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Measure density and extendability
of Sobolev functions

Piotr Haj�lasz, Pekka Koskela and Heli Tuominen

Abstract

We study necessary and sufficient conditions for a domain to be a
Sobolev extension domain in the setting of metric measure spaces. In
particular, we prove that extension domains must satisfy a measure
density condition.

1. Introduction

In this paper we consider extension domains for Sobolev spaces. Recall that,
for a domain Ω ⊂ R

n, the Sobolev space W 1,p(Ω), 1 ≤ p < ∞, consists of
the functions u ∈ Lp(Ω) whose all first order weak derivatives Dju belong
to Lp(Ω). We then write

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +

n∑
j=1

‖Dju‖Lp(Ω).

We say that Ω is a W 1,p-extension domain if there exists a bounded lin-
ear extension operator E : W 1,p(Ω) → W 1,p(Rn). It is well known that
every bounded Lipschitz domain is a W 1,p-extension domain, for all p. In
1981, Jones gave a far reaching generalization of this fact by showing that
this also holds for each so-called (ε, δ)-domain, see [14]. He also showed
that in some cases this result is best possible: a finitely connected planar
W 1,2-extension domain is necessarily (ε, δ). It is immediate from the defini-
tion of (ε, δ)-domains that the estimate

(1.1) |Ω ∩B(x, r)| ≥ C|B(x, r)|

holds for each x ∈ Ω and all 0 < r < δ (and so also for all 0 < r ≤ 1).
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It was very recently shown in [10] that (1.1) holds for all Wm,p-extension
domains and that it together with the integrability of a suitable Calderón
maximal function of each function in Wm,p(Ω) characterizes the extension
domains. In the case of m = 1 the condition on the integrability of the
Calderón maximal function can be replaced by a pointwise inequality and
the result from [10] reads as follows.

Proposition 1 If Ω ⊂ R
n is a W 1,p-extension domain, 1 ≤ p < ∞, then

the measure density condition (1.1) holds for all balls B(x, r) with x ∈ Ω and
0 < r ≤ 1. Moreover, for 1 < p < ∞, the measure density condition (1.1)
together with W 1,p(Ω) = M1,p(Ω) characterizes W 1,p-extension domains.

Here M1,p(Ω) consist of all functions u ∈ Lp(Ω) for which the pointwise
estimate

(1.2) |u(x) − u(y)| ≤ |x− y|
(
g(x) + g(y)

)
holds for some function 0 ≤ g ∈ Lp(Ω) for all x, y ∈ Ω \ E, where E has
measure zero.

Let us note that, in the Euclidean setting, M1,p(Rn) coincides with
W 1,p(Rn) for p > 1, [6]. However, M1,1 identifies with a Hardy-Sobolev
space by a recent result of Koskela and Saksman [17]. Note also that there
are domains that do not have the extension property but for which never-
theless M1,p(Ω) = W 1,p(Ω), see [22].

There have been generalizations of the Jones’ extension theorem to set-
tings more general than the Euclidean one. Nhieu [20, 21] established an ana-
log of this result on Heisenberg and Carnot groups. Chua [3, 4] proved cor-
responding extension results for weighted Sobolev spaces where the weight
is either in Ap, or it admits a Poincaré inequality. Very recently, Jones’ ex-
tension theorem was further generalized to a metric setting by Björn and
Shanmugalingam [1]. One is then led to ask if Proposition 1 admits a more
general version. This turns out to be the case. For the necessary definitions,
see Section 2.

Theorem 2 Let X be a Q-regular, complete metric measure space that sup-
ports a (1, p)-Poincaré inequality for some 1 ≤ p < ∞. If Ω ⊂ X is an
N1,p-extension domain, then there exists a constant C > 0 such that

(1.3) µ(Ω ∩ B(x, r)) ≥ Cµ(B(x, r))

for all balls B(x, r) with x ∈ Ω and 0 < r ≤ 1.

Moreover, for 1 < p < ∞, (1.3) together with N1,p(Ω) = M1,p(Ω) char-
acterizes N1,p-extension domains.
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The upper bound 1 for the radius r is not essential, any finite upper
bound would do as well. If the measure µ satisfies only the lower mass
bound µ(B(x, r)) ≥ CrQ for all balls, then the proof of Theorem 2 gives the
estimate µ(Ω ∩ B(x, r)) ≥ CrQ.

Notice that Heisenberg and Carnot groups are Ahlfors Q-regular spaces
for a suitable Q and that they support a (1, p)-Poincaré inequality for all
p ≥ 1. Moreover, the Sobolev space N1,p referred to in Theorem 2 reduces
in the group setting to the Sobolev space considered by Nhieu [20], [21] and
to that studied by Chua in the settings of [3], [4]. Furthermore, the setting
of [1] is the same as ours.

Our next result, which is an analog of the corresponding result in [10],
shows that the existence of a bounded linear extension operator follows from
the apparently weaker assumption that each function in the Sobolev class
has some extension.

Theorem 3 Fix 1 < p <∞. Let X be a Q-regular, complete metric measure
space that supports a (1, p)-Poincaré inequality. Then Ω ⊂ X is an N1,p-
extension domain if and only if each u ∈ N1,p(Ω) is the restriction to Ω of
some function in N1,p(X).

The following theorem shows that the extension property is invariant
under bi-Lipschitz mappings.

Theorem 4 Let X, Y be Q-regular, complete metric measure spaces that
support (1, p)-Poincaré inequalities, 1 < p <∞. If Ω ⊂ X an N1,p-extension
domain and f : Ω → f(Ω) ⊂ Y is bi-Lipschitz, then f(Ω) is an N1,p-
extension domain.

Proposition 1 and Theorem 2 deal with extensions for the spaces W 1,p

and N1,p and M1,p plays only a role of a reference space. It is now natural to
inquire for a formulation that only refers to M1,p. Our next result answers
this question.

Theorem 5 Let X be a Q-regular, geodesic metric measure space. A do-
main Ω ⊂ X is an M1,p-extension domain, 1 ≤ p <∞, if and only if (1.3)
holds.

Theorem 5 is new even in the Euclidean setting. As we have already
mentioned, the space M1,1 should be regarded as a counterpart of a Hardy-
Sobolev space [17].

Our last result in this introduction shows that the measure density condi-
tion given in (1.3) guarantees the extendability of functions in the class M1,p

provided X is doubling. For a weaker result, see [11]. For a closely related,
independent result see [26].



648 P. Haj�lasz, P. Koskela and H. Tuominen

Theorem 6 Let X be a doubling metric measure space. If for a closed set
F ⊂ X, there is a constant CF > 0 such that

(1.4) µ(F ∩B(x, r)) ≥ CFµ(B(x, r))

for all x ∈ F , and for all 0 < r ≤ 1, then there is a bounded linear extension
operator of M1,p(F ) into M1,p(X) for all 1 ≤ p <∞.

Here we understand M1,p(F ) as the Sobolev space M1,p on the metric
space F with the metric inherited from X and the measure being the re-
striction of the measure µ to F .

In the case p > 1, Theorem 6 was proved independently and by a dif-
ferent method by Shvartsman [26] (an earlier version of our paper including
this result has been available for some time). In the case p > 1, we use
boundedness of the maximal function in Lp, and hence this method cannot
be used when p = 1. To overcome this difficulty, we use a Sobolev-Poincaré
inequality from [7] which allows us to work with exponents less than 1.

The paper is organized as follows. In Section 2 we introduce the notation
and the standard assumptions used in the paper. Section 3 contains lemmas.
We prove the main theorems in Section 4.

2. Notation and preliminaries

2.1. Basic assumptions

Throughout the paper, X is a metric measure space equipped with a metric d
and a Borel regular measure µ. We assume that the measure µ is doubling,
that is, there is a fixed constant Cµ > 0, a doubling constant of µ, such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

whenever x ∈ X and r > 0. Here B(x, r) = {y ∈ X : dist (y, x) < r} is the
open ball of radius r centered at x. If 0 < t < ∞ and B = B(x, r) is a ball
in X, then tB = B(x, tr). We also assume that open sets have positive and
bounded sets finite measure. Recall that the doubling condition of µ implies
that there exists a constant C > 0 such that the lower bound

(2.1)
µ(B)

µ(B0)
≥ C

( r
r0

)s

holds with s = log2Cµ for all balls B0 = B(x0, r0) and B = B(x, r) whenever
x ∈ B0 and 0 < r ≤ r0, (see [9, Lemma 14.6]). Inequality (2.1) may hold
with a smaller exponent than log2Cµ; we call the smallest such s the doubling
dimension of µ. As a special case of doubling spaces we consider Q-regular
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spaces. The space X is (Ahlfors) Q-regular, Q ≥ 1, if there is a constant
CQ ≥ 1 such that

(2.2) C−1
Q rQ ≤ µ(B(x, r)) ≤ CQr

Q

for each x ∈ X, and for all 0 < r ≤ diam (X). Here diam (X) is the diameter
of X.

A space X is a geodesic space if every two points x, y ∈ X can be joined
by a curve whose length equals d(x, y).

The Hardy-Littlewood maximal function of a function u ∈ L1
loc(X) is

Mu(x) = sup
0<r<∞

∫
B(x,r)

|u| dµ.

Above, uB =
∫

B
u dµ = µ(B)−1

∫
B
u dµ is the integral average of u over the

ball B. The local space L1
loc(X) consists of functions that are integrable in

each ball.
By χE , we denote the characteristic function of a set E ⊂ X, and by |E|,

the Lebesgue n-measure of a measurable set E ⊂ R
n. In general, C will

denote a positive constant whose value is not necessarily the same at each
occurrence. If there is a positive constant C1 such that C−1

1 u ≤ v ≤ C1u,
we write u ≈ v, and say that u and v are comparable.

2.2. Sobolev spaces M1,p(X) and N1,p(X)

Following [13], (cf. [16]), we say that a Borel measurable function g ≥ 0 is
an upper gradient of a function u in an open set Ω ⊂ X, if

(2.3) |u(x) − u(y)| ≤
∫

γ

g ds

for each pair of points x, y in Ω, and all rectifiable curves γ joining x and y
in Ω. Moreover, we say that g is a p-weak upper gradient in Ω if (2.3) holds
for u and g except for a family of compact, rectifiable curves in Ω with zero
p-modulus. For the p-modulus on metric measure spaces and the properties
of upper gradients, see for example [7], [13], [24], and [25].

The Sobolev space N1,p(Ω), defined in [24], consists of those functions
u ∈ Lp(Ω) that have a p-weak upper gradient g ∈ Lp(Ω) in Ω. The space
N1,p(Ω) is a Banach space with the norm

(2.4) ‖u‖N1,p(Ω) = ‖u‖Lp(Ω) + inf ‖g‖Lp(Ω),

where the infimum is taken over all p-weak upper gradients, or, equiva-
lently, over upper gradients g ∈ Lp(Ω) of u. Each u ∈ N1,p(X) has a
minimal p-weak upper gradient gu ∈ Lp(X), that is, 0 ≤ gu ≤ g µ-almost
everywhere in X whenever g ∈ Lp(X) is a p-weak upper gradient of u,
see [25, Corollary 3.7], and [7, Theorem 7.16] for the case p = 1.
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The Sobolev space M1,p(Ω) was introduced via the pointwise inequal-
ity (1.2) in [6] (cf. [7]). We will need to use this space for other spaces
than X as well, so we provide a general definition. Let Ω be an open subset
of a metric space (Y, ρ), where the metric space Y is equipped with a Borel
regular measure ν. For a measurable function u in Ω, we denote by D(u)
the class of all nonnegative measurable functions g in Ω such that

|u(x) − u(y)| ≤ ρ(x, y)(g(x) + g(y)) ν-a.e.

We call the elements of D(u) generalized gradients of u. For p > 0, the space
M1,p(Ω)=M1,p(Ω, ρ, ν) consists of all u ∈ Lp(Ω) such that D(u) ∩ Lp(Ω) 
=∅.
For u ∈M1,p(Ω), we define

(2.5) ‖u‖M1,p(Ω) = ‖u‖Lp(Ω) + inf ‖g‖Lp(Ω),

where the infimum is taken over all functions g ∈ Lp(Ω)∩D(u). Clearly (2.5)
is a norm for p ≥ 1 only, but we will need to consider this space for all p > 0.

The space M1,p(X) always imbeds in N1,p(X). Indeed, if u ∈ M1,p(X)
and g ∈ D(u) ∩ Lp(X), then the function 2g is a p-weak upper gradient
of u. The space N1,p(X) imbeds in M1,p(X) if X supports a (1, q)-Poincaré
inequality for some 1 < q < p, see [24, Theorems 4.8, 4.9], and [7, Theo-
rems 8.6, 11.3]. If X is complete, doubling and supports a (1, p)-Poincaré
inequality, 1 < p < ∞, then X supports a (1, q)-Poincaré inequality for
some 1 < q < p by a recent result of Keith and Zhong [15]. Hence for such
spaces, N1,p(X) = M1,p(X), and the norms are equivalent.

A pair of u ∈ L1
loc(Ω) and a measurable function g ≥ 0 satisfy a (1, p)-

Poincaré inequality in Ω, p > 0, if there exist constants Cp > 0 and τ ≥ 1
such that

(2.6)

∫
B

|u− uB| dµ ≤ Cpr
( ∫

τB

gp dµ
)1/p

for each ball B = B(x, r) satisfying τB ⊂ Ω. If there are constants Cp > 0
and τ ≥ 1 such that the inequality (2.6) holds for each ball B satisfying
τB ⊂ Ω, each function u ∈ L1

loc(B) and every upper gradient g of u in τB,
then we say that Ω supports a (1, p)-Poincaré inequality.

Each pair u ∈M1,p(X), g ∈D(u), satisfies a (1, q)-Poincaré inequality for
all q ≥ 1; this follows by integrating inequality (1.2) twice and using the
Hölder inequality, see [6, Lemma 2]. For the case p ≤ 1, see Section 3 and [7].

Extension property for spaces N1,p and M1,p and for closed set are defined
similarly as for W 1,p. For example, a domain Ω ⊂ X is an N1,p-extension
domain, if there is a bounded (linear) operator E : N1,p(Ω) → N1,p(X) such
that Eu|Ω = u for all u ∈ N1,p(Ω).
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3. Lemmas

Starting from the work of Jones [14], a Whitney type covering of the com-
plement of the domain has been an essential tool when showing that the
domain has an extension property. We begin this section by recalling a
covering lemma for doubling metric measure spaces, [5, Theorem III.1.3],
[18, Lemma 2.9]. Lemma 7 is usually used with the assumption that U is
bounded. However, this assumption is not necessary.

Let U ⊂ X be open and U 
= X. For x ∈ U , let r(x) = dist (x,X \U)/10.
From the family of balls {B(x, r(x)/5)}x∈U we select a maximal (count-
able) subfamily {B(xi, r(xi)/5)}i∈I of pairwise disjoint balls and denote
B = {Bi}i∈I , where Bi = B(xi, ri), ri = r(xi). We will refer to the family B
as the Whitney covering of U . The following lemma collects basic proper-
ties of the Whitney covering. These easily follow from the definition of B;
the last property is an easy consequence of the doubling property of the
measure µ.

Lemma 7 There is M ∈ N such that

1. the balls B(xi, ri/5) are pairwise disjoint,

2. U =
⋃
i∈I

B(xi, ri),

3. B(xi, 5ri) ⊂ U ,

4. if x ∈ B(xi, 5ri), then 5ri < dist (x,X \ U) < 15ri,

5. there is x∗i ∈ X \ U such that d(xi, x
∗
i ) < 15ri,

6.

∞∑
i=1

χB(xi,5ri)(x) ≤M for all x ∈ U .

With such a Whitney covering of U we can associate a Lipschitz partition
of unity that we next describe. Let ψ be a real smooth function with ψ ≡ 1
on [0, 1], ψ ≡ 0 on [3/2,∞), 0 ≤ ψ ≤ 1. Put

ψi(x) = ψ

(
d(x, xi)

ri

)
.

Then ψi ≡ 1 on B(xi, ri), suppψi ⊂ B(xi, 2ri) and the Lipschitz constant of
ψi is Cr−1

i . We define a partition of unity in a standard way by setting

ϕi(x) =
ψi(x)∑
j ψj(x)

.

The following properties of the functions ϕi are easy to verify.
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Lemma 8 Let {Bi}i∈I be the Whitney covering of U and {ϕi}i∈I the asso-
ciated partition of unity. Then

1. suppϕi ⊂ 2Bi,

2. ϕi(x) ≥M−1 for all x ∈ Bi,

3. there is a constant K such that each ϕi is Kr−1
i -Lipschitz,

4.
∑∞

i=1 ϕi(x) = χU(x).

We will frequently use a well known and easy to prove fact that if two
Whitney balls Bi, Bj are such that 5Bi∩5Bj 
= ∅, then the radii of the balls
are comparable and the points x∗i , x∗j are not very far from each other.

The measure density condition (1.3) for an open set Ω says that the set
cannot be too thin near the boundary. It also implies that the measure of
the boundary of Ω is zero.

Lemma 9 If an open set Ω ⊂X satisfies the measure density condition (1.3),
then µ(∂Ω) = 0.

Proof. The measure density condition implies that no point of ∂Ω can be a
point of density for ∂Ω and hence µ(∂Ω) = 0 by the Lebesgue differentiation
theorem. �

The following Leibniz rule for M1,p was proved in [8, Lemma 5.20].

Lemma 10 Let u ∈ M1,p(Ω), Ω ⊂ X, and let ϕ be a bounded L-Lipschitz
function whose support is in Ω. Then the function uϕ is in M1,p(X), and

g =
(
gu‖ϕ‖∞ + L|u|

)
χsupp ϕ ∈ D(uϕ) ∩ Lp(X)

for all gu ∈ D(u) ∩ Lp(Ω).

Proof. The triangle inequality implies that

|u(x)ϕ(x) − u(y)ϕ(y)| ≤ Ld(x, y)|u(x)| + |ϕ(y)||u(x) − u(y)|
and

|u(x)ϕ(x) − u(y)ϕ(y)| ≤ Ld(x, y)|u(y)| + |ϕ(x)||u(x) − u(y)|.
Now it suffices to consider four easy cases depending on whether x or y
belongs to suppϕ or not, and the claim easily follows. �

We close this section by recalling Sobolev inequalities from [9] and [7].
The first result of Lemma 11 is a weak-type inequality, and the second gives
a local Hölder continuity estimate for p strictly larger than the doubling
dimension. Lemma 12 is a version of the Sobolev-Poincaré inequality for
M1,p-functions. As usual, s is the doubling dimension of µ and p∗=sp/(s−p)
for 0 < p < s.
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Lemma 11 [9, Theorem 5.1] Let u, g be a pair of functions satisfying the
(1, p)-Poincaré inequality (2.6), and let B ⊂ X be a ball of radius r > 0.

1. If p < s, then

µ
(
{x ∈ B : |u(x) − uB| > t}

)
tp

∗

µ(B)
≤ Crp∗

( ∫
5τB

gp dµ
)p∗/p

.

2. If p > s, then (a representative of) u is locally Hölder continuous and

(3.1) |u(x) − u(y)| ≤ Crs/pd(x, y)1−s/p
( ∫

5τB

gp dµ
)1/p

for all x, y ∈ B.

In the lemma below, the measure ν need not be doubling.

Lemma 12 [7, Theorem 8.7] Let (Y, ρ) be a metric space with a Borel mea-
sure ν. Suppose that for all balls B,B0 with radii r, r0, the measure ν satisfies

ν(B)

ν(2B0)
≥ b

(
r

r0

)s

wheneverB ⊂ 2B0.

If u ∈M1,p(2B0), s/(s+ 1) ≤ p < s, and g ∈ D(u) then

(3.2)
(∫

B0

|u− uB0 |p
∗
dν

)1/p∗

≤ Cr0

( ∫
2B0

gp dν
)1/p

,

where the constant C depends on b, s and p only.

4. Proofs

4.1. Proof of Theorem 6

Let u ∈ M1,p(F ) and g ∈ D(u) ∩ Lp(F ). We can assume that F 
= X;
otherwise the claim is trivial. Although the function g is defined on F only,
we identify it with a function defined on X by assuming that g equals zero
in X \ F . Note that it follows from the measure density condition that
gB ≈ gB∩F for all balls B centered in F and having radius less than 1. Note
also that the measure density condition holds for balls of uniformly bounded
radius because µ is doubling.

Let B = {Bi}i∈I , Bi = B(xi, ri), be the Whitney covering of X \ F and
let {ϕi}i∈I be the associated Lipschitz partition of unity. Let B1 = {Bi}i∈J

be the collection of all balls from B with radius less than 1. For each i ∈ J ,
let x∗i be as in Lemma 7. We define

B∗
i = B(x∗i , ri).
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Observe that if x ∈ 2Bi, i ∈ J , then

B∗
i ⊂ B(x, 25r(x)) := Bx.

It follows from the measure density condition and the doubling property of µ
that µ(Bx) ≤ Cµ(B∗

i ∩ F ). Let

V = {x ∈ X : dist (x, F ) < 8}.

For x ∈ V \ F , denote by Ix the collection of all i ∈ I such that x ∈ 2Bi.
Clearly the number of elements in Ix is bounded by M (Lemma 7). Note that
if i ∈ I \ J , then ri ≥ 1 and hence dist (2Bi, F ) ≥ 8ri ≥ 8, so 2Bi ∩ V = ∅,
i 
∈ Ix. Accordingly, Ix ⊂ J and therefore∑

i∈Ix

ϕi(x) =
∑
i∈I

ϕi(x) =
∑
i∈J

ϕi(x) = 1 for x ∈ V \ F .

We define Ẽu, the local extension of u, by

(4.1) Ẽu(x) =

{
u(x), if x ∈ F,∑

i∈J ϕi(x)uB∗
i ∩F , if x ∈ X \ F.

• Assume first that p > 1. We will split the proof into several steps.

Claim 1: ‖Ẽu‖Lp(X) ≤ C‖u‖Lp(F ). Let x ∈ X \ F . We have

∣∣Ẽu(x)
∣∣ =

∣∣∣∑
i∈J

ϕi(x)uB∗
i ∩F

∣∣∣ ≤ ∑
i∈Ix

∫
B∗

i ∩F

|u| dµ ≤ C

∫
Bx

|u| dµ ≤ CMu(x),

and the claim follows from the Hardy-Littlewood maximal theorem (cf. [9,
Theorem 14.13]). Although u is defined in F only, in the last two expressions
of the above inequality we extend u to X \ F by zero, so

∫
Bx
|u| dµ =

µ(Bx)−1
∫

Bx∩F
|u| dµ.

Claim 2: Ẽu ∈M1,p(V ). To this end it suffices to prove that

|Ẽu(x) − Ẽu(y)| ≤ Cd(x, y)(Mg(x) + Mg(y)) for a.e. x, y ∈ V .

We have to consider four cases.

Case 1: x, y ∈ F . We have

|Ẽu(x) − Ẽu(y)| = |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))

≤ d(x, y)(Mg(x) + Mg(y)) a.e.

because g(x) ≤ Mg(x) whenever x is a Lebesgue point of g.



Measure density and extendability of Sobolev functions 655

Case 2: x ∈ V \ F , y ∈ F . We have

|Ẽu(x) − Ẽu(y)| = |Ẽu(x) − u(y)| ≤ |Ẽu(x) − uBx∩F | + |uBx∩F − u(y)|.

We will estimate the terms on the right hand side separately.

Since
∑

i∈Ix
ϕi(x) = 1 and g ∈ D(u), we have

|Ẽu(x) − uBx∩F | =
∣∣∣∑
i∈Ix

ϕi(x)(uB∗
i ∩F − uBx∩F )

∣∣∣
≤

∑
i∈Ix

∫
B∗

i ∩F

∫
Bx∩F

|u(w) − u(z)| dµ(w)dµ(z)

≤ C

∫
Bx∩F

∫
Bx∩F

|u(w) − u(z)| dµ(w)dµ(z)

≤ Cr(x)

∫
Bx

∫
Bx

(g(w) + g(z)) dµ(w)dµ(z)

≤ 2Cr(x)Mg(x) ≤ C ′d(x, y)Mg(x)(4.2)

because r(x) ≤ dist (x, F ) ≤ d(x, y). For the second term we have the
estimate

|uBx∩F − u(y)| ≤
∫

Bx∩F

|u(z) − u(y)| dµ(z)

≤
∫

Bx∩F

d(z, y)(g(z) + g(y)) dµ(z)

≤ Cd(x, y)(g(y) + Mg(x)).

We used here the observation that d(z, y) ≤ Cd(x, y) for z ∈ Bx ∩ F . The
above two estimates together imply the desired inequality.

Case 3: x, y ∈ V \ F and d(x, y) ≥ min{dist (x, F ), dist (y, F )}. We may
assume that dist (x, F ) ≤ dist (y, F ). We start with the estimate

|Ẽu(x) − Ẽu(y)| ≤ |Ẽu(x) − uBx∩F | + |uBx∩F − uBy∩F | + |Ẽu(y) − uBy∩F |

and observe that r(y) < d(x, y) and that d(z, w) ≤ Cd(x, y) for all z ∈ Bx,
w ∈ By. The rest is pretty much the same as in the Case 2. We leave details
to the reader.

Case 4: x, y ∈ V \ F and d(x, y) < min{dist (x, F ), dist (y, F )}. We may
assume that dist (x, F ) ≤ dist (y, F ). Since

∑
i∈Ix∪Iy

(ϕi(x) − ϕi(y)) = 0, we
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have

|Ẽu(x) − Ẽu(y)| =
∣∣∣ ∑
i∈Ix∪Iy

(ϕi(x) − ϕi(y))(uB∗
i ∩F − uBx∩F )

∣∣∣
≤ C

∑
i∈Ix∪Iy

d(x, y)

r(x)

∫
B∗

i ∩F

∫
Bx∩F

|u(w) − u(z)| dµ(w)dµ(z)

≤ Cd(x, y)Mg(x).

In the last but one inequality we employed the fact that the functions ϕi,
for i ∈ Ix ∪ Iy are Lipschitz continuous with the Lipschitz constant bounded
by Cr(x)−1. Moreover, B∗

i ⊂ Bx for each i ∈ Ix ∪ Iy, and the proof of the
last inequality follows from estimates very similar to those in (4.2).

Final step. The function Ẽu has good estimates in V , but we want esti-
mates in X. To this end, we choose a cut-off function Ψ : X → [0, 1] such
that Ψ ≡ 1 in F , Ψ ≡ 0 in X \ V and Ψ is Lipschitz continuous with some
universal Lipschitz constant L. Now we define an extension operator by

Eu = ΨẼu.

It immediately follows from Lemma 10 that Eu ∈M1,p(X) and

(CMg + L|Ẽu|)χV ∈ D(Eu).

Hence
‖Eu‖M1,p(X) ≤ C(‖u‖Lp(F ) + ‖g‖Lp(F )).

The proof for the case p > 1 is complete.

• Case p = 1. Note that if R > 0 is any positive number, then there is
b > 0 (depending on R) such that the measure ν being the restriction of µ
to F satisfies

ν(B)

ν(2B0)
≥ b

( r

r0

)s

whenever the balls B, B0 of radii r, r0 are centered at F , B ⊂ 2B0 and
r0 < R. This inequality easily follows from (1.4) and (2.1).

Let q = s/(s + 1). If r0 < R, then u ∈ M1,1(2B0) ⊂ M1,q(2B0), q
∗ = 1

and hence for g ∈ D(u) Lemma 12 yields∫
B0

|u− uB0| dν ≤ Cr0

(∫
2B0

gq dν
)1/q

i.e.

(4.3)

∫
B0∩F

|u− uB0∩F | dµ ≤ Cr0

(∫
2B0

gq dµ
)1/q

.

Here, as before, we extend g to X \F by zero. From now on, the measure ν
will never appear. It was only used to derive the inequality (4.3).
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Claim 1: |Ẽu(x)− Ẽu(y)| ≤ Cd(x, y)
(
(Mgq)1/q(x) + (Mgq)1/q(y)

)
for a.e.

x, y ∈ V , provided d(x, y) < 1.

Before we prove this inequality, let us note that gq ∈ L1/q, 1/q > 1, and
hence the Hardy-Littlewood maximal theorem yields ‖(Mgq)1/q‖1 ≤ C‖g‖1.
Since the pointwise inequality is satisfied for points that are close to each
other, the above inequality proves that Ẽu has a generalized gradient in L1,
on small balls in V . To obtain a global estimate, we will later need to
localize Ẽu using a partition of unity and glue the estimates together.

Now let us return to the proof of the Claim 1. As in the case p > 1, we
have to consider four cases.

Case 1: x, y ∈ F , d(x, y) < 1. We have

|Ẽu(x)−Ẽu(y)| ≤ d(x, y)(g(x)+g(y)) ≤ d(x, y)
(
(Mgq)1/q(x)+(Mgq)1/q(y)

)
a.e. because g(x) ≤ (Mgq)1/q(x) whenever x is a Lebesgue point of gq.

Case 2: x ∈ V \ F , y ∈ F , d(x, y) < 1. Then r(x) = dist (x, F )/10 < 1/10
and hence there is x∗ ∈ Bx ∩ F such that d(x, x∗) < 15r(x) and d(x, x∗) ≤
d(x, y) < 1. Denote Bx∗ = B(x∗, 50r(x)). It is easy to see that

Bx ⊂ Bx∗ , 2Bx∗ ⊂ 5Bx.

We have

|Ẽu(x) − Ẽu(y)| ≤ |Ẽu(x) − uBx∗∩F | + |u(y) − uBx∗∩F |.
We begin by estimating the first term as in (4.2):

(4.4)

|Ẽu(x)−uBx∗∩F | ≤ C

∫
Bx∗∩F

∫
Bx∗∩F

|u(w) − u(z)| dµ(w)dµ(z)

≤ 2C

∫
Bx∗∩F

|u− uBx∗∩F | dµ ≤ C ′r(x)
(∫

2Bx∗
gq dµ

)1/q

≤ C ′′r(x)
(∫

5Bx

gq dµ
)1/q

≤ C ′′d(x, y)(M gq)1/q(x).

To estimate the second term, we will use a telescoping argument as in the
proof of Theorem 3.2 in [9]. Since we need to prove that the inequality holds
almost everywhere, we may assume that y is a Lebesgue point of u. Let k
be the least integer such that B(y, d(x, y)) ⊂ 2kBx∗ . Then the radius of the
ball 2k−1Bx∗ is at most 3d(x, y) and hence

2k+1Bx∗ ⊂ B(x, 13d(x, y)) ⊂ B(x, 13).

We have

|u(y) − uBx∗∩F | ≤ |u(y) − uB(y,d(x,y))∩F |(4.5)

+|uB(y,d(x,y))∩F − u2kBx∗∩F | + |u2kBx∗∩F − uBx∗∩F | = α+β+ γ.
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Now

α ≤
∞∑
i=0

|uB(y,2−id(x,y))∩F − uB(y,2−(i+1)d(x,y))∩F |

≤
∞∑
i=0

∫
B(y,2−(i+1)d(x,y))∩F

|u− uB(y,2−id(x,y))∩F | dµ

≤ C

∞∑
i=0

∫
B(y,2−id(x,y))∩F

|u− uB(y,2−id(x,y))∩F | dµ

≤ C ′
∞∑
i=0

2−id(x, y)
(∫

2B(y,2−id(x,y))

gq dµ
)1/q

≤ 2C ′d(x, y)(Mgq)1/q(y).

The second term is estimated as follows:

β ≤
∫

B(y,d(x,y))∩F

|u− u2kBx∗∩F | dµ ≤ C

∫
2kBx∗∩F

|u− u2kBx∗∩F | dµ

≤ C ′d(x, y)
(∫

2k+1Bx∗∩F

gq
)1/q

≤ C ′′d(x, y)(Mgq)1/q(x).

The estimate of the third part is pretty similar to that for the first part:

γ ≤
k−1∑
i=0

|u2iBx∗∩F − u2i+1Bx∗∩F |

≤ Cr(x)
k−1∑
i=0

2i+1
(∫

2i+2Bx∗
gq dµ

)1/q

≤ C ′d(x, y)(Mgq)1/q(x).

In the last step, we used the fact that 2kr(x) ≈ d(x, y) and that each
ball 2i+2Bx∗ is contained in a ball centered at x of a comparable radius.
The above estimates put together give the claim.

Case 3: x, y ∈ V \ F , d(x, y) ≥ min{dist (x, F ), dist (y, F )}, d(x, y) < 1.
We start with the inequality

|Ẽu(x)− Ẽu(y)| ≤ |Ẽu(x)−uBx∗∩F |+ |Ẽu(y)−uBy∗∩F |+ |uBx∗∩F −uBy∗∩F |.

As in the corresponding case for p > 1, we have that r(x) < d(x, y) and
r(y) < d(x, y). Hence the estimates for the first two terms follow from (4.4).
The estimate for the last term is similar to that of (4.5), but it involves more
triangle inequalities. After tedious, but otherwise elementary computations
one arrives at

|uBx∗∩F − uBy∗∩F | ≤ Cd(x, y)
(
(Mgq)1/q(x) + (Mgq)1/q(y)

)
.
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Case 4: x, y ∈ V \ F , d(x, y) < min{dist (x, F ), dist (y, F )}, d(x, y) < 1.
We may assume that dist (x, F ) ≤ dist (y, F ). Arguments similar as in the
case p > 1 give

|Ẽu(x) − Ẽu(y)| ≤ C
d(x, y)

r(x)

∫
2Bx∗∩F

∫
2Bx∗∩F

|u(w) − u(z)| dµ(w)dµ(z)

≤ C ′d(x, y)
(∫

4Bx∗
gq dµ

)1/q

≤ C ′′d(x, y)(Mgq)1/q(x).

Final step. First we construct a partition of unity modifying arguments
employed in Section 3. Let {B̃i}∞i=1 be a maximal family of pairwise disjoint
balls of radius 1/10 centered at F . Clearly

U = {x ∈ X : dist (x, F ) < 1/10} ⊂
∞⋃
i=1

3B̃i

and it follows from the doubling condition of the measure that there is an
integer M ≥ 1 such that

(4.6)

∞∑
i=1

χ5B̃i
(x) ≤ M for all x ∈ X.

Let 0 ≤ ψi ≤ 1 be 5-Lipschitz functions such that ψi = 1 on 3B̃i and ψi = 0
off 5B̃i. Define

ϕi(x) =
ψi(x)∑∞

j=1 ψj(x)
.

The functions ϕi are L-Lipschitz in U with L depending onM only. However,
the functions ϕi need not be well defined outside U , because the denominator
may equal zero. Let ζ be a Lipschitz function on X such that ζ ≡ 1 on F
and ζ = 0 on X \ U . The functions ηi = ζϕi extend to Lipschitz functions
on X with a common bound for the Lipschitz constant, supp ηi ⊂ 5B̃i and

Ψ(x) =

∞∑
i=1

ηi(x) = 1 for x ∈ F .

The function Ψ is Lipschitz continuous on X, because the supports of ηi

have bounded overlap. We will prove that

Eu = ΨẼu

satisfies ‖Eu‖M1,1(X) ≤ c‖u‖M1,1(F ) and hence Eu defines a bounded linear
extension operator.
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For x ∈ 5B̃i and y ∈ F∩5B̃i we have d(x, y) < 1 and hence the inequality
from Claim 1 gives

|Ẽu(x) − u(y)| ≤ C
(
(Mgq)1/q(x) + (Mgq)1/q(y)

)
.

Integration over x ∈ 5B̃i and y ∈ F ∩ 5B̃i yields

∫
5B̃i

|Ẽu| dµ ≤ C
(∫

F∩5B̃i

|u| dµ+

∫
F∩5B̃i

(Mgq)1/q dµ+

∫
5B̃i

(Mgq)1/q dµ
)
.

Multiplication of this inequality by µ(5B̃i), and observation that µ(5B̃i) ≈
µ(F ∩ 5B̃i) gives

∫
5B̃i

|Ẽu| dµ ≤ C
(∫

F∩5B̃i

|u| dµ+

∫
5B̃i

(Mgq)1/q dµ
)
.

The integrability of Ẽu over 5B̃i, the fact that d(x, y) < 1 for x, y ∈ 5B̃i

and the inequality from Claim 1 implies that Ẽu ∈ M1,1(5B̃i). Therefore
Lemma 10 implies that ηiẼu ∈M1,1(X) and

gi = C
(
(Mgq)1/q + |Ẽu|

)
χ5B̃i

∈ D(ηiẼu).

We have

‖ηiẼu‖M1,1(X) ≤
∫

5B̃i

|Ẽu| dµ+

∫
X

gi dµ

≤ C
(∫

F∩5B̃i

|u| dµ+

∫
5B̃i

(Mgq)1/q dµ
)
.

Therefore the bounded overlap condition (4.6) and the Hardy-Littlewood
theorem give

∞∑
i=1

‖ηiẼu‖M1,1(X) ≤ C‖u‖M1,1(F ).

Since M1,1(X) is a Banach space, [6], we conclude that

Eu =
∞∑
i=1

ηiẼu ∈M1,1(X) and ‖Eu‖M1,1(X) ≤ C‖u‖M1,1(F ).

The proof is complete. �
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4.2. Proof of Theorem 2

If Ω is an N1,p-extension domain, then the trace operator

(4.7) T : N1,p(X) → N1,p(Ω), T v = v|Ω
is surjective. Hence the measure density condition (1.3) will follow from the
following stronger result.

Proposition 13 Let X be a Q-regular complete metric measure space that
supports a (1, p)-Poincaré inequality for some 1 ≤ p < ∞. If Ω ⊂ X is
a domain such that the trace operator (4.7) is surjective, then there is a
constant C > 0 such that

(4.8) µ(Ω ∩ B(x, r)) ≥ Cµ(B(x, r))

for all balls B(x, r) with x ∈ Ω and 0 < r ≤ 1.

Proof. Since X supports the (1, p)-Poincaré inequality, X is quasicon-
vex i.e., there is C > 0 such that every two points x, y ∈ X can be
connected by a rectifiable curve γ satisfying length(γ) ≤ Cd(x, y) see [9,
Proposition 4.4], [2]. This implies that X endowed with the length metric
ρ(x, y) = inf length(γ), where the infimum is taken over all rectifiable curves
connecting x and y is bi-Lipschitz homeomorphic to X. Since Q-regularity,
(1, p)-Poincaré inequality and the N1,p(X) spaces are invariant under bi-
Lipschitz homeomorphisms (cf. [12, Chapter 9]), we may replace the metric
d by ρ and work with the new space (X, ρ, µ). Therefore till the end of the
proof we will assume that d is the length metric i.e. it has the property that

d(x, y) = inf length(γ),

where the infimum is taken over all rectifiable curves connecting x and y.
Such a metric has an important property that every two points x, y ∈ X
can be connected by a geodesic i.e. a curve whose length equals d(x, y),
[7, Theorem 3.9].

Let y ∈ ∂B(x, r) and R < r. Since y can be connected to x by a geodesic,
it follows that the set B(x, r) ∩ B(y, R) contains a ball of radius R/2, and
hence

µ(B(y, R) ∩ B(x, r)) ≥ Cµ(B(y, R)).

This and the Lebesgue differentiation theorem implies that µ(∂B(x, r)) = 0,
see Lemma 9.

The surjectivity of the trace operator implies that the space N1,p(Ω) is
isomorphic to N1,p(X)/ ker T and hence there is C > 0 such that for every
u ∈ N1,p(Ω) there is v ∈ N1,p(X) such that

‖v‖N1,p(X) ≤ C‖u‖N1,p(Ω), v|Ω = u.
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This is to say that there is a bounded but not necessarily linear extension
operator. Let gE be the minimal p-weak upper gradient of v.

Case: 1 ≤ p < Q. For 0 < r < 1, we choose 0 < ˜̃r < r̃ < r such that

µ(B(x, ˜̃r) ∩ Ω) = 1
2
µ(B(x, r̃) ∩ Ω) = 1

4
µ(B(x, r) ∩ Ω).

The existence of r̃ and ˜̃r follows from a fact that µ(∂B(x,R)) = 0 for every
R > 0. We denote

A(r̃, ˜̃r) = B(x, r̃) \B(x, ˜̃r), A(r, r̃) = B(x, r) \B(x, r̃),

and define

u(y) =

⎧⎪⎨
⎪⎩

1, if y ∈ B(x, ˜̃r) ∩ Ω,
r̃−d(x,y)

r̃−˜̃r
, if y ∈ A(r̃, ˜̃r) ∩ Ω,

0, if y ∈ Ω \B(x, r̃).

Clearly u is Lipschitz with Lipschitz constant 1/(r̃− ˜̃r). Hence the function

g =
1

r̃ − ˜̃r
χA(r̃,˜̃r)∩Ω,

where A(r̃, ˜̃r) is the closure of the set A(r̃, ˜̃r), is an upper gradient of u,
(cf. [7, Lemma 6.7]). Hence

‖v‖N1,p(X) ≤ C‖u‖N1,p(Ω)

≤ C
(
µ(B(x, r̃) ∩ Ω)1/p + (r̃ − ˜̃r)−1µ(A(r̃, ˜̃r) ∩ Ω)1/p

)
≤ C ′(r̃ − ˜̃r)−1µ(B(x, r̃) ∩ Ω)1/p.

Denote B = B(x, r). To estimate the left hand side from below we will use
the Sobolev inequality

(4.9)
(
µ
(
{x ∈ B : |v(x) − vB| > t}

))1/p∗ ≤ C

t

(∫
5τB

gp
E dµ

)1/p

≤ C

t
‖v‖N1,p(X)

which is a direct consequence of Lemma 11 and the Q-regularity of the
measure. Since v = u = 1 on B(x, ˜̃r) ∩ Ω and v = u = 0 on A(r, r̃) ∩ Ω, we
conclude that

|v − vB| ≥
1

2

on at least one of the sets B(x, ˜̃r) ∩ Ω and A(r, r̃) ∩ Ω. The two sets have
measures comparable to the measure of B(x, r̃) ∩ Ω and hence the above
inequality with t = 1/2 yields

µ(B(x, r̃) ∩ Ω)1/p∗ ≤ 2C‖v‖N1,p(X) ≤ C ′(r̃ − ˜̃r)−1µ(B(x, r̃) ∩ Ω)1/p,
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and hence

r̃ − ˜̃r ≤ C µ(B(x, r̃) ∩ Ω)1/Q ≤ C µ(B(x, r) ∩ Ω)1/Q.

Now we define a sequence by setting

r0 = r, rj+1 = r̃j.

Clearly µ(B(x, rj) ∩ Ω) = 2−jµ(B(x, r) ∩ Ω) and hence rj → 0. The above
inequality applied to B(x, rj) in the place of B(x, r) gives

rj+1 − rj+2 ≤ C2−j/Qµ(B(x, r) ∩ Ω)1/Q.

This, in turn, gives

r̃ =
∞∑

j=0

(rj+1 − rj+2) ≤ C
( ∞∑

j=0

2−j/Q
)
µ(B(x, r) ∩ Ω)1/Q

= C ′µ(B(x, r) ∩ Ω)1/Q,

and the measure density condition easily follows from the following lemma,
see [10, Lemma 13].

Lemma 14 If the measure density condition (4.8) holds for all x ∈ Ω and
all 0 < r ≤ 1 such that r ≤ 10r̃, then it holds for all x ∈ Ω and all 0 < r ≤ 1.

Proof. Let r ≤ 1. If Ω ⊂ B(x, r), then

µ(B(x, r) ∩ Ω) = µ(Ω) ≥ µ(Ω)rQ ≥ Cµ(Ω)µ(B(x, r))

and hence (4.8) is satisfied. If r ≤ 10r̃, then (4.8) is also satisfied. Thus we
may assume that Ω \ B(x, r) 
= ∅ and that r > 10r̃. Take x′ ∈ B(x, r) ∩ Ω
such that d(x, x′) = r̃ + r/5. Such an x′ exists because Ω \B(x, r) 
= ∅ and
Ω is connected. Let R = 2r̃ + r/5. Then

B(x, r̃) ⊂ B(x′, R) ⊂ B(x, r)

and
B(x′, R/2) ⊂ B(x′, r/5) ⊂ A(r, r̃).

Hence B(x, r̃) and B(x′, R/2) are disjoint subsets of B(x′, R) and thus

µ(B(x′, R/2) ∩ Ω) ≤ 1
2
(µ(A(r, r̃) ∩ Ω) + µ(B(x′, R/2) ∩ Ω))

= 1
2
(µ(B(x, r̃) ∩ Ω) + µ(B(x′, R/2) ∩ Ω))

≤ 1
2
µ(B(x′, R) ∩ Ω).



664 P. Haj�lasz, P. Koskela and H. Tuominen

This, in turn, implies that R̃ ≥ R/2, and so the measure density condition
is satisfied by the ball B(x′, R). Hence, using the Q-regularity, we have

µ(B(x, r) ∩ Ω) ≥ µ(B(x′, R) ∩ Ω) ≥ Cµ(B(x′, R))

≥ C ′RQ ≥ C ′′µ(B(x, r)).

The proof of the lemma is complete. �

Case: p > Q. Let B = B(x, r) be a ball with x ∈ Ω and 0 < r ≤ 1.
If Ω ⊂ B, then condition (4.8) is satisfied. Thus we may assume that
Ω \B 
= ∅. Let

u(y) =

{
1 − d(x,y)

r
if y ∈ B,

0 if y ∈ Ω \B,
Clearly u is r−1-Lipschitz and the function

g =
1

r
χB∩Ω

is an upper gradient of u (cf. [7, Lemma 6.7]). We have

‖v‖N1,p(X) ≤ C‖u‖N1,p(Ω)

≤ C
(
µ(B(x, r) ∩ Ω)1/p + r−1µ(B(x, r) ∩ Ω)1/p

)
≤ 2C ′r−1µ(B(x, r) ∩ Ω)1/p.

Since v(x) = u(x) = 1 and v(y) = u(y) = 0 for some y ∈ (Ω\B)∩2B, using
the Sobolev inequality (3.1) and the Q-regularity, we conclude that

1 ≤ CrQ/pr1−Q/p
(∫

10τB

gp
E dµ

)1/p

≤ C ′r1−Q/p
(∫

10τB

gp
E dµ

)1/p

≤ C ′r1−Q/p‖v‖N1,p(X)

≤ C ′′r1−Q/pr−1µ(B(x, r) ∩ Ω)1/p,

and inequality (4.8) easily follows.

Case: p = Q. We will need the following result of Heinonen and Koskela [13,
Theorem 5.9].

Lemma 15 Let X be a Q-regular space that supports a (1, Q)-Poincaré
inequality for some Q ≥ 1. Let E and F be disjoint subsets of a ball
B = B(x, r) such that

(4.10) min{H1
∞(E),H1

∞(F )} ≥ λr

for some 0 < λ ≤ 1.
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Then there is a constant C ≥ 1, depending only on the data associated
with X, such that

(4.11)

∫
10τB

gQ dµ ≥ Cλ

whenever u ∈ L1
loc(X), g is an upper gradient of u in 10τB, every x ∈ E∪F

is a Lebesgue point of u, u|E ≥ 1 and u|F ≤ 0.

Recall that the Hausdorff 1-content of a set E, used in Lemma 15, is the
number H1

∞(E) = inf
∑

i ri, where the infimum is taken over all countable
covers of E by balls of radius ri. In [13], the sets E and F were assumed
to be compact but this was not used in the proof. It was also assumed
there that u be continuous but this was only employed to guarantee that
each x ∈ E ∪ F is a Lebesgue point of u.

Let B = B(x, r) be a ball with x ∈ Ω and 0 < r ≤ 1. We may assume
that Ω \ B(x, r) 
= ∅ as otherwise (4.8) is satisfied. Let A = 2

3
B \ 1

3
B. The

function

u(y) =

⎧⎪⎨
⎪⎩

1, if y ∈ 1
3
B ∩ Ω,

2 − 3d(x,y)
r

, if y ∈ A ∩ Ω,

0, if y ∈ Ω \ 2
3
B

is 3/r-Lipschitz, and the function g = 3r−1χA∩Ω is an upper gradient of u
in Ω. Similarly as in other cases we obtain the estimate

‖v‖N1,Q(X) ≤ C‖u‖N1,Q(Ω) ≤ C
(
µ(2

3
B ∩ Ω)1/Q + 3r−1µ(A ∩ Ω)1/Q

)
≤ C ′r−1µ(B ∩ Ω)1/Q.

We will estimate the left hand side of this inequality using Lemma 15. Let

E = 1
3
B ∩ Ω, F = (B \ 2

3
B) ∩ Ω.

Observe first that

min{H1
∞(E),H1

∞(F )} ≥ r

3
.

Indeed, it follows from the connectivity of Ω that the 1-Lipschitz function p :
Ω → [0,∞), p(y) = d(x, y) maps the sets E and F onto the intervals [0, r/3)
and [2r/3, r), respectively. As a 1-Lipschitz function does not increase the
Hausdorff 1-content (easy exercise), we conclude that

H1
∞(E) ≥ H1

∞(p(E)) =
r

3
, H1

∞(F ) ≥ H1
∞(p(F )) =

r

3
.
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Hence Lemma 15 gives

C ≤
∫

10τB

gQ
E dµ ≤ ‖v‖Q

N1,Q(X)
≤ C

µ(B ∩ Ω)

rQ

and the inequality (4.8) follows from the Q-regularity of the measure. This
ends the proof of the proposition and hence that of the first part of the
theorem. �

Now we need to prove that Ω is an N1,p-extension domain, 1 < p < ∞,
if and only if N1,p(Ω) = M1,p(Ω) and the condition (1.3) is satisfied.

Suppose that Ω is an N1,p-extension domain and u ∈ N1,p(Ω). Then (1.3)
follows from the first part of the theorem. Since X supports the (1, p)-
Poincaré inequality, N1,p(X) = M1,p(X) by [15]. Hence Eu, the extension
of u belongs to M1,p(X), and so u = Eu|Ω ∈M1,p(Ω). Therefore N1,p(Ω) ⊂
M1,p(Ω), and thus N1,p(Ω) = M1,p(Ω) because we always have M1,p(Ω) ⊂
N1,p(Ω) by [24], [7].

Suppose now that N1,p(Ω) = M1,p(Ω) and the condition (1.3) is satisfied.
Since µ(∂Ω) = 0 by Lemma 9, we conclude that M1,p(Ω) = M1,p(Ω). The
claim follows from Theorem 6 and from the fact that N1,p(X) = M1,p(X).
The proof of the theorem is complete. �

4.3. Proof of Theorem 5

The proof of the necessity part of Theorem 5 is a modification of the proof
of Theorem 2. Since each pair u ∈ M1,p(B), g ∈ D(u), satisfies a (1, q)-
Poincaré inequality for all q ≥ 1, the assumption that X supports a (1, p)-
Poincaré inequality is not needed in this case.

Assume first that Ω is an M1,p-extension domain. We present only the
changes needed in the proof of Theorem 2 and leave it to the reader to
check the details. In the case of M1,p(X), the norm minimizing generalized
gradient exists only when p > 1 (cf. [6, Theorem 2]). If p = 1, instead
of the minimal gradient, choose a generalized gradient gE of v for which
‖gE‖L1(X) ≤ 2‖v‖M1,1(X).

In the case 1 < p < Q, notice first that µ(∂B(x, r)) = 0 for each ball
B(x, r) because X is a geodesic space, see the beginning of the proof of
Proposition 13. Use the generalized gradient g = (r̃ − ˜̃r)−1χB(x,r̃)∩Ω for u.

Clearly g ∈ D(u) because u is (r̃ − ˜̃r)−1-Lipschitz and equals 0 outside
B(x, r̃). The case p > Q works using Lemma 11. When p = Q, use the
generalized gradient g = 3r−1χ 2

3
B∩Ω for u. Lemma 15 can be used for the

pair v, gE, because it satisfies a (1, Q)-Poincaré inequality.

The sufficiency part follows from Theorem 6 and Lemma 9. Namely,
by the assumed measure density condition (1.3) and Lemma 9, µ(∂Ω) = 0.
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By the definition of M1,p, sets of zero measure are removable for M1,p, and
hence we have that M1,p(Ω) = M1,p(Ω). Now we may use Theorem 6 for
the set F = Ω. The proof is complete. �

4.4. Proof of Theorem 3

The necessity part follows from the definition of an extension domain. As-
sume now that each function u ∈ N1,p(Ω) is the restriction to Ω of some
function in N1,p(X), that is, the trace operator (4.7) is surjective. Therefore
Proposition 13 implies the measure density condition. By Theorem 2, it
suffices to show that N1,p(Ω) = M1,p(Ω). The proof of this fact is similar
to the proof of the corresponding claim in Theorem 2 and is left to the the
reader. The proof is complete. �

4.5. Proof of Theorem 4

Let f : Ω → f(Ω) be a bi-Lipschitz mapping and suppose that Ω is an
N1,p-extension domain. By Theorem 2, Ω satisfies the measure density
condition (1.3) and N1,p(Ω) = M1,p(Ω). Now f(Ω) satisfies (1.3) as bi-
Lipschitz homeomorphisms preserve the measure density condition. More-
over, the transformation Φ(u) = u ◦ f induces isomorphisms of spaces,
Φ : N1,p(f(Ω)) → N1,p(Ω), and Φ : M1,p(f(Ω)) → M1,p(Ω). Therefore
N1,p(f(Ω)) = M1,p(f(Ω)), and Theorem 2 shows that f(Ω) ⊂ Y is an N1,p-
extension domain. �

Remark. Theorem 4 has an analog for M1,p, 1 ≤ p < ∞, by Theorem 5.
In this case the assumption of an (1, p)-Poincaré inequality is not needed.
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