embedding theorem holds in Ω , in any of all the possible
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cases, then Ω satisfies the measure density condition, i.e. there exists a constant c > 0 such that
for all x ∈ Ω and all 0 < r � 1 ∣∣B(x, r) ∩ Ω

∣∣ � crn. (1)

(Note that sets satisfying such a condition are sometimes called in the literature regular sets or
n-sets.) We use the notation |A| for the Lebesgue measure of a set A. In particular, if Ω is a
Wm,p-extension domain, i.e. there is a bounded linear operator

E :Wm,p(Ω) → Wm,p
(
R

n
)

(2)

such that Eu|Ω = u for each u ∈ Wm,p(Ω), then the Sobolev embedding is satisfied in the space
Wm,p(Ω) and hence Ω satisfies the measure density condition. The fact that Sobolev extension
domains satisfy the measure density condition has been known previously for W 1,p-extension
domains, where p > n − 1, see [14] and references therein. Notice that the measure density
condition along with the Lebesgue differentiation theorem imply that the boundary of a W 1,p-
extension domain is necessarily of volume zero. This answers the separate inquiries by Markus
Biegert, Dagmar Medkova and Bill Ziemer.

Theorem 1 together with a recent result of Shvartsman [23] (see also [22,24]) leads to the
second main result, Theorem 5, which provides several characterizations of the Wm,p-extension
domains for 1 < p < ∞. In Theorem 7 we provide a similar characterization for m = 1 and
p = ∞. As a particular application of these characterizations we prove that the property of being
a W 1,p-extension domain, 1 < p � ∞, is invariant under bi-Lipschitz mappings (Theorem 8),
and that Ω is a Wm,p-extension domain for p > 1 if and only if the trace operator

T :Wm,p
(
R

n
) → Wm,p(Ω), T u = u|Ω (3)

is onto. The last result is a far reaching generalization of [9, Theorem 9].
See [10,15,17] and references therein for known results about Sobolev extension domains.
Notation used in the paper is standard. We write χE for the characteristic function of a set E

and ωn is the measure of the unit ball in R
n. The symbol c will be used to designate a general

constant whose value may change even within a single string of estimates. To show explicit
dependence of c on parameters we write e.g. c = c(n,m). We write ∇j u to denote the vector of
all partial derivatives of u of order j . As usual, ‖ · ‖∞ stands for the supremum norm.

2. Main results

In this section we state our results and prove all of them but Theorems 1 and 2.

Theorem 1. Let Ω ⊂ R
n be a domain, p � 1, and m a positive integer.

(a) If mp < n and Wm,p(Ω) ⊂ Lp∗
(Ω), where p∗ = np/(n − mp), then Ω satisfies (1).

(b) If mp = n, p > 1, and there are constants A, s,M > 0 such that for every x ∈ Ω , every
0 < r � 1 and every u ∈ Wm,p(Ω)

inf
γ∈R

∫
B(x,r)∩Ω

exp

(
A|u − γ |
‖u‖m,p;Ω

)s

� Mrn, (4)

then Ω satisfies (1).
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(c) If m = n, p = 1 and there is a constant M > 0 such that

∣∣u(x) − u(y)
∣∣ � M‖u‖m,p;Ω for u ∈ Wm,p(Ω),

whenever x, y ∈ Ω , |x − y| � 1, then Ω satisfies (1).
(d) Let mp > n and let k be the smallest integer such that kp > n. Then m = k + j , j � 0. We

have three cases:
(α) If n > (k − 1)p and there is a constant M > 0 such that

∣∣∇j u(x) − ∇j u(y)
∣∣ � M|x − y|k−n/p‖u‖m,p;Ω for u ∈ Wm,p(Ω),

whenever x, y ∈ Ω , |x − y| � 1, then Ω satisfies (1).
(β) If n = k − 1, p = 1 and there is M > 0 such that

∣∣∇j u(x) − ∇j u(y)
∣∣ � M|x − y|‖u‖m,p;Ω for u ∈ Wm,p(Ω),

whenever x, y ∈ Ω , |x − y| � 1, then Ω satisfies (1).
(γ ) If n = (k − 1)p, p > 1 and there are constant A, s,M > 0 and a multi-index α, |α| =

j + 1 such that for every x ∈ Ω , every 0 < r � 1 and every u ∈ Wm,p(Ω)

inf
γ∈R

∫
B(x,r)∩Ω

exp

(
A|Dαu − γ |
‖u‖m,p;Ω

)s

� Mrn, (5)

then Ω satisfies (1).

The above theorem together with the corresponding Sobolev-type embeddings in R
n give the

following result.

Theorem 2. If Ω ⊂ R
n is a domain, 1 � p < ∞ and integer m � 1 are such that the trace

operator (3) is surjective, then Ω satisfies the measure density condition (1). In particular the
measure density condition is satisfied by all Wm,p-extension domains.

Calderón [4] (see also [5]) characterized the Sobolev space Wm,p(Rn), 1 < p � ∞, in terms
of the fractional sharp maximal function. Let Pm = Pm(Rn), where m is a nonnegative integer,
be the linear space of polynomials on R

n of degree less than or equal to m. For f ∈ L
p

loc(R
n),

x ∈ R
n and r > 0 we set

Em(f ;x, r) = inf
P∈Pm−1

1

|B(x, r)|
∫

B(x,r)

|f − P |dy,

and define the fractional sharp maximal function by

f #
m(x) = sup

r>0
r−mEm(f ;x, r).

The result of Calderón reads as follows.
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Proposition 3. Let 1 < p � ∞ and m be a positive integer. Then f ∈ Wm,p(Rn) if and only if
f ∈ Lp(Rn) and f #

m ∈ Lp(Rn). Moreover

‖f ‖m,p;Rn ≈ ‖f ‖p;Rn + ∥∥f #
m

∥∥
p;Rn ,

up to a constant depending on n, m and p only.

We write A ≈ B if there is a constant c � 1 such that c−1B � A � cB .
Shvartsman [23] used the fractional sharp maximal function to characterize the space of traces

of Wm,p(Rn) functions on a measurable set E ⊂ R
n satisfying the measure density condition

∣∣E ∩ B(x, r)
∣∣ � crn for x ∈ E, 0 < r � 1. (6)

Recall that if (A,‖ · ‖A) is a Banach space of measurable functions on R
n and E ⊂ R

n is a
measurable set of positive Lebesgue measure, then A|E is the trace space defined as

A|E = {f :E → R: there exists F ∈A such that F |E = f a.e.}.

This space is equipped with the norm

‖f ‖A|E = inf
{‖F‖A: F ∈A, F |E = f a.e.

}
.

Denoting the trace operator by T F = F |E we see that the space A|E is isomorphic to the
quotient space A/kerT . The above construction applies, in particular, to the Sobolev space
A = Wm,p(Rn).

For a set E ⊂ R
n of positive Lebesgue measure denote

Cm,p(E) = {
f ∈ Lp(E): f #

m,E ∈ Lp(E)
}
, ‖f ‖Cm,p(E) = ‖f ‖p;E + ∥∥f #

m,E

∥∥
p;E,

where

f #
m,E(x) = sup

r>0
r−mEm,E(f ;x, r),

Em,E(f ;x, r) = inf
P∈Pm−1

1

|B(x, r)|
∫

B(x,r)∩E

|f − P |dy.

With this notation Calderón’s result states that

Cm,p
(
R

n
) = Wm,p

(
R

n
)

provided 1 < p � ∞ and m is a positive integer.
Shvartsman [23] generalized an earlier result of Rychkov [22] and proved the following char-

acterization of traces of Wm,p-functions.
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Proposition 4. Let E ⊂ R
n be a measurable set satisfying the measure density condition (6).

Then

Wm,p
(
R

n
)∣∣

E
= Cm,p(E)

as sets and the norms are equivalent. Moreover there is a bounded linear extension operator

E :Cm,p(E) → Cm,p
(
R

n
) = Wm,p

(
R

n
)
.

Actually Shvartsman constructed an extension operator explicitly as a variant of the Whitney–
Jones extension.

With the help of this result we can prove the second main result of the paper which reads as
follows.

Theorem 5. Let Ω ⊂ R
n be an arbitrary domain, 1 < p < ∞ and m a positive integer. Then the

following conditions are equivalent.

(a) For every f ∈ Wm,p(Ω) there exists F ∈ Wm,p(Rn) such that F |Ω = f a.e.
(b) The trace operator (3) is surjective.
(c) There exists a bounded linear extension operator (2).
(d) Ω satisfies the measure density condition (1) and Cm,p(Ω) = Wm,p(Ω) as sets and the

norms are equivalent.

Proof. The equivalence between (a) and (b) is obvious. The implication from (d) to (c) follows
from Proposition 4 and the implication from (c) to (b) is obvious again. Finally the implication
from (b) to (d) is a direct consequence of Theorem 2 and Proposition 4. The proof is com-
plete. �

Note that the equivalence between the conditions (b) and (c) is obvious when p = 2. Indeed,
it is a direct consequence of the Hilbert structure of the space Wm,2. Namely, if the trace operator
is surjective, then T |(kerT )⊥ : (kerT )⊥ → Wm,2(Ω) is an isomorphism and hence

E = (T |(kerT )⊥)−1 :Wm,2(Ω) → (kerT )⊥ ⊂ Wm,2(
R

n
)

defines a bounded linear extension operator.
This argument cannot be applied for p �= 2 as not every subspace of Wm,p for p �= 2 is

complemented. Recall that a closed subspace Y of a Banach space X is complemented if there is
another closed subspace Z of X such that X = Y ⊕ Z. That is, Y ∩ Z = {0} and every element
x ∈ X can be written as x = y + z, with y ∈ Y and z ∈ Z. The following result is a standard
exercise in functional analysis and is left to the reader.

Proposition 6. Let Ω ⊂ R
n be a domain such that, for some 1 � p � ∞ and a positive in-

teger m, every u ∈ Wm,p(Ω) admits an extension to Wm,p(Rn). Then there exists a bounded
linear extension operator (2) if and only if the subspace kerT is complemented in Wm,p(Rn).

Note that, for 1 < p < ∞, the space Wm,p(Rn) is isomorphic to Lp(Rn) [26, Chapter 5].
Accordingly, the equivalence between the conditions (b) and (c) is not obvious for p �= 2 be-
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cause not every subspace of Lp(Rn), p �= 2, is complemented. Actually, the property of being
complemented is rather rare, see e.g. [2,12,13,16,20,21,25].

Question 1. Are the conditions (b) and (c) from Theorem 5 equivalent for p = 1?

In this context, a particularly relevant result is due to Peetre [18]. According to a theorem
of Gagliardo [6], there is a bounded and surjective trace operator T :W 1,1(Rn) → L1(Rn−1),
and hence every u ∈ L1(Rn−1) admits an extension to W 1,1(Rn). However, as was proven by
Peetre [18] (cf. [19]), there is no bounded linear extension operator E :L1(Rn−1) → W 1,1(Rn).

For an arbitrary closed set F ⊂ R
n, let Lip∞(F ) = Lip(F )∩L∞(F ) be the space of bounded

Lipschitz functions on F . It is a Banach space with the norm

‖f ‖L = ‖f ‖∞ + Lip(f ) = ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
|x − y| .

Every bounded Lipschitz function on a domain Ω ⊂ R
n uniquely extends to a bounded Lipschitz

function on the closure, so we can consider Lip∞(Ω) to be equal to Lip∞(Ω). It is well known
that W 1,∞(Rn) = Lip∞(Rn) and for an arbitrary domain Ω , Lip∞(Ω) ⊂ W 1,∞(Ω) is a linear
subspace.

We say that a domain Ω ⊂ R
n is uniformly locally quasiconvex if there are constants C > 0

and R > 0 such that for every x, y ∈ Ω satisfying |x − y| < R there is a rectifiable curve γ

connecting x and y in Ω such that the length of γ is bounded from above by C|x − y|.
For p = ∞ and m = 1 we have the following counterpart of Theorem 5.

Theorem 7. Let Ω ⊂ R
n be an arbitrary domain. Then the following conditions are equivalent:

(a) For every u ∈ W 1,∞(Ω) there exists v ∈ W 1,∞(Rn), such that v|Ω = u.
(b) The trace operator T :W 1,∞(Rn) → W 1,∞(Ω) is surjective.
(c) There exists a bounded linear extension operator E :W 1,∞(Ω) → W 1,∞(Rn).
(d) W 1,∞(Ω) = Lip∞(Ω).
(e) Ω is uniformly locally quasiconvex.

As it follows from the proof, it is not only that an extension operator exists, but such an
operator can be constructed explicitly (Whitney’s extension).

Note that the measure density condition does not appear in Theorem 7. In fact, there are obvi-
ous examples of quasiconvex domains that do not satisfy that condition. Hence the existence of a
bounded extension operator for p = ∞ does not imply the measure density condition, differently
as in the case 1 � p < ∞.

If p = ∞ and m > 1 the situation is more complicated because it was shown by Zobin [30],
that local uniform quasiconvexity is not necessary for the existence of an extension operator.

Proof of Theorem 7. Equivalence of the conditions (a) and (b) and the implication from (c) to
(b) are obvious. Now we prove the implication from (b) to (d). As a restriction of a Lipschitz
function to Ω is Lipschitz we conclude that

T :W 1,∞(
R

n
) → Lip∞(Ω) ⊂ W 1,∞(Ω).
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Accordingly, surjectivity of the trace operator implies that Lip∞(Ω) = W 1,∞(Ω) as sets, and
hence the norms are equivalent by the Banach open mapping theorem. To prove the implication
from (d) to (c) we just recall the well-known fact that for an arbitrary closed set F , the Whit-
ney extension operator defines a bounded linear extension operator E : Lip∞(F ) → Lip∞(Rn).
(A familiar way to extend a Lipschitz function f : Rn ⊃ F → R to a Lipschitz function on R

n

is by way of McShane’s formula f̃ (x) = infy∈E{f (y) + Lip(f )|x − y|}. Note, however, that
this does not give a linear extension.) To prove the implication from (e) to (d) we need to show
that W 1,∞(Ω) ⊂ Lip∞(Ω). Let f ∈ W 1,∞(Ω). If |x − y| < R and γ is as in the definition of a
uniformly locally quasiconvex domain, then

∣∣f (x) − f (y)
∣∣ �

∫
γ

‖∇f ‖∞ � C‖∇f ‖∞|x − y|.

If |x − y| � R, then |f (x) − f (y)| � 2‖f ‖∞R−1|x − y| and hence f ∈ Lip∞(Ω). To complete
the proof of the theorem, it suffices to verify the implication from (c) to (e). For x, y ∈ Ω, let
ϕx(y) be the infimum of lengths of curves that join x and y in Ω . Note that ϕ̃x = min{ϕx,1}
satisfies ϕ̃x ∈ W 1,∞(Ω), ‖∇ϕ̃x‖∞ � 1. Now (c) yields that {E ϕ̃x}x∈Ω is a bounded family of
functions in Lip∞(Rn) and hence

ϕ̃x(y) = ∣∣ϕ̃x(x) − ϕ̃x(y)
∣∣ = ∣∣E ϕ̃x(x) − E ϕ̃x(y)

∣∣ � C|x − y|,

whenever x, y ∈ Ω . Now if |x − y| � R = C−1, then 1 � C|x − y| � ϕ̃x(y) = ϕx(y) and hence
(e) follows. The proof is complete. �

If 1 < p � ∞ and E ⊂ R
n is a measurable set satisfying the measure density condition (1),

then the space C1,p(E) is equivalent to the space M1,p(E) which is defined as follows:

M1,p(E) = {
f ∈ Lp(E): ∃0 � g ∈ Lp(E)

∣∣f (x) − f (y)
∣∣ � |x − y|(g(x) + g(y)

)
a.e.

}
,

‖f ‖M1,p(E) = ‖f ‖p;E + inf
g

‖g‖p;E,

where the infimum is taken over the class of all functions g that appear in the definition of the
space M1,p(E). For a proof see [8, Theorem 3.4] (the theorem is true in the general setting of
metric spaces with doubling measures).

In particular, if m = 1 and 1 < p < ∞, then there is one more condition equivalent to condi-
tions (a)–(d) of Theorem 5.

(e) Ω satisfies the measure density condition (1) and W 1,p(Ω) = M1,p(Ω) as sets and the
norms are equivalent.

Theorem 8. Let Ω,G ⊂ R
n be two domains that are bi-Lipschitz homeomorphic. Then Ω is a

W 1,p-extension domain for some 1 < p � ∞ if and only if G is a W 1,p-extension domain.

If p = ∞, the claim easily follows from Theorem 7, but if 1 < p < ∞ the theorem is far from
being obvious. If we knew that there were a bi-Lipschitz homeomorphism T : R

n → R
n such that

T (Ω) = G, the claim would easily follow even for p = 1. However, in general, a bi-Lipschitz
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homeomorphism T :Ω → G cannot be extended beyond Ω (cf. [28,29]), and accordingly, we do
not know the answer to the following question.

Question 2. Is Theorem 8 true for p = 1?

Proof of Theorem 8. We may assume that 1 < p < ∞. Let T :Ω → G be a bi-Lipschitz
homeomorphism. Suppose that one of the domains, say Ω , is a W 1,p-extension domain. By The-
orem 5(e), Ω satisfies (1) and W 1,p(Ω) = M1,p(Ω). Now G satisfies (1) as bi-Lipschitz homeo-
morphisms preserve the measure density condition. Moreover, the transformation Φ(u) = u ◦ T

induces isomorphisms of spaces, Φ :W 1,p(G) → W 1,p(Ω), and Φ :M1,p(G) → M1,p(Ω).
Therefore W 1,p(G) = M1,p(G) and again we can apply Theorem 5 to construct an extension
for W 1,p(G). The proof is complete. �
3. Proof of Theorem 2

If the trace operator (3) is surjective, then the space Wm,p(Ω) is isomorphic to Wm,p(Rn)/

kerT and hence there is c > 0 such that for every u ∈ Wm,p(Ω) there is v ∈ Wm,p(Rn) satisfying
v|Ω = u and

‖v‖m,p;Rn � c‖u‖m,p;Ω.

If mp < n, then Wm,p(Rn) ⊂ Lp∗
(Rn) and hence

‖u‖p∗;Ω � ‖v‖p∗;Rn � c‖v‖m,p;Rn � c′‖u‖m,p;Ω.

This proves the embedding Wm,p(Ω) ⊂ Lp∗
(Ω) and hence the measure density condition by

Theorem 1.
If mp = n, p > 1, then the gradient of a Wm,p(Rn) function belongs to Ln(Rn) by the Sobolev

embedding, ‖∇v‖n,Rn � c‖v‖m,p;Rn � c′‖u‖m,p;Ω. Let us recall the inequality of Judovič [11]
and Trudinger [27].

Lemma 9. There exist positive constants c1(n) and c2(n) such that if u ∈ W 1,n(B), where
B ⊂ R

n is an arbitrary ball, then

∫
B

exp

(
c1|u − uB |
‖∇u‖n;B

)n/(n−1)

� c2|B|.

For a proof see e.g. [1,7,27]. Now for every ball B ⊂ R
n we have

c2|B| �
∫
B

exp

(
c1|v − vB |
‖∇v‖n;B

)n/(n−1)

�
∫

B∩Ω

exp

(
c′|u − vB |
‖u‖m,p;Ω

)n/(n−1)

� inf
γ∈R

∫
exp

(
c′|u − γ |
‖u‖m,p;Ω

)n/(n−1)

,

B∩Ω
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which implies the condition (b) of Theorem 1 and hence the measure density condition.
If m, n and p are such as in the cases (c), (d)(α), (d)(β) of Theorem 1, then the measure

density condition follows from Theorem 1 and the corresponding embedding for R
n, see [1,

Lemma 5.8, Theorem 5.4C′,C′′] (or part II of Theorem 4.12 in the second edition of the book).
If m, n and p are as in the case (d)(γ ) of Theorem 1, then the proof of the measure density

condition is similar to that in the case mp = n, p > 1. We leave details to the reader. The proof
is complete. �
Remark. It follows from Theorem 5.4C′′ in [1] that in the case (d)(γ ), ∇j u is Hölder continuous
with any exponent 0 < λ < 1 for u ∈ Wm,p(Ω), but this embedding seems too weak to guarantee
the measure density condition. Actually in this case stronger embedding theorems of Brezis and
Wainger [3] hold, and it would be interesting to see if embeddings of this type are sufficient for
the measure density condition.

4. Proof of Theorem 1

We will need the following well-known and easy to prove result.

Lemma 10. Given 0 < a < b, there is a function ϕa,b ∈ C∞
0 (Rn) such that:

1. 0 � ϕa,b(x) � 1 for x ∈ R
n.

2. ϕa,b(x) = 1 if |x| � a, ϕa,b(x) = 0 if |x| � b.
3. For every positive integer m there is a constant c = c(n,m) such that ‖Dαϕa,b‖∞ �

c|b − a|−|α| for all multi-indices α with |α| � m.

Proof. Choose ψ ∈ C∞
0 (B(0,1)) such that ψ � 0,

∫
ψ dx = 1, and define ψε(x) = ε−nψ(x/ε),

ϕa,b(x) = (χ
B(0, a+b

2 )
∗ ψb−a

2
)(x).

Here χ
B(0, a+b

2 )
is the characteristic function of the ball B(0, a+b

2 ). The claim follows. �
In the proof of the theorem, we will frequently use the following notation. For x ∈ Ω and

0 < r � 1, there exists a unique 0 < r̃ < r such that

∣∣B(x, r̃) ∩ Ω
∣∣ = ∣∣A(r, r̃) ∩ Ω

∣∣ = 1

2

∣∣B(x, r) ∩ Ω
∣∣, (7)

where

A(r, r̃) = B(x, r) \ B(x, r̃).

Case mp < n. The following lemma is a crucial step in the proof.

Lemma 11. There is a constant c > 0 such that

r − r̃ � c
∣∣B(x, r) ∩ Ω

∣∣1/n (8)

for all x ∈ Ω and all 0 < r � 1.
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Proof. For x ∈ Ω and 0 < r � 1 define a function in Ω by the formula

u(y) = ϕr̃,r (y − x) for y ∈ Ω ,

where the function ϕr̃,r is as in Lemma 10. According to the closed graph theorem, the inclusion
Wm,p(Ω) ⊂ Lp∗

(Ω) is a bounded operator and hence there is a constant c > 0 (independent
of u) such that ‖u‖p∗;Ω � c‖u‖m,p;Ω . This inequality yields

∣∣B(x, r̃) ∩ Ω
∣∣1/p∗

� c

(∣∣B(x, r) ∩ Ω
∣∣1/p +

m∑
k=1

(r − r̃)−k
∣∣A(r, r̃) ∩ Ω

∣∣1/p

)

� c′|B(x, r̃) ∩ Ω|1/p

(r − r̃)m
,

and since p∗ = np/(n − mp), the lemma follows easily. �
To prove the case mp < n of the theorem, let x ∈ Ω and 0 < r � 1. Define a sequence r0 >

r1 > r2 > · · · > 0 by induction:

r0 = r, rj+1 = r̃j .

Clearly |B(x, rj ) ∩ Ω| = 2−j |B(x, r) ∩ Ω|. Hence rj → 0 and

rj − rj+1 � c2−j/n
∣∣B(x, r) ∩ Ω

∣∣1/n

by (8). This in turn yields

r =
∞∑

j=0

(rj − rj+1) � c

( ∞∑
j=0

2−j/n

)∣∣B(x, r) ∩ Ω
∣∣1/n � c′∣∣B(x, r) ∩ Ω

∣∣1/n
,

which implies the measure density condition (1).

Case mp = n, p > 1. For x ∈ Ω and 0 < r � 1, we choose 0 < ˜̃r < r̃ < r such that

∣∣B(x, ˜̃r) ∩ Ω
∣∣ = 1

2

∣∣B(x, r̃) ∩ Ω
∣∣ = 1

4

∣∣B(x, r) ∩ Ω
∣∣. (9)

Note that ∣∣A(r̃, ˜̃r) ∩ Ω
∣∣ = ∣∣B(x, ˜̃r) ∩ Ω

∣∣ and
∣∣A(r, r̃) ∩ Ω

∣∣ = ∣∣B(x, r̃) ∩ Ω
∣∣. (10)

Now we define a function in Ω by the formula

u(y) = ϕ ˜̃r,r̃ (y − x) for y ∈ Ω,

where ϕ ˜̃r,r̃ is the function from Lemma 10. We have

‖u‖m,p;Ω � c(r̃ − ˜̃r)−m
∣∣B(x, r̃) ∩ Ω

∣∣1/p
.
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Obviously, for each γ ∈ R, inequality |u − γ | � 1/2 is satisfied on at least one of the sets
B(x, ˜̃r) ∩ Ω and A(r, r̃) ∩ Ω . Hence inequality (4) yields

min
{∣∣B(x, ˜̃r) ∩ Ω

∣∣, ∣∣A(r, r̃) ∩ Ω
∣∣} exp

(
c(r̃ − ˜̃r)m∣∣B(x, r̃) ∩ Ω

∣∣−1/p)s � Mrn.

After elementary calculations we obtain

(r̃ − ˜̃r)m � c
∣∣B(x, r̃) ∩ Ω

∣∣1/p
(

ln

(
2Mrn

|B(x, r̃) ∩ Ω|
))1/s

.

We can assume that 2M > ωn, where ωn is volume of the unit ball (otherwise we replace M by
a larger constant). This condition is needed to ensure positivity of the logarithm. Since mp = n

the above estimate proves the following lemma.

Lemma 12. There exist constants c1 = c1(m,n,p,α) > 0 and c2 = c2(M,n) > ωn, such that for
every x ∈ Ω and 0 < r � 1 we have

r̃ − ˜̃r � c1
∣∣B(x, r̃) ∩ Ω

∣∣1/n
(

ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/sm

. (11)

Lemma 13. If the measure density condition (1) holds for all x ∈ Ω and all r � 1 such that
r � 10r̃ , where r̃ is defined by (9), then (1) holds for all x ∈ Ω and all r � 1.1

Proof. Let r � 1. If Ω ⊂ B(x, r), then∣∣B(x, r) ∩ Ω
∣∣ = |Ω| � |Ω|rn

and hence (1) is satisfied. If r � 10r̃ , then (1) is also satisfied. Thus we may assume that Ω \
B(x, r) �= ∅ and r > 10r̃ . Take x′ ∈ B(x, r) ∩ Ω such that |x − x′| = r̃ + r/5. Such an x′ exists
because Ω \ B(x, r) �= ∅ and Ω is connected. Let R = 2r̃ + r/5. We have

B(x, r̃) ⊂ B(x′,R) ⊂ B(x, r)

and

B(x′,R/2) ⊂ B(x′, r/5) ⊂ A(r, r̃).

Hence B(x, r̃) and B(x′,R/2) are disjoint subsets of B(x′,R) and thus

∣∣B(x′,R/2) ∩ Ω
∣∣ � 1

2

(∣∣A(r, r̃) ∩ Ω
∣∣ + ∣∣B(x′,R/2) ∩ Ω

∣∣)
= 1

2

(∣∣B(x, r̃) ∩ Ω
∣∣ + ∣∣B(x′,R/2) ∩ Ω

∣∣)
� 1

2

∣∣B(x′,R) ∩ Ω
∣∣.

1 Perhaps with a different constant c.
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This, in turn, implies that R̃ � R/2, and so the measure density condition is satisfied for the ball
B(x′,R). Hence

∣∣B(x, r) ∩ Ω
∣∣ �

∣∣B(x′,R) ∩ Ω
∣∣ � cRn � c5−nrn.

The proof of the lemma is complete. �
We are ready now to complete the proof of the theorem in the case mp = n, p > 1. We need to

prove (1) for all x ∈ Ω and all 0 < r � 1. According to Lemma 13 we may assume that r � 10r̃ .
Define a sequence by setting

r0 = r, rj+1 = r̃j .

Lemma 12 yields

rj+1 − rj+2 � c1
∣∣B(x, rj+1) ∩ Ω

∣∣1/n
(

ln

(
c2r

n
j

|B(x, rj+1) ∩ Ω|
))1/sm

.

Since

∣∣B(x, rj+1) ∩ Ω
∣∣ = 2−j

∣∣B(x, r̃) ∩ Ω
∣∣, (12)

we conclude that

rj+1 − rj+2 � c12−j/n
∣∣B(x, r̃) ∩ Ω

∣∣1/n
(

ln

(
c22j rn

j

|B(x, r̃) ∩ Ω|
))1/sm

.

It follows from (12) that rj → 0 as j → ∞, and hence

r̃ =
∞∑

j=0

(rj+1 − rj+2) � c1
∣∣B(x, r̃) ∩ Ω

∣∣1/n
∞∑

j=0

2−j/n

(
ln

(
c22j rn

|B(x, r̃) ∩ Ω|
))1/sm

.

The sum on the right-hand side is bounded (up to a constant factor depending on sm only) by

∞∑
j=0

2−j/nj1/sm(ln 2)1/sm +
( ∞∑

j=0

2−j/n

)(
ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/sm

.

The two sums in the above expression converge to some constants depending on n, m and s only,
and hence we obtain

r̃ � c
∣∣B(x, r̃) ∩ Ω

∣∣1/n
[

1 +
(

ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/sm]

. (13)

Write

∣∣B(x, r̃) ∩ Ω
∣∣ = εr̃n.
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Since ∣∣B(x, r) ∩ Ω
∣∣ = 2

∣∣B(x, r̃) ∩ Ω
∣∣ = 2εr̃n � 2 · 10−nεrn,

it suffices to show that ε is bounded from below by some positive constant depending on m, n,
p, α, M and s only. Inequality (13) gives

cε1/n
(
1 + (

ln
(
c210nε−1))1/sm)

� 1.

Now it suffices to observe that the expression on the left-hand side converges to 0 if ε → 0, and
since it is bounded from below by a positive constant, ε must also be bounded from below by a
positive constant. This ends the proof of the theorem in the given case.

Case m = n, p = 1. Let ϕ ∈ C∞
0 (B(0,1)), ϕ(0) = 1 and let ϕr(x) = ϕ(x/r). For x ∈ Ω and

0 < r � 1 we define a function in Ω by setting

u(y) = ϕr(y − x) for y ∈ Ω .

If Ω ⊂ B(x, r), then |B(x, r) ∩ Ω| = |Ω| � |Ω|rn and the condition (1) follows. If Ω \
B(x, r) �= ∅, then there is y ∈ B(x, r) ∩ Ω such that u(y) = 0 and hence

1 = ∣∣u(x) − u(y)
∣∣ � M‖u‖n,1;Ω � MCr−n

∣∣B(x, r) ∩ Ω
∣∣.

This, in turn, implies the measure density condition.

Case mp > n. In the proofs for the subcases (d)(α) and (d)(β) we will need the following
auxiliary results.

Lemma 14. Let ϕ ∈ C∞
0 (−1,1), ϕ(0) = 1. Then for every nonnegative integer j there is x ∈

(−1,1) such that

ϕ(j)(x) � 1 (j th derivative).

Proof. By induction. �
Corollary 15. Let ϕ ∈ C∞

0 (B(0,1)), ϕ(0) = 1, ϕr(x) = ϕ(x/r). Then for every nonnegative
integer j there is a point x ∈ B(0, r) on the x1-axis such that

∂jϕr

∂x
j

1

(x) � r−j .

Proof. Direct application of the lemma. �
Let ϕ ∈ C∞

0 (B(0,1)) be radially symmetric, and such that ϕ ≡ 1 on B(0,1/2). We set ϕr(x) =
ϕ(x/r). For x ∈ Ω and 0 < r � 1 we define a function in Ω by setting

u(y) = ϕr(y − x) for y ∈ Ω .
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The fact that ϕ is radially symmetric and Corollary 15 yield that after a suitable rotation of the
coordinate system there is y ∈ B(x, r) ∩ Ω such that

∣∣∣∣∂ju

∂x
j

1

(y) − ∂ju

∂x
j

1

(x)

∣∣∣∣ � r−j .

This is obvious when j = 0 (because u(x) = 1 and hence we may take y with u(y) = 0) and it
follows from the corollary when j > 0 (because ∂ju/∂x1

j (x) = 0).

Case (α). We have

r−j � M|x − y|k−n/p‖u‖m,p;Ω � Mrk−n/pcr−m
∣∣B(x, r) ∩ Ω

∣∣1/p

and the claim follows easily.

Case (β). We may apply the same argument as in Case (α).

Case (γ ). Proof is similar to that for Case (b), but more difficult. The main difference is in the
construction of test functions.

For x ∈ Ω and 0 < r � 1 we choose 0 < ˜̃r < r̃ < r such that

∣∣B(x, ˜̃r) ∩ Ω
∣∣ = 1

2

∣∣B(x, r̃) ∩ Ω
∣∣ = 1

4

∣∣B(x, r) ∩ Ω
∣∣.

Once we prove the following lemma, the remaining part of the proof is the same as in the case
mp = n, p > 1.

Lemma 16. There exist constants c1 > 0 and c2 > ωn, such that for every x ∈ Ω and 0 < r � 1
we have

r̃ − ˜̃r � c1
∣∣B(x, r̃) ∩ Ω

∣∣1/n
(

ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))p/sn

.

Proof. First we need to construct appropriate functions. Let ψ ∈ C∞
0 (B(0,1)) be such that

ψ � 0,
∫

ψ dx = 1 and set ψε(x) = ε−nψ(x/ε). For 0 < a < b � 1 we define

fa,b(x) = xα

α! χB(0, a+b
2 )

(x)

and

ϕa,b,α(x) = (fa,b ∗ ψb−a
2

)(x).

Clearly ϕa,b,α ∈ C∞
0 (B(0, b)) and

ϕa,b,α(x) = (f ∗ ψb−a
2

)(x) for |x| � a,

where f (x) = xα/α! This implies that Dαϕa,b,α(x) = 1 for x ∈ B(0, a). For |β| � m we have
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∣∣Dβϕa,b,α

∣∣ = ∣∣fa,b ∗ (
Dβψ

)
b−a

2

∣∣(b − a

2

)−|β|
� ‖fa,b‖∞

(
b − a

2

)−|β| ∫ ∣∣Dβψ
∣∣

b−a
2

= ‖fa,b‖∞
∥∥Dβψ

∥∥
1

(
b − a

2

)−|β|
� cbj+1(b − a)−m

with a constant c = c(m,n). Hence

∣∣Dβϕa,b,α

∣∣ � cbj+1(b − a)−mχB(0,b). (14)

This immediately implies the following estimate.

Lemma 17. For x ∈ Ω and 0 < a < b � 1 we define

u(y) = ϕa,b,α(y − x) for y ∈ Ω.

Then

‖u‖m,p;Ω � cbj+1(b − a)−m
∣∣B(x, b) ∩ Ω

∣∣1/p
.

In particular the function

u(y) = ϕ ˜̃r,r̃,α(y − x) for y ∈ Ω

satisfies

‖u‖m,p;Ω � cr̃j+1(r̃ − ˜̃r)−m
∣∣B(x, r̃) ∩ Ω

∣∣1/p
.

Since Dαu = 1 on B(x, ˜̃r) ∩ Ω and Dαu = 0 on A(r̃, r) ∩ Ω for every γ ∈ R we have that
|Dαu − γ | � 1/2 on at least one of the sets

B(x, ˜̃r) ∩ Ω or A(r̃, r) ∩ Ω

and hence the Trudinger-type inequality (5) yields

∣∣B(x, ˜̃r) ∩ Ω
∣∣ exp

(
cr̃−(j+1)(r̃ − ˜̃r)m∣∣B(x, r̃) ∩ Ω

∣∣−1/p)s � Mrn.

Replacing M by a constant c′ > max{M,ωn}, after elementary calculations we arrive at

r̃ − ˜̃r � c

(
r̃

r̃ − ˜̃r
)(j+1)p/n∣∣B(x, r̃) ∩ Ω

∣∣1/n
(

ln

(
c′rn

|B(x, ˜̃r) ∩ Ω|
))p/sn

. (15)

We need to consider two cases.

Case I. r̃ − ˜̃r > r̃/2. In this case the estimate (15) is exactly the same as the estimate from
Lemma 16 that we needed to prove (note that |B(x, ˜̃r) ∩ Ω| = |B(x, r̃) ∩ Ω|/2).
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Case II. r̃ − ˜̃r � r̃/2. If r̃ − ˜̃r is much smaller than r̃ , then the factor (r̃/(r̃ − ˜̃r))(j+1)p/n is
very large and the estimate (15) is much worse than the one we want to prove. To handle this
problem we need to construct a different test function. We will need the following easy geometric
observation.

Lemma 18. There is a constant κ = κ(n) and a finite number of balls B(xi,
r̃−˜̃r

4 ), i = 1,2, . . . , �,
such that:

• B(xi,
r̃−˜̃r

2 ) ⊂ B(x, r̃) for i = 1,2, . . . , �,

• the balls B(xi,
r̃−˜̃r

2 ), i = 1,2, . . . , � are pairwise disjoint,

•
∣∣∣∣∣
(

�⋃
i=1

B

(
xi,

r̃ − ˜̃r
4

))
∩ B(x, ˜̃r) ∩ Ω

∣∣∣∣∣ � κ
∣∣B(x, ˜̃r) ∩ Ω

∣∣.
Proof. Consider the family F of all balls of radius (r̃ − ˜̃r)/4 centered at the points of R

n whose
all coordinates are integer multiples of r̃ − ˜̃r , i.e. the balls are centered at the points of the
rescaled integer lattice (r̃ − ˜̃r)Zn. Clearly, the balls in the collection with the same centers and
twice the radii are also pairwise disjoint. A finite number c(n) of parallel translations of the fam-
ily F covers all of R

n. Hence at least one of the translated families intersected with B(x, ˜̃r) ∩ Ω

covers at least κ(n) = 1/c(n)-fraction of the measure of the set B(x, ˜̃r) ∩ Ω . Define the balls
{B(xi, (r̃ − ˜̃r)/4)}�i=1 to be the balls from this translated family that have a nonempty inter-

section with B(x, ˜̃r) ∩ Ω . Obviously B(xi, (r̃ − ˜̃r)/2) ⊂ B(x, r̃). The proof of the lemma is
complete. �

Now we are ready to define a new function. Let

u(y) =
�∑

i=1

ϕ r̃−˜̃r
4 , r̃−˜̃r

2 ,α
(y − xi) for y ∈ Ω.

The functions that appear in the sum have disjoint supports and suppu ⊂ B(x, r̃). Estimate (14)
yields

∣∣Dβu
∣∣ � c(r̃ − ˜̃r)−(k−1)χB(x,r̃)∩Ω for |β| � m

and hence

‖u‖m,p;Ω � c(r̃ − ˜̃r)−(k−1)
∣∣B(x, r̃) ∩ Ω

∣∣1/p
.

On the other hand,

Dαu(y) = 1 for y ∈
�⋃

i=1

B

(
xi,

r̃ − ˜̃r
4

)
∩ Ω,

and hence Dαu(y) = 1 on a subset of B(x, ˜̃r)∩Ω whose measure is at least κ|B(x, ˜̃r)∩Ω|. Since
Dαu = 0 in A(r̃, r) ∩ Ω , for every γ ∈ R the inequality |Dαu − γ | � 1/2 holds on a subset of
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B(x, r) ∩ Ω whose measure is at least κ|B(x, ˜̃r) ∩ Ω|. Hence the Trudinger type inequality (5)
yields

κ
∣∣B(x, ˜̃r) ∩ Ω

∣∣ exp
(
c(r̃ − ˜̃r)k−1

∣∣B(x, r̃) ∩ Ω
∣∣−1/p)s � Mrn

which easily implies the estimate from Lemma 16. The proof of Lemma 16 and hence the proof
of the theorem are complete. �
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