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11.1 Carnot–Carathéodory metric. . . . . . . . . . . . . . . . . . . . . . . 51

11.2 Upper gradients and Sobolev spaces. . . . . . . . . . . . . . . . . . . 55

11.3 Carnot groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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Abstract

There are several generalizations of the classical theory of Sobolev spaces as they
are necessary for the applications to Carnot–Carathéodory spaces, subelliptic equa-
tions, quasiconformal mappings on Carnot groups and more general Loewner spaces,
analysis on topological manifolds, potential theory on infinite graphs, analysis on
fractals and the theory of Dirichlet forms.

The aim of this paper is to present a unified approach to the theory of Sobolev
spaces that covers applications to many of those areas. The variety of different
areas of applications forces a very general setting.

We are given a metric space X equipped with a doubling measure µ. A general-
ization of a Sobolev function and its gradient is a pair u ∈ L1

loc(X), 0 ≤ g ∈ Lp(X)
such that for every ball B ⊂ X the Poincaré-type inequality

∫

B

|u− uB | dµ ≤ Cr

(∫

σB

gp dµ

)1/p

holds, where r is the radius of B and σ ≥ 1, C > 0 are fixed constants. Working in
the above setting we show that basically all relevant results from the classical theory
have their counterparts in our general setting. These include Sobolev-Poincaré type
embeddings, Rellich-Kondrachov compact embedding theorem, and even a version
of the Sobolev embedding theorem on spheres. The second part of the paper is
devoted to examples and applications in the above mentioned areas.

———————————
This research was begun while P.H. was visiting the Universities of Helsinki and Jyväskylä
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1 Introduction

The theory of Sobolev spaces is a central analytic tool in the study of various aspects
of partial differential equations and calculus of variations. However, the scope of its
applications is much wider, including questions in differential geometry, algebraic
topology, complex analysis, and in probability theory.

Let us recall a definition of the Sobolev spaces. Let u ∈ Lp(Ω), where Ω is an
open subset of IRn, and 1 ≤ p ≤ ∞. We say that u belongs to the Sobolev space
W 1,p(Ω) if the distributional derivatives of the first order belong to Lp(Ω). This
definition easily extends to the setting of Riemannian manifolds, as the gradient is
well defined there.

The fundamental results in the theory of Sobolev spaces are the so-called Sobolev
embedding theorem and the Rellich–Kondrachov compact embedding theorem. The
first theorem states that, for 1 ≤ p < n, W 1,p(Ω) ⊂ Lp∗(Ω), where p∗ = np/(n− p),
provided the boundary of Ω is sufficiently nice. The second theorem states that, for
every q < p∗, the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact for such a domain Ω.

Since its introduction the theory and applications of Sobolev spaces have been
under intensive study. Recently there have been attempts to generalize Sobolev
spaces to the setting of metric spaces equipped with a measure. Let us indicate
some of the problems that suggest such a generalization.

1) Study of the Carnot–Carathéodory metric generated by a family of vector
fields. 2) Theory of quasiconformal mappings on Carnot groups and more general
Loewner spaces. 3) Analysis on topological manifolds. 4) Potential theory on
infinite graphs. 5) Analysis on fractals.

Let us briefly discuss the above examples. The Carnot–Carathéodory metric
appears in the study of hypoelliptic operators, see Hörmander [128], Fefferman and
Phong [69], Jerison [133], Nagel, Stein and Wainger [204], Rotschild and Stein [218],
Sánchez-Calle [224].

The Sobolev inequality on balls in Carnot–Carathéodory metric plays a cru-
cial role in the so-called Moser iteration technique, [202], used to obtain Harnack
inequalities and Hölder continuity for solutions of various quasilinear degenerate
equations. The proof of the Harnack inequality by means of the Moser technique
can be reduced to verifying a suitable Sobolev inequality. Conversely, a parabolic
Harnack inequality implies a version of the Sobolev inequality as shown by Saloff-
Coste, [221]. It seems that the first to use the Moser technique in the setting of the
Carnot–Carathéodory metric were Franchi and Lanconelli, [78]. The later work on
related questions include the papers by Biroli and Mosco, [8], [9], Buckley, Koskela
and Lu, [19], Capogna, Danielli and Garofalo, [27], [28], [29], [30], [31], Chernikov
and Vodop’yanov, [38], Danielli, Garofalo, Nhieu, [61], Franchi, [74], Franchi, Gal-
lot and Wheeden, [75], Franchi, Gutiérrez and Wheeden, [76], Franchi and Lanco-
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2 PIOTR HAJ LASZ AND PEKKA KOSKELA

nelli, [79], Franchi, Lu and Wheeden, [80], [81], Franchi and Serapioni, [83], Garofalo
and Lanconelli, [90], Lu, [175], [178], [180], [181], Marchi [189].

The theory of Carnot–Carathéodory metrics and related Sobolev inequalities can
be extended to the setting of Dirichlet forms, see Biroli and Mosco [8], Garattini
[89], Sturm [239].

For connections to the theory of harmonic maps see the papers by Jost, [142],
[143], [144], [145], Jost and Xu, [146], HajÃlasz and Strzelecki, [108].

The theory of quasiconformal mappings on Carnot Groups has been studied by
Heinonen and Holopainen, [116], Margulis and Mostow, [190], Pansu, [210], Koranyi
and Reimann, [159], Heinonen and Koskela, [117], Vodop’yanov and Greshnov,
[253]. Results on Sobolev spaces play an important role in this theory. Very recently
Heinonen and Koskela, [118], extended the theory to the setting of metric spaces
that support a type of a Sobolev inequality.

Semmes, [226], has shown that a large class of topological manifolds admit
Sobolev type inequalities, see Section 10. Sobolev type inequalities on a Riemannian
manifold are of fundamental importance for heat kernel estimates, see the survey
article [55] of Coulhon for a nice exposition.

Discretization of manifolds has lead one to define the gradient on an infinite
graph using finite differences and then to investigate the related Sobolev inequalities,
see Kanai [149], Auscher and Coulhon [2], Coulhon [52], Coulhon and Grigor’yan
[56], Coulhon and Saloff-Coste [59], Delmotte [65], Holopainen and Soardi [126],
[127]. These results have applications to the classification of Riemannian mani-
folds. Also the study of the geometry of finitely generated groups leads to Sobolev
inequalities on associated Cayley graphs, see Varopoulos, Saloff-Coste and Coulhon
[251], and Section 12 for references.

At last, but not least, the Brownian motion on fractals leads to an associated
Laplace operator and Sobolev type functions on fractals, see Barlow and Bass [5],
Jonsson [139], Jonsson and Wallin [141], Kozlov [162], Kigami [151], [152], [153],
Kigami and Lapidus [154], Lapidus [167], [168], Metz and Sturm [197], Mosco [201].

How does one then generalize the notion of Sobolev space to the setting of a
metric space? There are several possible approaches that we briefly describe below.

In general, the concept of a partial derivative is meaningless on a metric space.
However, it is natural to call a measurable function g ≥ 0 an upper gradient of a
function u if

|u(x)− u(y)| ≤
∫

γ

g ds

holds for each pair x, y and all rectifiable curves γ joining x, y. Thus, in the Eu-
clidean setting, we consider the length of the gradient of a smooth function instead
of the actual gradient. The above definition is due to Heinonen and Koskela, [118].

Assume that the metric space is equipped with a measure µ. Then we can ask
if for every pair u, g, where u is continuous and g is an upper gradient of u, the
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weak version (∫

B

|u− uB |q dµ

)1/q

≤ Cr

(∫

σB

gp dµ

)1/p

(1)

of the Sobolev-Poincaré inequality holds with q > p ≥ 1 whenever B is a ball of
radius r. Here C and σ ≥ 1 are fixed constants, barred integrals over a set A mean
integral averages, and uB is the average value of u over B.

If q = 1, then we call (1) a p-Poincaré inequality. It turns out that a p-Poincaré
inequality implies a Sobolev-Poincaré inequality, see Section 5.

This approach is however limited to metric spaces that are sufficiently regu-
lar. There have to be sufficiently many rectifiable curves, which excludes fractals
and graphs. For more information see Section 4, Section 10.2, Section 11.2, Bour-
don and Pajot [15], Cheeger [34], Franchi, HajÃlasz and Koskela [77], Hanson and
Heinonen [111], Heinonen and Koskela [118], [119], Kallunki and Shanmugalingam
[148], Laakso [164], Semmes [226], Shanmugalingam [228], Tyson [245].

Recently HajÃlasz, [102], introduced a notion of a Sobolev space in the setting of
an arbitrary metric space equipped with a Borel measure that we next describe.

One can prove that u ∈ W 1,p(Ω), 1 < p ≤ ∞, where Ω ⊂ IRn is a bounded set
with nice boundary if and only if u ∈ Lp(Ω) and there is a non-negative function
g ∈ Lp(Ω) such that

|u(x)− u(y)| ≤ |x− y|(g(x) + g(y)). (2)

Since this characterization does not involve the notion of a derivative it can be
used to define Sobolev space on an arbitrary metric space, see HajÃlasz [102]. These
spaces have been investigated or employed in Franchi, HajÃlasz and Koskela [77],
Franchi, Lu and Wheeden [81], HajÃlasz [103], HajÃlasz and Kinnunen [104], HajÃlasz
and Martio [107], Heinonen [115], Heinonen and Koskela [118], KaÃlamajska [147],
Kilpeläinen, Kinnunen and Martio [156], Kinnunen and Martio [157], Koskela and
MacManus [161], Shanmugalingam [228].

Another approach is presented in the paper [105] of HajÃlasz and Koskela, in
which also some of the results from our current work were announced. Given a
metric space equipped with a Borel measure we assume that a pair u and g, (g ≥ 0),
of locally integrable functions satisfies the family (1) of Poincaré inequalities with
q = 1 and a fixed p ≥ 1 on every ball, that is

∫

B

|u− uB | dµ ≤ CP r

(∫

σB

gp dµ

)1/p

. (3)

This family of inequalities is the only relationship between u and g. Then we can
ask for the properties of u that follow.

Yet another approach to Sobolev inequalities on metric spaces is presented in
the paper [11] by Bobkov and Houdré. However it is much different from the above
mentioned setting and it will not be discussed here.
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One of the purposes of this paper is to systematically develop the theory of
Sobolev spaces from inequality (3). This includes the study of the relationships
between (1), (2), and (3). We show that basically all relevant results from the clas-
sical theory have their counterparts in our general setting. These include Sobolev-
Poincaré type embeddings, Rellich-Kondrachov compact embedding theorem, and
even a version of the Sobolev embedding theorem on spheres.

We will work with metric spaces equipped with a doubling measure. Such spaces
are often called spaces of homogeneous type, but we will call them doubling spaces.
The reader may find many important examples of spaces of homogeneous type in
Christ [41], and Stein [234]. The class of such spaces is pretty large. For example
Volberg and Konyagin [255], [256], proved that every compact subset of IRn supports
a doubling measure; see also Wu [257], and Luukkainen and Saksman [182].

Starting from the work of Coifman and Weiss [48], [49], spaces of homogeneous
type have become a standard setting for the harmonic analysis related to singu-
lar integrals and Hardy spaces, see, e.g., Gatto and Vagi [93], [94], Genebahsvili,
Gogatishvili, Kokilashvili and Krbec [95], Han [109], Han and Sawyer [110], Macias
and Segovia [183].

However it seems that the development of the theory of Sobolev spaces in such
generality did not begin until very recently.

There are some papers on Sobolev inequalities on spaces of homogeneous type
related to our work; see Franchi, Lu and Wheeden [81], Franchi, Pérez and Wheeden
[82], MacManus and Pérez [184], [185]; the last three papers were motivated by our
approach. Also the paper [92] of Garofalo and Nhieu provides a similar approach
in the special case of Carnot–Carathéodory spaces.

The reader might wonder why we insist on studying the situation with a fixed
exponent p instead of assuming that (3) holds with p = 1. There is a simple reason
for this. Indeed, for each p > 1 one can construct examples of situations where (3)
holds for each smooth function u with g = |∇u| but where one cannot replace p by
any exponent q < p. Let us give an example to illustrate the dependence on p. Take
two three-dimensional planes in IR5 whose intersection is a line L, and let X be the
union of these two planes. The metrics and measures induced from the planes have
natural extensions to a metric and a measure on X. If u is a smooth function on X
then we define g(x) to be |∇u(x)| whenever x does not belong to L, where ∇u is
the usual gradient of u in the appropriate plane, and define g(x) to be the sum of
the lengths of the two gradients corresponding to the different planes when x ∈ L.
One can then check that (3) holds for p > 2 but fails for p ≤ 2.

As we said, we want to develop the theory of Sobolev spaces assuming a fam-
ily of Poincaré inequalities (3) and the doubling property. Such assumptions have
found many applications in the literature in various areas of analysis and geom-
etry. The applications include the above mentioned Carnot–Carathéodory spaces
[61], [81], [91], [92], graphs [64], [65], [127], Dirichlet forms [8], [9], [10], [239], and
quasiconformal mappings [118].
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These assumptions have also found many important applications in Riemannian
geometry. The class of open Riemannian manifolds that satisfy both the doubling
condition and the p-Poincaré inequality is under intensive investigation, see Colding
and Minicozzi [50], [51], Grigor’yan [99], Holopainen [124], Holopainen and Rickman
[125], Li and Wang [171], Maheux and Saloff-Coste [186], Rigoli, Salvatori and
Vignati [215], Saloff-Coste [221], [222], [223], and Tam [242], where some global
properties of manifolds were obtained under the assumption that the Riemannian
manifold satisfies a p-Poincaré inequality and the doubling property.

In 1975 Yau, [261], proved that on open Riemannian manifolds of nonnegative
Ricci curvature bounded harmonic functions are constant. Some time later he
conjectured that for such manifolds the space of harmonic functions with polynomial
growth of fixed rate is finite dimensional.

Independently Grigor’yan, [99], and Saloff-Coste, [221], generalized Yau’s theo-
rem by proving that bounded harmonic functions are constant provided the manifold
satisfies the doubling property and the Poincaré inequality (3) with g = |∇u| and
p = 2. It is known that manifolds with nonnegative Ricci curvature satisfy these
two conditions, see Section 10.1. Under the same assumptions the result of Yau has
been extended to harmonic mappings, see Li and Wang, [171], and Tam [242].

Very recently, Colding and Minicozzi, [50], [51], answered the conjecture of Yau
in the affirmative. Again the assumptions were that the manifold is doubling and
that the 2-Poincaré inequality holds.

Many of the above Riemannian results have counterparts in the more general
settings of Carnot–Carathéodory spaces, graphs, or Dirichlet forms, and again the
main common assumption is the same: doubling and Poincaré.

This common feature was guiding us in our work. The first part of the paper is
devoted to general theory and the second part to examples and applications in the
areas mentioned above.

The paper is organized as follows. In Section 2 we present the setting in which
we later on develop the theory of Sobolev inequalities. In Section 3 we discuss the
equivalence of various approaches to Sobolev inequalities on metric spaces. Section 4
is devoted to some basic examples and conditions that necessarily hold for spaces
that satisfy all p-Poincaré inequalities (1) for pairs of a continuous function and
upper gradient. In Section 5 we show that if a pair u, g satisfies a p-Poincaré
inequality (3), then |u − uB | can be estimated by a generalized Riesz potential.
This together with a generalization of the Fractional Integration Theorem implies
a variant of the Sobolev-Poincaré embedding theorem. In Section 6 we impose
the additional condition that the space be connected and improve on one of the
inequalities from Section 5, namely we prove a variant of the Trudinger inequality.
In Section 7 we prove an embedding theorem on almost all spheres centered at a
given point. In Section 8 we generalize the classical Rellich-Kondrachov theorem to
the setting of metric spaces. So far all the results are local in nature. In Section 9 we
introduce the class of John domains and generalize previous results as global results
in John domains. In Section 10 we collect important examples of metric spaces



6 PIOTR HAJ LASZ AND PEKKA KOSKELA

where the theory developed in the paper is applicable (including open Riemannian
manifolds, topological manifolds and Loewner spaces). In Section 11 we study
the theory of Carnot–Carathéodory spaces that are associated with a family of
vector fields, from the point of view of Sobolev inequalities on metric spaces. In
Section 12 we discuss Sobolev inequalities on infinite graphs. Section 13 is devoted
to applications of the theory to nonlinear potential theory and degenerate elliptic
equations. Section 14 is an appendix, where we collect all the results in measure
theory and on maximal functions that are needed in the paper.

The exposition is self-contained and the background material needed is the ab-
stract measure theory in metric spaces, some real analysis related to maximal func-
tions and the basic theory of classical Sobolev spaces covered by each of the following
references: Evans and Gariepy [66], Gilbarg and Trudinger [96], Malý and Ziemer
[187], Ziemer [263].

Some examples and applications that illustrate the theory require slightly more.
In Section 11.3-4 some familiarity with Lie groups and commutators of vector fields
is needed and in Section 13 we assume basic facts about quasilinear elliptic equations
in divergence form. One can, however, skip reading Sections 11.3-4 and 13 and it
will not affect understanding of the remaining parts of the paper.

We did make some effort to give comprehensive references to subjects related
to our work. We are however sure that many important references are still missing
and we want to apologize to those whose contribution is not mentioned.

Notation. Throughout the paper X will be a metric space with a metric d, and
a Borel measure µ. The precise assumptions on µ are collected in the appendix. If
not otherwise stated, µ will be doubling which means that

µ(2B) ≤ Cdµ(B) (4)

whenever B is a ball and 2B is the ball with the same center as B and with radius
twice that of B (in the same way we define σB for σ > 0). We will call such a metric
measure space X a doubling space and Cd a doubling constant. Ω ⊆ X will always
denote an open subset. Sometimes we will need the doubling property on a subset
of X only; we will say that the measure µ is doubling on Ω if (4) holds whenever
B = B(x, r), x ∈ Ω and r ≤ 5 diamΩ. By writing v ∈ Lq

loc(Ω), we designate that
v belongs to the class Lq(B) with respect to µ for each ball B ⊂ Ω. If Ω = X, we
will simply write v ∈ Lq

loc. By Lip (X) we denote the class of Lipschitz functions
on the metric space X.

The average value will be denoted by vA =
∫

A
v dµ = µ(A)−1

∫
A

v dµ. If R > 0
and v is a measurable function, then MRv stands for the restricted Hardy-Littlewood
maximal function

MRv(x) = sup
0<r≤R

∫

B(x,r)

|v| dµ.

If R = ∞, then we will simply write Mv. Another version of the maximal function
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is

MΩv(x) = sup
r>0

1
µ(B(x, r))

∫

Ω∩B(x,r)

|v| dµ,

which applies to v ∈ L1
loc(Ω, µ). It is also clear how to define the restricted maximal

function MΩ,Rv.

By Hk we denote the k-dimensional Hausdorff measure. The symbol χE denotes
the characteristic function of a set E. We reserve B to always denote a ball. Observe
that in some metric spaces it may happen that the center and the radius of the ball
are not uniquely defined. In what follows, when we write B we assume that the
center and the radius are fixed. Otherwise σB is not properly defined. By C we
will denote a general constant which can change even in a single string of estimates.
By writing C = C(p, q, λ) we indicate that the constant C depends on p, q and λ
only. We write u ≈ v to state that there exist two positive constants C1, and C2

such that C1u ≤ v ≤ C2u.

Some further notation and commonly used results are collected in the appendix.

2 What are Poincaré and Sobolev inequalities?

In this section we describe the general framework and give samples of problems
which are treated later on. Until the end of the section we assume that µ is a Borel
measure on a metric space X, but we do not assume that µ is doubling. As before
Ω ⊂ X denotes an open set.

Definition. Assume that u ∈ L1
loc(Ω) and a measurable function g ≥ 0 satisfy the

inequality ∫

B

|u− uB | dµ ≤ CP r

(∫

σB

gp dµ

)1/p

, (5)

on each ball B with σB ⊂ Ω, where r is the radius of B and p > 0, σ ≥ 1, CP > 0 are
fixed constants. We then say that the pair u, g satisfies a p-Poincaré inequality in
Ω. When Ω = X, we simply say that the pair u, g satisfies a p-Poincaré inequality.

Note that if u ∈ Lip (IRn), g = |∇u| and p ≥ 1, then (5) is a corollary of the
classical Poincaré inequality

(∫

B

|u− uB |p dx

)1/p

≤ C(n, p)r
(∫

B

|∇u|p dx

)1/p

. (6)

Quite often we will call an inequality weak if both sides involve a ball and the radius
of the ball on the right hand side is greater than the radius of the ball on the left
hand side, like in (5).

Unfortunately, as is easy to see, in general, inequality (6) does not hold with
p < 1 (cf. [16, p. 224]). Nevertheless, there are many important situations where
the p-Poincaré inequalities (5) and (6) hold with p < 1. For example, they hold
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when u is a solution to an elliptic equation of a certain type, see Section 13. For
this reason we include the case p < 1.

It is natural to regard a pair u, g that satisfies a p-Poincaré inequality in Ω as
a Sobolev function and its gradient. In this sense we will develop the theory of
Sobolev functions on metric spaces with “gradient” in Lp for all p > 0.

In the classical approach the Sobolev spaces are defined for p ≥ 1 only. Moreover,
it was expected that there would be no reasonable theory of Sobolev spaces for
0 < p < 1, see Peetre, [211]. We obtain a rich theory of Sobolev spaces for all p > 0.
In the Euclidean setting, when p ≥ 1, our approach is equivalent to the classical
one.

In the literature there are a few papers that deal with the Sobolev inequalities
for p < 1, see Bakry, Coulhon, Ledoux and Saloff-Coste [4], Buckley and Koskela
[16], Buckley, Koskela and Lu [19], Calderón and Scott [24], HajÃlasz and Koskela
[105].

Let us assume that a pair u, g satisfies a p-Poincaré inequality for p > 0 in an
open set Ω ⊂ X. We inquire for properties of u that follow from this assumption.
A typical question is whether the Sobolev embedding theorem holds i.e., whether
the p-Poincaré inequality in Ω implies the global Sobolev-type inequality

inf
c∈IR

(∫

Ω

|u− c|q dµ

)1/q

≤ C

(∫

Ω

gp dµ

)1/p

, (7)

with an exponent q > p. We suggest the reader to have a look at our earlier paper
[105], where a result of this type was obtained by an elementary method. In the
current paper we obtain stronger results by more complicated methods.

Note that if µ(Ω) < ∞ and q ≥ 1, then the above inequality is equivalent to

(∫

Ω

|u− uΩ|q dµ

)1/q

≤ C ′
(∫

Ω

gp dµ

)1/p

, (8)

as for q ≥ 1 and µ(Ω) < ∞ we have

inf
c∈IR

(∫

Ω

|u− c|q dµ

)1/q

≤
(∫

Ω

|u− uΩ|q dµ

)1/q

≤ 2 inf
c∈IR

(∫

Ω

|u− c|q dµ

)1/q

. (9)

The classical gradient of a Lipschitz function has a very important property: if the
function is constant in a set E, then the gradient equals zero a.e. in E. To have
a counterpart of this property in the metric setting we introduce the truncation
property.

Given a function v and ∞ > t2 > t1 > 0, we set

vt2
t1 = min{max{0, v − t1}, t2 − t1}.
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Definition. Let the pair u, g satisfy a p-Poincaré inequality in Ω. Assume that for
every b ∈ IR, ∞ > t2 > t1 > 0, and ε ∈ {−1, 1}, the pair vt2

t1 , gχ{t1<v≤t2}, where
v = ε(u− b), satisfies the p-Poincaré inequality in Ω (with fixed constants CP , σ).
Then we say that the pair u, g has the truncation property.

Let p ≥ 1 and u ∈ Lip (IRn). Since v = ±(u−b) satisfies |∇vt2
t1 | = |∇u|χ{t1<v≤t2}

a.e., the pair u, |∇u| has the truncation property. More sophisticated examples are
given in Section 10.

We close the section with a result which shows that inequality (7) is equivalent
to a weaker inequality provided the pair u, g has the truncation property. The
result will be used in the sequel.

Theorem 2.1 Let Ω ⊂ X be an open set with µ(Ω) < ∞. Fix ∞ > q ≥ p > 0,
CP > 0 and σ ≥ 1. Assume that every pair u, g, that satisfies a p-Poincaré
inequality in Ω (with given CP and σ) satisfies also the global Marcinkiewicz–Sobolev
inequality

inf
c∈IR

sup
t≥0

µ({x ∈ Ω : |u(x)− c| > t})tq ≤ C1

(∫

Ω

gp dµ

)q/p

. (10)

Then every pair that satisfies the p-Poincaré inequality in Ω (with given CP and σ)
and has the truncation property satisfies also the global Sobolev inequality

inf
c∈IR

(∫

Ω

|u− c|q dµ

)1/q

≤ C2

(∫

Ω

gp dµ

)1/p

(11)

with C2 = 8 · (4C1)1/q.

Remarks. 1) We call (10) a Marcinkiewicz–Sobolev inequality, because it implies
that u belongs to the Marcinkiewicz space Lq

w.

2) The result is surprising even in the Euclidean case: inequality (10) seems much
weaker than (11) as the inclusion Lq ⊂ Lq

w is proper. Similar phenomena have been
discovered by V. G. Maz’ya, [194], (cf. [195, Section 2.3.1], [106, Theorem 1]), who
proved that a Sobolev embedding is equivalent to a capacitary estimate which is
a version of inequality (10). The main idea of Maz’ya was a truncation method
which is also the key argument in our proof. This method mimics the proof of the
equivalence of the Sobolev inequality with the isoperimetric inequality. Inequal-
ity (10) plays the role of the relative isoperimetric inequality and the truncation
argument provides a discrete counterpart of the co-area formula. The truncation
method of Maz’ya has become very useful in proving various versions of the Sobolev
embedding theorem with sharp exponents in the borderline case where interpolation
arguments do not work. To see how the argument works in the case of the classical
Sobolev embedding theorem, we refer the reader to the comments after the state-
ment of Theorem 5.1. Recently the truncation method has been employed and even
rediscovered by many authors; see Adams and Hedberg [1, Theorem 7.2.1], Bakry,
Coulhon, Ledoux and Saloff-Coste [4], Biroli and Mosco [8], [9], Capogna, Danielli
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and Garofalo [29], Coulhon [54], Franchi, Gallot and Wheeden [76], Garofalo and
Nhieu [92], Heinonen and Koskela [118], [119], Long and Nie [173], Maheux and
Saloff-Coste [186], Semmes [226], and Tartar [243].

Proof of Theorem 2.1. Let u, g be a pair that satisfies the p-Poincaré inequality
in Ω and that has the truncation property. Choose b ∈ IR such that

µ({u ≥ b}) ≥ µ(Ω)
2

and µ({u ≤ b}) ≥ µ(Ω)
2

.

Let v+ = max{u−b, 0}, v− = −min{u−b, 0}. We will estimate ‖v+‖Lq and ‖v−‖Lq

separately. In what follows v will denote either v+ or v−.

Lemma 2.2 Let ν be a finite measure on a set Y . If w ≥ 0 is a ν-measurable
function such that ν({w = 0}) ≥ ν(Y )/2, then for every t > 0

ν({w > t}) ≤ 2 inf
c∈IR

ν({|w − c| > t

2
}).

The proof of the lemma is easy and left to the reader.

By the truncation property the pair vt2
t1 , gχ{t1<v≤t2} satisfies the p-Poincaré

inequality and hence it satisfies (10). Moreover, the function vt2
t1 has the property

µ({vt2
t1 = 0}) ≥ µ(Ω)/2. Hence, applying the lemma, we conclude that

sup
t≥0

µ({vt2
t1 > t})tq ≤ 2q+1 inf

c∈IR
sup
t≥0

µ

({
|vt2

t1 − c| > t

2

})(
t

2

)q

≤ 2q+1C1‖gχ{t1<v≤t2}‖q
Lp .

This yields

∫

Ω

vq dµ ≤
∞∑

k=−∞
2kqµ({2k−1 < v ≤ 2k})

≤
∞∑

k=−∞
2kqµ({v ≥ 2k−1})

=
∞∑

k=−∞
2kqµ({v2k−1

2k−2 ≥ 2k−2})

≤ 23q+1C1

∞∑

k=−∞

(∫

Ω

gpχ{2k−2<v≤2k−1} dµ

)q/p

≤ 23q+1C1

( ∞∑

k=−∞

∫

Ω

gpχ{2k−2<v≤2k−1} dµ

)q/p

≤ 23q+1C1‖g‖q
Lp(Ω).
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In the second to the last step we used the inequality q/p ≥ 1. Finally
∫

Ω

|u− b|q =
∫

Ω

vq
+ +

∫

Ω

vq
− ≤ 23q+2C1‖g‖q

Lp(Ω).

This completes the proof.

The following theorem is a modification of the above result.

Theorem 2.3 Let ∞ > q ≥ p > 0, CP > 0 and σ ≥ 1. Assume that every pair
u, g that satisfies the p-Poincaré inequality (with given CP and σ) satisfies also the
weak Marcinkiewicz–Sobolev inequality

inf
c∈IR

sup
t≥0

µ({x ∈ B : |u(x)− c| > t})tq
µ(B)

≤ C1r
q

(∫

σB

gp dµ

)q/p

for every ball B, where r denotes the radius of B. Then every pair u, g that satisfies
the p-Poincaré inequality (with given CP and σ) and has the truncation property
satisfies also the weak Sobolev inequality

inf
c∈IR

(∫

B

|u− c|q dµ

)1/q

≤ C2r

(∫

σB

gp dµ

)1/p

for every ball B with C2 = 8 · (4C1)1/q.

The proof is essentially the same as that for Theorem 2.1 and we leave it to the
reader.

3 Poincaré inequalities, pointwise estimates, and
Sobolev classes

Our starting point to the theory of Sobolev spaces on metric spaces is to assume
that the pair u, g satisfies a p-Poincaré inequality. There are however also other
possible approaches. Recently HajÃlasz, [102], introduced a notion of a Sobolev space
in the setting of metric space equipped with a Borel measure. In this section we will
compare this approach to that based on Poincaré inequalities (see Theorem 3.1).
The proof is based on pointwise inequalities which are of independent interest and
which we state in a more general version than is needed for the sake of the proof
(see Theorem 3.2 and Theorem 3.3). Finally we compare the class of Lp-pairs of
u, g that satisfy a p-Poincaré inequality to the classical Sobolev space.

For a detailed study on the equivalence of various approaches to Sobolev in-
equalities on metric spaces, see Franchi, HajÃlasz and Koskela [77], and Koskela and
MacManus [161]. Results related to those of this section appear also in Franchi,
Lu and Wheeden [81], HajÃlasz and Kinnunen [104], Heinonen and Koskela [118],
Shanmugalingam [228].
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Given p > 0 and a triple (X, d, µ), where (X, d) is a metric space and µ is a
Borel measure (not necessarily doubling), HajÃlasz, [102], defines the Sobolev space
M1,p(X, d, µ) as the set of all u ∈ Lp(X) for which there exists 0 ≤ g ∈ Lp(X) such
that

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) a.e. (12)

When we say that an inequality like (12) holds a.e. we mean that there exists a set
E ⊂ X with µ(E) = 0 such that inequality (12) holds for all x, y ∈ X \ E.

If p ≥ 1, then the space is equipped with a Banach norm ‖u‖M1,p = ‖u‖Lp +
infg ‖g‖Lp , where the infimum is taken over the set of all 0 ≤ g ∈ Lp(X) that satisfy
(12).

The motivation for the above definition comes from the following result.

If Ω = IRn or if Ω ⊂ IRn is a bounded domain with sufficiently regular boundary,
| · | is the Euclidean metric, Hn the Lebesgue measure, and 1 < p ≤ ∞, then

W 1,p(Ω) = M1,p(Ω, | · |,Hn) (13)

as sets and the norms are equivalent, see [102] and also [103], [107], [252]. Here
W 1,p(Ω) denotes the classical Sobolev space of Lp-integrable functions with gener-
alized gradient in Lp. If p = 1, then the equivalence (13) fails, see [103]. However,
for any open set Ω ⊂ IRn and 1 ≤ p < ∞, M1,p(Ω, | · |, Hn) ⊂ W 1,p(Ω), see [103,
Proposition 1], and also [107, Lemma 6].

For the further development and applications of the above approach to Sobolev
spaces on metric space, see Franchi, HajÃlasz and Koskela [77], Franchi, Lu and
Wheeden [81], HajÃlasz and Kinnunen [104], HajÃlasz and Martio, [107], Heinonen
[115], Heinonen and Koskela [118], KaÃlamajska [147], Kilpeläinen, Kinnunen and
Martio [156], Kinnunen and Martio [157], Koskela and MacManus [161], Shanmu-
galingam [228].

Prior to the work of HajÃlasz, Varopoulos, [250], defined a function space on a
smooth compact manifold, based on an inequality similar to (12). Recently and
independently, Vodop’yanov, [252], used inequality (12) to define a Sobolev space
on a Carnot group.

The following result compares the above definition of the Sobolev space with
the approach based on Poincaré inequalities.

Theorem 3.1 Let X be a doubling space. If 1 < p < ∞, then the following condi-
tions are equivalent.

1. u ∈ M1,p(X, d, µ).

2. u ∈ Lp(X) and there exist C > 0, σ ≥ 1, 0 ≤ g ∈ Lp(X), and 0 < q < p such
that the Poincaré inequality

∫

B

∣∣u− uB

∣∣ dµ ≤ C r

(∫

σB

gq dµ

)1/q

(14)
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holds on every ball B of radius r.

Remarks. 1) In fact we prove the implication 2. ⇒ 1. for any p > 0. 2) Under
much more restrictive assumptions on the measure Theorem 3.1 has been proved
by Franchi, Lu and Wheeden, [81], see also [77], [86], [104], [118], [161].

Proof of Theorem 3.1. Integrating inequality (12) over a ball with respect to x
and y we obtain ∫

B

|u− uB | dµ ≤ Cr

∫

B

g dµ ,

which proves the implication 1. ⇒ 2. The opposite implication follows from Theo-
rem 3.2 and the Maximal Theorem 14.13.

Theorem 3.2 Let X be a doubling space. Assume that the pair u, g satisfies a
p-Poincaré inequality (5), p > 0. Then

|u(x)− u(y)| ≤ Cd(x, y)
(
(M2σd(x,y)g

p(x))1/p + (M2σd(x,y)g
p(y))1/p

)
(15)

for almost every x, y ∈ X, where MRv(x) = sup0<r<R

∫
B(x,r)

|v| dµ.

Before we prove Theorem 3.2 we show how to use it to complete the proof of the
implication 2. ⇒ 1. Assume that u, g ∈ Lp(X) satisfy (14). Then inequality (15)
holds with p replaced by q. Note that

(
M2σd(x,y)g

q(x)
)1/q ≤ (Mgq(x))1/q

.

Now, gq ∈ Lp/q, p/q > 1, and so the Maximal Theorem 14.13 implies (Mgq)1/q ∈ Lp

and hence the claim follows.

Proof of Theorem 3.2. Let x, y ∈ X be Lebesgue points of u; by the Lebesgue
differentiation theorem (see Theorem 14.15) this is true for almost all points. Write
Bi(x) = B(x, ri) = B(x, 2−id(x, y)) for each nonnegative integer i. Then uBi(x) →
u(x) as i tends to infinity. Using the triangle inequality, the doubling of µ and the
p-Poincaré inequality we conclude that

|u(x)− uB0(x)| ≤
∞∑

i=0

|uBi(x) − uBi+1(x)|

≤
∞∑

i=0

∫

Bi+1(x)

|u− uBi(x)| dµ

≤ C

∞∑

i=0

∫

Bi(x)

|u− uBi(x)| dµ

≤ C

∞∑

i=0

ri

(∫

σBi(x)

gp dµ

)1/p
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≤ C

∞∑

i=0

ri(Mσd(x,y)g
p(x))1/p

= Cd(x, y)(Mσd(x,y)g
p(x))1/p. (16)

Similarly,
|u(y)− uB0(y)| ≤ Cd(x, y)(Mσd(x,y)g

p(y))1/p.

Moreover,

|uB0(x) − uB0(y)| ≤ |uB0(x) − u2B0(x)|+ |uB0(y) − u2B0(x)|
≤ C

∫

2B0(x)

|u− u2B0(x)| dµ

≤ Cd(x, y)

(∫

2σB0(x)

gp dµ

)1/p

≤ Cd(x, y)(M2σd(x,y)g
p(x))1/p.

The claim follows by combining the above three inequalities. This completes the
proof of Theorem 3.2 and hence that of Theorem 3.1.

It is interesting to observe that Theorem 3.2 can be converted, see also Heinonen
and Koskela [118]. This is the content of the following result.

Theorem 3.3 Let X be a doubling space and u ∈ L1
loc(X, µ), 0 ≤ g ∈ Lp

loc(X,µ),
1 < p < ∞. Suppose that the pointwise inequality

|u(x)− u(y)| ≤ Cd(x, y)
(
(Mσd(x,y)g

p(x))1/p + (Mσd(x,y)g
p(y))1/p

)

holds for almost all x, y ∈ X with some fixed σ ≥ 1. Then the p-Poincaré inequality

∫

B

|u− uB | dµ ≤ CP r

(∫

3σB

gp dµ

)1/p

holds for all balls B. Here CP depends only on p, C,Cd.

Proof. Fix a ball B with radius r. Then for almost all x, y ∈ B we have

|u(x)− u(y)| ≤ Cd(x, y)
(
(M(gpχ3σB)(x))1/p + (M(gpχ3σB)(y))1/p

)
.

Fix t0 > 0. Taking an average with respect to x and y, applying Cavalieri’s principle
(see Theorem 14.10) and the weak type estimate for the maximal function (see
Theorem 14.13) we obtain

∫

B

|u− uB | dµ ≤ Cr

∫

B

(M(gpχ3σB))1/p
dµ

= Crµ(B)−1

∫ ∞

0

µ({x ∈ B : M(gpχ3σB) > tp}) dt
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≤ Crµ(B)−1

(∫ t0

0

µ(B) dt +
∫ ∞

t0

(
C

tp

∫

3σB

gp dµ

)
dt

)

= Crµ(B)−1

(
t0µ(B) + Ct1−p

0

∫

3σB

gp dµ

)
.

The claim follows when we choose t0 = (µ(B)−1
∫
3σB

gp dµ)1/p. The proof is com-
plete.

Note that the argument used above is similar to that used in the proof of The-
orem 14.11.

Theorem 3.1 suggests the following question: Is it true that if a pair u, g ∈
Lp(X), 1 < p < ∞, satisfies a p-Poincaré inequality in a doubling space X, then
there exists 1 ≤ q < p such that the pair u, g satisfies a q-Poincaré inequality? This
seems to be a very delicate question, see the discussion in the remark in Section 4
below.

If the answer to the above question were affirmative, Theorem 3.1 would imply
a stronger result: u ∈ M1,p, p > 1, if and only if u ∈ Lp and there is 0 ≤ g ∈ Lp(X)
such that the pair u, g satisfies a p-Poincaré inequality.

In the special case when X = IRn, d is the Euclidean metric and µ is the
Lebesgue measure, the answer to the above question is in the positive due to the
results of Franchi, HajÃlasz and Koskela [77], and Koskela and MacManus [161].

The following theorem was proved in [77]. The result is a generalization of some
results in [155], [161].

Theorem 3.4 Let u, g ∈ Lp(IRn), g ≥ 0, p ≥ 1. Suppose that there exist λ ≥ 1
and C such that ∫

B

|u− uB | dx ≤ Cr

(∫

λB

gp dx

)1/p

,

for all balls B ⊂ IRn. Then u ∈ W 1,p(IRn) and |∇u| ≤ C1g a.e. In particular,
∫

B

|u− uB | dx ≤ C2r

∫

B

g dx,

for all balls B ⊂ IRn.

Note that it follows from the results stated before Theorem 3.4 that if a pair u, g ∈
Lp(IRn) satisfies a p-Poincaré inequality, p > 1, then u ∈ W 1,q

loc , for any 1 ≤ q < p.
Indeed, Theorem 3.2 together with the weak type estimate for the maximal function
and the embedding Lp

w ⊂ Lq
loc for all q < p (see Theorem 14.11) imply that for some

h ∈ Lq
loc the inequality |u(x)−u(u)| ≤ |x−y|(h(x)+h(y)) holds a.e. Then the claim

follows from (13). This argument, however, does not guarantee that u ∈ W 1,p(IRn).
Thus the proof of Theorem 3.4 requires arguments of a completely different nature.

For far reaching generalizations of Theorem 3.4, see [77] and [161] and also
Section 13.
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4 Examples and necessary conditions

We first discuss three examples that indicate the dependence of the validity of
p-Poincaré inequalities on the exponent p. Notice that if a pair u, g satisfies a p-
Poincaré inequality, then it satisfies a q-Poincaré inequality for all q > p by Hölder’s
inequality. The following examples show that this is not the case for q < p.

Example 4.1 Let X = R2 be equipped with the Euclidean metric and let µ be
the measure generated by the density dµ(x) = |x2|tdx, t > 0, where x2 denotes the
second coordinate of x. Then the Poincaré inequality (5) holds for each Lipschitz
function u with g = |∇u| if and only if p > t + 1.

The Poincaré inequality holds as µ is an Ap-weight for the indicated values of
p; see [67], [39], [120, Theorem 15.26], [102]. On the other hand, the p-Poincaré
inequality fails for p = 1 + t and hence for 1 ≤ p ≤ 1 + t. To see this, let B be the
disk of radius 2 and with center (0, 1). Let us consider a sequence ui of Lipschitz
functions that only depend on x2 and such that ui = 1 if x ∈ B and x2 ≤ 2−i,
ui = 0 if x ∈ B and x2 ≥ 1, ui(x) = −i−1 log2(x2) if 2−i ≤ x2 ≤ 1. Then

∫

B

|∇ui|1+t dµ ≤ 2(i log 2)−(1+t)

∫ 1

2−i

ds

s

which tends to zero as i approaches infinity. On the other hand, |ui(x)−uiB | ≥ 1/2
for all x either in the part of B above the line x2 = 1 or in the part below the
line x2 = 0. Hence the integral of |ui − uiB | over B is bounded away from zero
independently of i, and so the (1+t)-Poincaré inequality cannot hold for all Lipschitz
functions. Using a standard regularization argument we can then assume that
functions ui in the above example are C∞ smooth, so the (1+t)-Poincaré inequality
cannot hold for all C∞ smooth functions either.

Example 4.2 Let X = {(x1, x2, . . . , xn) ∈ IRn : x2
1 + · · ·+x2

n−1 ≤ x2
n} be equipped

with the Euclidean metric of IRn and with the Lebesgue measure. The set X consists
of two infinite closed cones with a common vertex. Denote the upper cone by X+

and the lower one by X−.

We will prove that the p-Poincaré inequality (5) holds in X for every pair u, g
where u is a continuous function and g an upper gradient of u if and only if p > n.
(For more information about upper gradients, see Section 10.2.)

First we prove that the inequality fails for p = n (and hence for p < n). Fix
ε > 0. Since ϕ(x) = log | log |x|| satisfies ϕ ∈ W 1,n(Bn(0, 1/2)) and ϕ(x) → ∞ as
x → 0, we can truncate it to obtain a continuous function uε ∈ W 1,n(X+) such that
uε(0) = 1, uε(x) = 0 for |x| ≥ ε and ‖∇uε‖Ln(X+) < ε. We extend this function
to the lower cone as the constant 1. Fix a ball B centered at the origin. Then
‖∇uε‖Ln(B) < ε while ‖uε − uεB‖L1(B) > C uniformly with respect to ε, and thus
the n-Poincaré inequality cannot hold.

It remains to prove the inequality for p > n. Since |∇u| ≤ g for an upper
gradient of u (Proposition 10.1), it suffices to prove the p-Poincaré inequality for
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the pair u, |∇u|. By Theorem 3.3 it suffices to verify the pointwise estimate

|u(x)− u(y)| ≤ C|x− y|(M2|x−y||∇u|p(x) + M2|x−y||∇u|p(y))1/p.

We can assume that x and y belong to different cones as the p-Poincaré inequality
holds in each of those two cones. Then, by the triangle inequality, either |u(x) −
u(0)| ≥ |u(x) − u(y)|/2 or |u(y) − u(0)| ≥ |u(x) − u(y)|/2. Assume that the first
inequality holds. Let ∆ = X+ ∩ B(x, |x|). Then by the embedding into Hölder
continuous functions

|u(x)− u(0)| ≤ C|x− 0|1−n/p

(∫

∆

|∇u|p
)1/p

≤ C|x− y|(M2|x−y||∇u|p(x))1/p.

This ends the proof of the claim.

Modifying the argument used above one can construct many other examples. Let
for example X be the union of two 3-dimensional planes in IR5 whose intersection
is a line. Equip X with the 3-dimensional Lebesgue measure and with the metric
induced by the Euclidean metrics of the planes. Then the p-Poincaré inequality
holds in X for all pairs u, g, where u is a continuous function in X and g an upper
gradient of u, if and only if p > 2.

A much more general result that allows one to build similar examples in the
setting of metric spaces was proven by Heinonen and Koskela, [118, Theorem 6.15].

Example 4.3 For each 1 < p ≤ n there is an open set X ⊂ IRn equipped with the
Euclidean metric and the Lebesgue measure, such that the p-Poincaré inequality (5)
holds for each smooth function u with g = |∇u| but no Poincaré inequality holds
for smaller exponents for all smooth functions.

Such an example was constructed by Koskela, [160]. We will recall the idea of the
example following [160]. Let E ⊂ IRn be a compact set such that W 1,p(IRn \ E) =
W 1,p(IRn), and W 1,q(IRn) is a proper subset of W 1,q(IRn \ E) for all 1 ≤ q < p.
In other words, the set E is W 1,p-removable but it is not W 1,q-removable for any
1 ≤ q < p. Such sets were explicitly constructed in [160]. In fact there is a smooth
function u in IRn \ E such that |∇u| ∈ Lq(IRn), for all q < p, but the pair u,
|∇u| does not satisfy a q-Poincaré inequality in IRn \ E for any q < p. The pair
satisfies the p-Poincaré inequality but |∇u| 6∈ Lp(IRn \ E) as otherwise we would
have u ∈ W 1,p(IRn \E) = W 1,p(IRn) and hence it would even satisfy the 1-Poincaré
inequality. Thus this example does not solve the question posed after Theorem 3.3.

Remark. The last example shows that it may happen that a p-Poincaré inequality
holds for all smooth pairs u, |∇u| in X and there is a smooth function u in X such
that no q-Poincaré inequality holds for any q < p for the pair u, |∇u|. However, in
this example |∇u| 6∈ Lp(X) and hence we do not know if a p-Poincaré inequality
for the pair u, g with g ∈ Lp(X) implies a q-Poincaré inequality for some q < p.
As Example 4.1 shows, a q-Poincaré inequality cannot hold for all q < p in general,
but we do not know if it can hold for some q < p sufficiently close to p.

Let us next describe some necessary geometric conditions for the validity of
Poincaré inequalities. The first result says that a Poincaré inequality implies that
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there are short rectifiable curves. We would like to thank Anton Petrunin for his
very clever argument with a “broken length” that we use in the proof of Proposi-
tion 4.4. Our original version of the proposition was proven under more restrictive
assumptions on X.

Definition. If each pair x1, x2 of points in a metric space X can be joined by a
curve whose length is no more than Cd(x1, x2), then we say that X is quasiconvex.

Recall that X is proper if closed balls are compact. Observe that this is a
stronger condition than being locally compact as the example X = IRn \{0} shows.

Proposition 4.4 Suppose that X is proper, path connected and doubling. Let p ≥
1. If each pair u, g of a continuous function and its upper gradient satisfies a p-
Poincaré inequality (with fixed σ, CP ), then X is quasiconvex.

Proof. Fix k ∈ IN. Let γ : [0, 1] → X be a continuous path. For any partition τ :
0 = t0 < t1 < . . . < tn = 1 consider the sum

sτ =
n−1∑

i=0

min{l(γ|[ti,ti+1]), kd(γ(ti), γ(ti+1))} ,

where l denotes the length of a curve, and then define

lk(γ) = inf
τ

sτ ,

where the infimum is taken over all possible partitions of [0, 1]. We do not require
that γ is rectifiable. Indeed, if no part of γ is rectifiable, then lk(γ) = kd(γ(0), γ(1)).

Fix x0 ∈ X and define
uk(x) = inf

γ
lk(γ)

for x ∈ X, where the infimum is taken over all curves that join x to x0.

It is easy to verify that the function uk is k-Lipschitz and that the function g ≡ 1
is an upper gradient of uk. Thus the pair (uk, g) satisfies the p-Poincaré inequality
and hence by Theorem 3.2

|uk(x)−uk(y)| ≤ Cd(x, y)
(
(M2σd(x,y)g

p(x))1/p + (M2σd(x,y)g
p(y))1/p

)
= 2Cd(x, y) .

In particular, for y = x0, we obtain

|uk(x)| ≤ Cd(x, x0) .

Let γk be a curve that joins x to x0 and such that lk(γk) ≤ 2uk(x). Then let τk be
a partition of [0, 1] such that sτk

≤ 3uk(x).

We do this for all k ≥ 1. We would like to show that a subsequence γki converges,
in some sense, to a rectifiable curve γ that joins x to x0 and such that

l(γ) ≤ lim inf
i→∞

lki(γki) ≤ Cd(x, x0) .
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This would end the proof.

Recall the following classical argument (cf. Lemma 9.4). Let {δk}∞k=1 be a se-
quence of rectifiable curves in a proper metric space Y . Assume that all the curves
δk join given two points x, y ∈ Y and that supk l(δk) < ∞. Parametrize each δk by
arclength. Scaling the arclength parametrizations we may assume that all curves are
defined on the interval [0, 1]. Now it easily follows that the family {δk} is equicon-
tinuous (because of the good parametrization and the fact that supk l(δk) < ∞).
By a standard diagonal method we can find a subsequence δki

which converges on
a dense subset of [0, 1]. The equicontinuity implies the uniform convergence on the
whole interval to a curve δ. Then it is easy to show that l(δ) ≤ lim infi→∞ l(δki).

Unfortunately the above argument does not apply to our situation as lk(γk) is
not the length of γk. We do not even know whether the curves γk are rectifiable.

There is however a trick that makes the above argument work: we modify our
metric space by attaching to it infinitely many segments and then we modify the
family of curves. In this new framework the above argument will work perfectly.

We construct a new metric space X̂ by attaching to the space X infinitely many
Euclidean segments. We do this as follows. Let τk: 0 = t0 < t1 < t2 < . . . < tn = 1
be a partition associated with γk chosen as above. If

l(γk|[ti,ti+1]) ≥ kd(γk(ti), γk(ti+1)) , (17)

then we glue to the space X a straight Euclidean segment Ik,i of the length
d(γk(ti), γk(ti+1)) (i.e. Ik,i is isometric with [0, d(γk(ti), γk(ti+1)]) in such a way
that ends of the segment are attached to the space at points γk(ti) and γk(ti+1).
We do this for every curve γk and every i such that (17) is true.

The space X̂ is equipped with a natural metric which is induced from the Eu-
clidean metric in each segment and the metric d in X. We denote the metric in X̂
by d̂.

Now denote by γ̂k the new curve which is obtained for γk in the following way.
Let 0 ≤ i ≤ n− 1. If (17) does not hold, then

γ̂k|[ti,ti+1] = γk|[ti,ti+1] .

If (17) is true, then γ̂k|[ti,ti+1] is the obvious linear function with values in the
segment Ik,i.

This means that if the part γk|[ti,ti+1] of the curve γk is too long in the sense of
(17), then we replace this part by a shortcut going through the attached segment.

Since supk sτk
≤ Cd(x, x0) we conclude that l(Ik,i) < Cd(x, x0)/k. Thus, in

the worst case, we attach to the space X infinitely many segments Ik,i of length
converging to zero. This easily implies that the space X̂ is proper as well. Now
l̂(γ̂k) ≤ sτk

≤ Cd(x, x0), where l̂ denotes the length in the new metric space X̂.

Now we are in a situation where the above classical argument applies. Choosing
a good parametrization of γ̂k we may subtract a subsequence γ̂ki that converges
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uniformly to a curve γ such that

l̂(γ) ≤ lim inf
i→∞

l̂(γ̂ki) ≤ Cd(x, x0) .

Since the lengths of Ik,i converge to zero as k →∞ we conclude that the values of γ

belong to X and hence one can easily show that l̂(γ) = l(γ). The proof is complete.

Thus the validity of a p-Poincaré inequality guarantees the existence of short
curves. If the doubling measure µ behaves as the Euclidean volume and the expo-
nent p is no more than the growth order of the volume, then X cannot have narrow
parts. This conclusion is a consequence of Proposition 4.5 below. Under the ad-
ditional assumption that the space satisfies a weak local version of quasiconvexity,
this result can be deduced from the results in [118].

Proposition 4.5 Suppose that X is proper, path connected and that µ(B(x, r)) ≈
rs with s > 1 for each x and all r. Assume that each pair u, g of a continuous
function and its upper gradient satisfies an s-Poincaré inequality (with fixed σ, CP ).
If x0 ∈ X, r > 0, and x1, x2 ∈ B(x0, r) \ B(x0, r/2), then x1, x2 can be joined in
B(x0, Cr) \B(x0, r/C) by a curve whose length does not exceed Cd(x1, x2).

Notice that the claim of the proposition would still be true if we replaced the
s-Poincaré inequality by a p-Poincaré inequality, p < s, as a p-Poincaré inequality
implies an s-Poincaré inequality, by means of the Hölder inequality. However we
cannot replace the s-Poincaré inequality by a p-Poincaré for any p > s as follows
from Example 4.2.

Proof. The proof is very similar to the arguments used in the proof of [118,
Corollary 5.8] and in the proof of Proposition 4.4. Throughout C ≥ 1 denotes a
constant whose value can change from line to line but that only depends on the
given data. By Proposition 4.4 we may assume that d(x1, x2) ≥ C−1r as x1 and x2

can be connected by a curve of length comparable to d(x1, x2). Cutting pieces of the
curve near x1 and x2 we obtain rectifiable curves F1, F2 ⊂ B(x0, 2r) \ B(x0, r/4),
both of length comparable to r and such that dist (F1, F2) is comparable to r as
well. It suffices to show that F1, F2 can be joined by a curve of length less than Cr
inside B(x0, Cr) \B(x0, r/C) for sufficiently large C.

If follows from the s-Poincaré inequality and from the volume growth condition
that ∫

B(x0,6σr)

gs dµ ≥ C−1 (18)

for any upper gradient g of any continuous function u that takes on the constant
value 0 in F1 and takes on a value greater than or equal to 1 at each point of F2.
Indeed, assume first that |uB(x0,2r)| ≤ 1/2. Then slightly modifying the proof of
(16) we get for all x ∈ F2

1
2
≤ |u(x)− uB(x0,2r)| ≤ Cr1/s sup

R<4σr

(
R−1

∫

B(x,R)

gs dµ

)1/s

.
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Thus for some Rx < 4σr

C−1Rx/r ≤
∫

B(x,Rx)

gs dµ .

Now inequality (18) follows from the covering lemma (Theorem 14.12) and the fact
that if F2 ⊂

⋃
Bi(ri), then

∑
i ri ≥ C−1r. If |uB(x0,2r)| ≥ 1/2, then inequality (18)

follows by a symmetric argument. The proof of (18) is complete.

Fix τ > 4. Set g1(x) = (log( τ
4 ))−1d(x, x0)−1 in B(x0, τr) \ B(x0, τ

−1r) and
extend g1 as zero to the rest of X. Suppose that F1, F2 cannot be joined in B(x0, τr)\
B(x0, τ

−1r) by a rectifiable curve. Define u1(x) = infγx

∫
γx

g1 ds where the infimum
is taken over all rectifiable curves that join x to F1. Then g1 is an upper gradient
of u1, the restriction of u to F1 is zero and u(x) ≥ 1 at each point of F2. By the
preceding paragraph, we see that the integral of gs

1 over B(x0, 6σr) is bounded away
from zero. On the other hand a computation using the volume growth condition and
Cavalieri’s principle (Theorem 14.10) shows that the integral of gs

1 over B(x0, 6σr)
goes to 0 as τ goes to infinity. Hence τ is bounded from above. Thus we can fix
τ large enough so that F1, F2 can be joined by a rectifiable curve in B(x0, τr) \
B(x0, τ

−1r). It remains to find such a curve with a length comparable to r.

Set a = infγ l(γ), where the infimum is taken over all rectifiable curves that join
F1 to F2 in B(x0, τr)\B(x0, τ

−1r). We define a function u2 similarly as we defined u1

above using g1 + g2, where g2(x) = a−1χU (x), and χU is the characteristic function
of B(x0, τr) \ B(x0, τ

−1r). Observe that u2|F1 ≡ 0 and u2|F2 ≥ 1 independently of
τ and hence (18) holds with g = g1 + g2. As we can make the integral of gs

1 over
the ball B(x0, 6σr) as small as we wish by choosing the constant τ large enough,
we obtain that the integral of gs

2 over B(x0, 6σr) must be bounded away from zero,
and thus the volume growth condition implies that a ≤ Cr, as desired.

5 Sobolev type inequalities by means of Riesz po-
tentials

As it was pointed out in Section 2, one of the aims of this paper is to prove a global
Sobolev inequality

inf
c∈IR

(∫

Ω

|u− c|q dµ

)1/q

≤ C

(∫

Ω

gp dµ

)1/p

, (19)

where q > p, or at least a weak local Sobolev inequality

inf
c∈IR

(∫

B

|u− c|q dµ

)1/q

≤ Cr

(∫

5σB

gp dµ

)1/p

, (20)

where σ ≥ 1, and B is any ball of radius r, assuming only that the pair u, g satisfies
a p-Poincaré inequality.
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Inequality (19) requires some additional information on Ω, while (20) turns out
to be true in a very general setting.

Another question we deal with is how to determine the best possible Sobolev
exponent q in inequalities (19) and (20).

In the remaining part of the section we will be consider inequalities of the type
(20). The case of the global Sobolev inequality (19) will be treated in Section 9.

Let X be a doubling space. Beside the doubling condition we will sometimes
require that

µ(B)
µ(B0)

≥ Cb

(
r

r0

)s

(21)

whenever B0 is an arbitrary ball of radius r0 and B = B(x, r), x ∈ B0, r ≤ r0.

Notice that the doubling condition on µ always implies (21) for some exponent s
that only depends on the doubling constant of µ. This follows by a standard iteration
of the doubling condition, see Lemma 14.6 in the appendix. Inequality (21) could
well hold with exponents smaller than the one following from the doubling condition
and in the following results s refers to any exponent for which (21) is valid.

Theorem 5.1 Assume that the pair u, g satisfies a p-Poincaré inequality (5), p >
0, in a doubling space X. Assume that the measure µ satisfies condition (21).

1. If p < s, then

µ({x ∈ B : |u(x)− uB | > t})tp∗
µ(B)

≤ Crp∗
(∫

5σB

gp dµ

)1/p

,

where p∗ = sp/(s−p) and B is any ball of radius r. Hence for every 0 < h < p∗

(∫

B

|u− uB |h dµ

)1/h

≤ Cr

(∫

5σB

gp dµ

)1/p

.

Moreover for every q with p < q < s

(∫

B

|u− uB |q
∗
dµ

)1/q∗

≤ Cr

(∫

5σB

gq dµ

)1/q

,

where q∗ = sq/(s− q) and B is any ball of radius r. If, in addition, the pair
u, g has the truncation property, then

(∫

B

|u− uB |p
∗
dµ

)1/p∗

≤ Cr

(∫

5σB

gp dµ

)1/p

. (22)

2. If p = s, then ∫

B

exp
(

C1µ(B)1/s|u− uB |
r‖g‖Ls(5σB)

)
dµ ≤ C2. (23)
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3. If p > s, then u (after redefinition in a set of measure zero) is locally Hölder
continuous and

sup
x∈B

|u(x)− uB | ≤ Cr

(∫

5σB

gp dµ

)1/p

. (24)

In particular

|u(x)− u(y)| ≤ Cr
s/p
0 d(x, y)1−s/p

(∫

5σB0

gp dµ

)1/p

(25)

for all x, y ∈ B0, where B0 is an arbitrary ball of radius r0.

The constants in the theorem depend on p, q, h, s, Cd, σ, CP , and Cb only.

Remarks. 1) Inequality (22) holds also for functions on graphs, see Theorem 12.2.
2) Assuming that the space is connected we can improve on inequality (23); see
Section 6.
3) Instead of assuming that X be doubling we could assume, for instance, that the
doubling condition holds on all balls with radii bounded from above by r0, (such
a situation occurs for example on Riemannian manifolds with a lower bound on
the Ricci curvature, see Section 10) or that it holds on a given open set. Then the
inequalities of the theorem would hold on balls with radii bounded from above or
on small balls centered at the open set. We leave it to the reader to check that the
proof of Theorem 5.1 gives such a statement.
4) A modification of the proof shows that the ball 5σB can be replaced by (1+ε)σB;
the details are left to the reader.
5) We present only one of the possible proofs of the above theorem. The proof
can also be based on the embedding theorem for Sobolev spaces on metric spaces
from HajÃlasz, [102]. This approach uses the observation that a family of Poincaré
inequalities leads to pointwise inequalities (15); we do not provide the details here.

Since the proof of the theorem is rather complicated, we begin with some com-
ments that will explain the idea.

In one of the proofs of the classical Sobolev embedding W 1,p(B) ⊂ Lp∗(B),
where 1 ≤ p < n, p∗ = np/(n − p), and B is an n-dimensional Euclidean ball, one
first proves the inequality

|u(x)− uB | ≤ CIB
1 |∇u|(x), (26)

where IB
1 g(x) =

∫
B

g(z)|x − z|1−n dz and then applies the Fractional Integration
Theorem which states that

IB
1 : Lp(B) −→ Lp∗(B) (27)

is a bounded operator for 1 < p < n. If p = 1 one only gets a weak type estimate

|{x ∈ B : IB
1 g(x) > t}|t n

n−1 ≤ C

(∫

B

|g(z)| dz

)n−1
n



24 PIOTR HAJ LASZ AND PEKKA KOSKELA

in place of (27), which, in turn, leads to the embedding W 1,1(B) ⊂ L
n/(n−1)
w (B).

Then the embedding W 1,1(B) ⊂ Ln/(n−1)(B) follows from Theorem 2.1.

The main idea of our proof of inequalities like (19) or (20) is to mimic the above
argument. Thus the proof splits into two steps.

Assume that a pair u, g satisfies a p-Poincaré inequality in a given doubling
space. In the first step we prove the inequality

|u− uB | ≤ CJσ,B
1,p g, (28)

where Jσ,B
1,p is a suitable generalization of the Riesz potential IB

1 and then, in the
second step, we prove a version of the Fractional Integration Theorem for the op-
erator Jσ,B

1,p . This will complete the proof of (20). The proof of (19) will require a
more sophisticated version of the inequality (28); the details will be completed in
Section 9 where we introduce an appropriate class of domains Ω for the Sobolev-
Poincaré embedding (19).

Any inequality of the type (28) will be called a representation formula.

Before we define Jσ,B
α,p we continue with a discussion on Riesz potentials to

explain the motivation. The classical Riesz potential is defined as

Iαg(x) = γα,n

∫

IRn

g(y)
|x− y|n−α

dy, (29)

where 0 < α < n and γα,n is a suitable constant. In this paper the exact value of
the constant γα,n is irrelevant to us. Moreover, for our purposes, any operator J
such that

C1Iαg ≤ Jg ≤ C2Iαg for g ≥ 0 (30)

is as good as Iα.

A natural generalization of the Riesz potential to the setting of doubling spaces
is

Iαg(x) =
∫

X

g(y)dα(x, y)
µ(B(x, d(x, y)))

dµ(y) ,

or its local version

IΩ
α g(x) =

∫

Ω

g(y)dα(x, y)
µ(B(x, d(x, y)))

dµ(y) . (31)

We would like to estimate |u − uB | by CIΩ
1 g, but, in general, this is not possible.

Instead of that we have to consider a potential which is strictly larger than IΩ
1 g.

Observe that the potential defined by

ĨΩ
α g(x) =

∞∑

i=−∞
2iα

(
µ(Bi(x))−1

∫

Ai(x)∩Ω

|g(y)| dµ(y)

)
, (32)

where Ai(x) = Bi(x) \ Bi−1(x) = B(x, 2i) \ B(x, 2i−1), is equivalent to IΩ
α g in the

sense of (30). Note that if 2i−1 > diamΩ, then Ai(x)∩Ω = ∅, so all the summands
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in (32) for 2i > 2diamΩ vanish. Thus, replacing the integral over Ai(x)∩Ω by the
integral over Bi(x) and then taking the sum over 2i ≤ 2diamΩ, we obtain the new
potential

JΩ
α g(x) =

∑

2i≤2diam Ω

2iα

(∫

Bi(x)

|g| dµ

)
,

which satisfies ĨΩ
α g ≤ JΩ

α g. Now we define

Jσ,Ω
α,p g(x) =

∑

2i≤2σdiam Ω

2iα

(∫

Bi(x)

|g|p dµ

)1/p

,

where σ ≥ 1, p > 0 and α > 0 are fixed constants.

Another generalization is

IΩ
α,pg(x) =

∞∑

i=−∞

(∫

Ai(x)∩Ω

|g(y)|pdαp(x, y)
µ(B(x, d(x, y)))

dµ(y)

)1/p

.

Observe that IΩ
α,1g = IΩ

α |g|, and IΩ
α,pg ≤ CJ1,Ω

α,p g a.e. Thus once we prove the
fractional integration theorem for Jσ,Ω

α,p g it is true for IΩ
α,pg as well.

In Section 9 we will obtain a version of the representation formula (28) with
IB
1,pg in place of Jσ,B

1,p ; see Theorem 9.10.

Theorem 5.2 Let the pair u, g satisfy a p-Poincaré inequality in a doubling space
X. Then for every ball B ⊂ X the representation formula

|u(x)− uB | ≤ CJσ,B
1,p g(x) (33)

holds almost everywhere in B.

This representation formula together with a suitable Fractional Integration Theorem
(see Theorem 5.3) will lead to embedding (20).

Proof. The argument is very similar to that used in the proof of inequality (16).
Let x ∈ B be a Lebesgue point of u. Put Di(x) = B(x, 2iσ−1). Let i0 be the
least integer such that 2i0 ≥ σdiam B. Then B ⊂ Di0(x). Since uDi(x) → u(x) as
i → −∞ we obtain

|u(x)− uB | ≤ |uB − uDi0 (x)|+
i0∑

i=−∞
|uDi(x) − uDi−1(x)|

≤ C

i0∑

i=−∞
σ−12i

(∫

σDi(x)

gp dµ

)1/p

≤ CJσ,B
1,p g(x).
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Theorem 5.3 Let Ω ⊂ X be an open and bounded set and let 0 < p < ∞, 1 ≤
σ < ∞. Assume that the measure µ is doubling on V = {x ∈ X : dist (x, Ω) <
2σdiamΩ}. Moreover, assume that for some constants Cb, s > 0

µ(B(x, r)) ≥ Cb

( r

diamΩ

)s

µ(Ω)

whenever x ∈ Ω and r ≤ σdiamΩ and that g ∈ Lp(V, µ).

1. If αp < s, then Jσ,Ω
α,p g ∈ Lp∗

w (Ω) where p∗ = sp/(s− αp). Moreover

µ({x ∈ Ω : Jσ,Ω
α,p g > t}) ≤ C1t

−p∗(diam Ω)αp∗µ(Ω)1−p∗/p‖g‖p∗

Lp(V,µ) (34)

for t > 0, and hence for every 0 < r < p∗

‖Jσ,Ω
α,p g‖Lr(Ω,µ) ≤ C2(diam Ω)αµ(Ω)1/r−1/p‖g‖Lp(V,µ). (35)

Here the constants C1 and C2 depend on α, σ, p, Cb, s and Cd only.

2. If p < q and αq < s, then

‖Jσ,Ω
α,p g‖Lq∗ (Ω,µ) ≤ C(diamΩ)αµ(Ω)−α/s‖g‖Lq(V,µ), (36)

where q∗ = sq/(s− αq) and C = C(α, σ, p, q, b, s, Cd).

3. If αp = s, then

∫

Ω

exp

(
C1µ(B)1/sJσ,Ω

α,p g

(diamΩ)α‖g‖Ls(V )

)
dµ ≤ C2,

where Ci = C(α, σ, p, b, s, Cd), i = 1, 2.

4. If αp > s, then Jσ,Ω
α,p ∈ L∞(Ω, µ) and

‖Jσ,Ω
α,p g‖L∞(Ω,µ) ≤ C(diamΩ)αµ(Ω)−1/p‖g‖Lp(V,µ),

where C = C(α, σ, p, b, s, Cd).

Proof of Theorem 5.3. We modify a standard proof for the the case of usual
Riesz potentials. All the constants C appearing in the proof depend on α, σ, p, q,
b, s, and Cd only.

Case αp < s. Take arbitrary q ≥ p such that αq < s. Fix 0 < r ≤ 2σdiamΩ.
Decompose the sum which defines Jσ,Ω

α,p g into Jrg + Jrg, where Jrg =
∑

2i≤r and
Jrg =

∑
r<2i≤2σdiam Ω. For x ∈ Ω we have

Jrg(x) ≤

∑

2i≤r

2iα


 (MV |g|p(x))1/p ≈ rα (MV |g|p(x))1/p

.
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Here MV h denotes the maximal function relative to the open set V .

To estimate Jrg, we apply the lower bound on µ :

Jrg(x) =
∑

r<2i≤2σdiam Ω

2iα

(∫

Bi(x)

|g|p dµ

)1/p

≤
∑

r<2i≤2σdiam Ω

2iαµ(Bi(x))−1/q

(∫

Bi(x)

|g|q dµ

)1/q

≤ C
∑

r<2i≤2σdiam Ω

2i(α−s/q)(diamΩ)s/qµ(Ω)−1/q

(∫

V

|g|q dµ

)1/q

≤ Cr(α−s/q)(diamΩ)s/qµ(Ω)−1/q

(∫

V

|g|q dµ

)1/q

.

In the last step we used the fact α − s/q < 0 to estimate the sum of the series by
its first summand. Now

Jσ,Ω
α,p g(x) ≤ C

(
rα (MV |g|p)1/p + r(α−s/q)(diamΩ)s/qµ(Ω)−1/q

(∫

V

|g|q dµ

)1/q
)

.

Note that

rα (MV |g|p)1/p ≤ r(α−s/q)(diamΩ)s/qµ(Ω)−1/q

(∫

V

|g|q dµ

)1/q

if and only if

r ≤ (diamΩ)µ(Ω)−1/s
(
‖g‖Lq(V )/(MV |g|p)1/p

)q/s

. (37)

If the RHS in (37) does not exceed σdiamΩ, then we take r equal to the RHS. In
this case we get

Jσ,Ω
α,p g(x) ≤ C(diamΩ)αµ(Ω)−α/s‖g‖αq/s

Lq(V )(MV |g|p(x))(s−αq)/sp, (38)

and hence

Jσ,Ω
α,p g(x)sp/(s−αq) ≤ C(diamΩ)αsp/(s−αq)µ(Ω)−αp/(s−αq)

× ‖g‖αqp/(s−αq)
Lq(V ) MV |g|p(x). (39)

If the RHS in (37) is greater than σdiam Ω, then we take r = σdiamΩ. Then

Jσ,Ω
α,p g(x) ≤ C(diamΩ)αµ(Ω)−1/q‖g‖Lq(V ). (40)

Let A1 denote the set of points in Ω for which (38) holds and let A2 consist of
those points in Ω that satisfy (40). Write Ωt = {x ∈ Ω : Jσ,Ω

α,p g > t}. Then

µ(Ωt) ≤ µ(A1 ∩ Ωt) + µ(A2 ∩ Ωt). (41)
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If we take q = p, then inequality (34) follows from estimates (39), (40), and (41):
the weak type estimate for the maximal function MV |g|p (see Theorem 14.13) gives

µ(A1 ∩ Ωt) ≤ µ
({

CD‖g‖αp2/(s−αp)
Lp(V ) MV |g|p > tsp/(s−αp)

})

≤ CDt−p∗‖g‖αp2/(s−αp)
Lp(V ) ‖g‖p

Lp(V )

= CDt−p∗‖g‖p∗

Lp(V )

with D = (diam Ω)αsp/(s−αp)µ(Ω)−αp/(s−αp), and from (40) we obtain A2 ∩ Ωt = ∅
when t ≥ C(diamΩ)αµ(Ω)−1/p‖g‖Lp(V ) and for all smaller t

µ(A2 ∩ Ωt) ≤ µ(Ω) ≤ C(diamΩ)αp∗µ(Ω)1−p∗/pt−p∗‖g‖p∗

Lq(Ω).

This completes the proof of inequality (34). Inequality (35) follows from Theo-
rem 14.11.

To prove inequality (36) we take Lq/p-norms on both sides of inequalities (39)
and (40) and after that we apply Maximal Theorem 14.13; we use the fact that
q/p > 1.

Case αp = s. Notice first that

exp(t) =
∑

k≥0

tk

k!
.

Secondly, (35) and the Hölder inequality give for each integer k ≥ 1 the estimate

‖Jσ,Ω
α,p g‖Lk(Ω,µ) ≤ C(diamΩ)αµ(Ω)1/k−1/s‖g‖Ls(V,µ).

By keeping good track of the constants appearing in the proof of (35), one can
check that C = C0(σ, s, b, Cd)k. The desired inequality follows by summing over k.
We leave the details to the reader as we prove a better estimate in the next section
under slightly stronger assumptions.

Case αp > s. The lower bound on µ gives

Jσ,Ω
α,p g(x) =

∑

2i≤2σdiam Ω

2iαµ(Bi(x))−1/p

(∫

Bi(x)

|g|p dµ

)1/p

≤ C
∑

2i≤2σ diam Ω

2i(α−s/p)(diamΩ)s/pµ(Ω)−1/p‖g‖Lp(V )

≈ C(diamΩ)αµ(Ω)−1/p‖g‖Lp(V ).

The proof of Theorem 5.3 is complete.

Proof of Theorem 5.1. All the inequalities but (22) and (25) follow directly from
Theorem 5.2 and Theorem 5.3. The Hölder continuity estimate (25) follows using
(24) and the lower bound (21). If p∗ < 1, then inequality (22) is trivial as it is
weaker than the p-Poincaré inequality. If p∗ ≥ 1, (22) follows from Theorem 2.3
and from the first inequality in Theorem 5.1. The proof is complete.
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6 Trudinger inequality

When X = IRn and u belongs to the Sobolev class W 1,n(Ω) for a ball Ω, one has
the following Trudinger inequality [241]:

∫

Ω

exp
(

C1|u− uΩ|
||∇u||Ln(Ω)

)n/(n−1)

dx ≤ C2.

Here C1 and C2 depend only on the dimension n. As in case of the Poincaré in-
equality, the exact value of uΩ is not crucial. In fact, it is easy to see that we may
replace it by the average of u over some fixed ball B ⊂⊂ Ω. In the previous section
we observed that an s-Poincaré inequality with s not exceeding the lower order of
the doubling measure results in exponential integrability. We do not know if one
could get an analog of the Trudinger inequality in such a general setting but we
doubt it.

In this section we verify an analog of the Trudinger inequality for connected
doubling spaces. Thus the only assumption we need to add is that X be connected.
For related results, see Bakry, Coulhon, Ledoux and Saloff-Coste [4], Buckley and
O’Shea [21], Coulhon [54], and MacManus and Pérez [185].

Theorem 6.1 Assume that X is a connected doubling space and that the measure µ
satisfies condition (21) with s > 1. Suppose that the pair u, g satisfies an s-Poincaré
inequality. Then there are constants C1 and C2 such that

∫

B

exp
(

C1µ(B)1/s|u− uB |
diam (B)‖g‖Ls(5σB)

)s/(s−1)

dµ ≤ C2 (42)

for any ball B ⊂ X.

Remarks. 1) It is easy to deduce from the connectivity of the space that condition
(21) cannot hold with s < 1. We leave the details to the reader. 2) The argument
employed in the proof actually shows that the inequality holds with 5σB replaced
by (1 + ε)σB.

For the proof of this theorem we need a chain condition, a version of which will
also be used later on.

We say that X satisfies a chain condition if for every λ ≥ 1 there is a constant
M such that for each x ∈ X and all 0 < r < R < diam (X)/4 there is a sequence of
balls B0, B1, B2, . . . , Bk for some integer k with

1. B0 ⊂ X \B(x,R) and Bk ⊂ B(x, r),

2. M−1diam (Bi) ≤ dist (x,Bi) ≤ Mdiam (Bi) for i = 0, 1, 2, . . . , k,

3. there is a ball Ri ⊂ Bi∩Bi+1, such that Bi∪Bi+1 ⊂ MRi for i = 0, 1, 2, . . . , k,

4. no point of X belongs to more than M balls λBi.
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The sequence {Bi} will be called a chain associated with x, r,R.

The existence of a doubling measure on X does not guarantee a chain condition.
In fact, such a space can be badly disconnected, whereas a space with a chain
condition cannot have “large gaps”.

Let us show that each connected doubling space satisfies a chain condition. Fix
ε. Write Aj(x) = B(x, 2j) \ B(x, 2j−1) for r/4 ≤ 2j ≤ 2R. As µ is doubling we
can cover each annulus Aj(x) by at most N balls of radii equal to ε2j with N
independent of x, j. Naturally, N depends on ε, and the smaller the ε, the larger
the number N. Consider the collection of all these balls when r/4 ≤ 2j ≤ 2R. When
ε is sufficiently small, depending only on λ, the balls 2λB with B corresponding to
Aj(x) and 2λB′ with B′ corresponding to Ai(x) do not intersect provided |i−j| ≥ 2.
The balls B corresponding to the annuli Aj(x) together with B(x, r/2), X\B(x, 2R)
form an open cover of X. As X is connected and contains a point inside B(x, r/2)
and another point outside B(x, 2R), we can pick a chain of these balls B that joins
B(x, r/2) to X \B(x, 2R). The required chain is then obtained as the collection of
the balls 2B from the balls B different from B(x, r/2) in this chain.

Lemma 6.2 Assume that X satisfies a chain condition and suppose that a pair
u, g satisfies an s-Poincaré inequality for all balls in X. Then the following holds for
almost every x. Let 0 < R < diam (X)/4. There is r and a chain {Bi} corresponding
to x, r,R with λ = σ, such that

|u(x)− uB0 | ≤ C

k∑

i=0

ri

(∫

σBi

gs dµ

)1/s

. (43)

Proof. As λ is fixed, conditions 1 and 2 of the definition of the chain and the
Lebesgue differentiation theorem (see Theorem 14.15) guarantee that uBk

→ u(x)
for almost all x when r tends to zero (here k = kr). For such a point we have for
appropriate r and corresponding k

|u(x)− uB0 | ≤ 2
k∑

i=0

|uBi − uBi+1 |

≤ 2
k∑

i=0

(|uBi − uRi |+ |uBi+1 − uRi |)

≤ 2
k∑

i=0

(∫

Ri

|u− uBi | dµ +
∫

Ri

|u− uBi+1 | dµ

)

≤ C

k∑

i=0

∫

Bi

|u− uBi | dµ

≤ C

k∑

i=0

ri

(∫

σBi

gs dµ

)1/s

.
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The proof is complete.

Proof of Theorem 6.1. By the discussion preceding the previous lemma we
know that X satisfies a chain condition. Thus we may assume that the pointwise
inequality (43) holds for a given point x. Write r for the radius of the fixed ball B.
We may assume that diam B0 ≥ r/C and that Bi ⊂ 5B, σBi ⊂ 5σB for each i.

Fix q > max{s, s/(s− 1)}. For 0 < ε < q−1 we have that

|u(x)− uB0 | ≤ C

k∑

i=0

ri

(∫

σBi

gs dµ

)1/s

= C
∑

i

r1−ε
i µ(σBi)1/q−1/s

(
rqε
i

∫

σBi

gs dµ

)1/q (∫

σBi

gs dµ

)1/s−1/q

.

As (s− 1)/s + 1/q + (1/s− 1/q) = 1, we can use Hölder’s inequality to obtain the
estimate

|u(x)− uB0 | ≤ C

(∑

i

(
r1−ε
i µ(σBi)1/q−1/s

) s
s−1

) s−1
s

×
(∑

i

rqε
i M5σBgs(x)

)1/q

‖g‖1−s/q
Ls(5σB);

here we replaced
∫

σBi
gs dµ by CM5σBgs(x) and used the bounded overlap of the

balls σBi to replace the sum of the integrals of gs over these balls by the integral
of gs over 5σB.

To estimate the second term in the product, we sum over the balls Bi that
correspond to an annulus Aj ; let us write Ii,j for the set of indices i corresponding
to Aj . By the construction of the chain we know that we have at most N balls
for each fixed j. Moreover the radii of balls corresponding to different Aj form a
geometric sequence and hence

∑

i

rqε
i M5σBgs(x) = M5σBgs(x)

∑

j

∑

Ii,j

rqε
i

≤ CM5σBgs(x)rqε(1− 2−qε)−1

≤ C(qε)−1rqεM5σBgs(x),

where C is independent of q, ε. In the last inequality we employed the fact that
qε < 1.

For the first term, we use the lower bound on µ(Bi) and argue as above:

∑

i

(
r1−ε
i µ(σBi)1/q−1/s

)s′

≤ C
(
r1−s/qµ(B)1/q−1/s

)s′ ∑

i

r
(s/q−ε)s′

i

≤ Cq(s− εq)−1
(
r1−εµ(B)1/q−1/s

)s′

,



32 PIOTR HAJ LASZ AND PEKKA KOSKELA

where s′ = s/(s− 1) and C is an absolute constant.

If we let ε = sq−2, then q(s− εq)−1 = q(s− s/q)−1 ≤ q, as q ≥ s/(s− 1). Hence

|u(x)− uB0 | ≤ C‖g‖1−s/q
Ls(5σB)µ(B)1/q−1/sq1/q+(s−1)/sr (M5σBgs(x))1/q ;

here C is an absolute constant.

We proceed to estimate the integrals of |u− uB |. By the triangle inequality

|u− uB | ≤ |u− uB0 |+ |uB0 − uB | .

By controlling the second term by the Poincaré inequality and using the above
pointwise estimate for the first term we arrive at

∫

B

|u− uB |q/2 dµ ≤ Cqq1/2+(s−1)q/2sµ(B)1/2−q/2s‖g‖q/2−s/2
Ls(5σB)r

q/2

×
∫

B

(M5σBgs)1/2
dµ + Cqrq/2µ(B)1−q/2s‖g‖q/2

Ls(5σB) .

By the Maximal Theorem (see Theorem 14.13) and Theorem 14.11 in the appendix

∫

B

(Mσrg
s)1/2

dµ ≤ C

(
µ(B)

∫

5σB

gs dµ

)1/2

and hence we conclude that

∫

B

|u− uB |q/2 dµ ≤ Cqq1/2+(s−1)q/2s

(
rs

∫

5σB

gs dµ

)q/2s

,

where C does not depend on q. Notice that this estimate holds as well for q ≤
max{s, s/(s− 1)} by Theorem 5.1.

Now

exp (t|u(x)− uB |)s/(s−1) =
∑

k≥0

(t|u(x)− uB |)ks/(s−1)

k!
.

Integrating over B and using the above estimate we obtain

∫

B

exp (t|u(x)− uB |)s/(s−1)
dµ ≤ 1 +

∑

k>0

(
(Ck)1/2+k(k!)−1

× (
trµ(5σB)−1/s‖g‖Ls(5σB)

)ks/(s−1)
)

.

This series converges when trµ(5σB)−1/s‖g‖Ls(5σB) ≤ C0, where C0 depends only
on C, s, and the claim follows.
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7 A version of the Sobolev embedding theorem on
spheres

In order to state our version of the Sobolev embedding theorem on spheres we first
have to deal with the problem that u is only defined almost everywhere. To take
care of this matter we define u(x) everywhere by the formula

u(x) := lim sup
r→0

∫

B(x,r)

u(z) dµ(z). (44)

As almost every point is a Lebesgue point, we have only modified u in a set
of measure zero. This redefinition of u essentially corresponds to picking a repre-
sentative of u with nice continuity properties; for related results see HajÃlasz and
Kinnunen [104], and Kinnunen and Martio [157].

We again assume that X is a doubling space and

µ(B(x, r)) ≥ Cbµ(B0)
(

r

r0

)s

whenever B(x, r) ⊂ B0 = B(x0, r0). Recall that such an estimate follows from the
doubling condition.

Theorem 7.1 Suppose that the pair u, g satisfies a p-Poincaré inequality and that
p > s−1. Then the restriction of u to the set {x : d(x, x0) = r} is uniformly Hölder
continuous with exponent 1− (s− 1)/p for almost every 0 < r < r0. In particular,
there is a constant C1 and a radius r0/2 < r < r0 such that

|u(x)− u(y)| ≤ C1d(x, y)1−(s−1)/pr
(s−1)/p
0

(∫

5σB0

gp dµ

)1/p

whenever d(x, x0) = d(y, x0) = r. The constant C1 only depends on p, s, CP , Cb,
Cd.

In the case of Carnot groups a related result has been independently obtained by
Vodop’yanov, [252].

The usual Sobolev embedding theorem on spheres (cf. [187, Lemma 2.10]) is
based on showing that the trace of a Sobolev function belongs to a Sobolev class
on almost all spheres. One then uses the Sobolev embedding on the sphere that is
lower dimensional than the ball. In our situation a sphere can be very wild and this
approach cannot be used. We prove the above result by using a maximal function
argument.

The reader may wonder why the integration is taken over all of 5σB0 and not
over an annulus. The reason for this is that points on the sphere cannot necessarily
be joined inside an annulus centered at x0. For a trivial example, let X be the
real axis. If we assume that X has reasonable connectivity properties, we obtain a
stronger conclusion.
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Theorem 7.2 Suppose that the pair u, g satisfies a p-Poincaré inequality and that
p > s−1. Assume that any pair of points in B0 \ 1

2B0 can be joined by a continuum
F in CB0 \ C−1B0 with diam F ≤ Cd(x, y). Then there is a constant C1 and a
radius r0/2 < r < r0 such that

|u(x)− u(y)| ≤ C1d(x, y)1−(s−1)/pr
(s−1)/p
0

(∫

C1B0\C−1
1 B0

gp dµ

)1/p

whenever d(x, x0) = d(y, x0) = r. The constant C1 only depends on p, s, C, CP ,
Cb, Cd.

By combining Proposition 4.5 and Theorem 7.2 we obtain the following corollary
(recall that a p-Poincaré inequality guarantees a q-Poincaré inequality when q > p).

Corollary 7.3 Suppose that C−1rs ≤ µ(B(x, r)) ≤ Crs with s > 1 for each x and
all r. Let s − 1 < p ≤ s. Assume that for each pair u, g of a continuous function
and its upper gradient we have a p-Poincaré inequality. Then there is a constant
C1 and a radius r0/2 < r < r0 such that

|u(x)− u(y)| ≤ C1d(x, y)1−(s−1)/pr
(s−1)/p
0

(∫

C1B0\C−1
1 B0

gp dµ

)1/p

whenever the pair u, g satisfies the p-Poincaré inequality and d(x, x0) = d(y, x0) = r.
The constant C1 only depends on p, s, C, CP .

In the preceding corollary we assumed that s > 1 and that p ≤ s. Both of these
assumptions are necessary. Indeed, the 1-Poincaré inequality holds for the real axis,
but one needs to integrate over balls instead of annuli. The union of the two closed
cones in IRn with a common vertex of Example 4.2 supports a p-Poincaré inequality
for all p > n and µ(B(x, r)) ≈ rn for each x and all r. One again needs to integrate
over balls instead of annuli.

Before proceeding with the proofs of Theorems 7.1 and 7.2 let us discuss one
more application. We say that u is monotone if

sup
y,w∈B(x,r)

|u(x)− u(y)| ≤ sup {|u(y)− u(w)| : d(x, y) = d(x,w) = r}

for each ball B(x, r). Suppose that u is monotone, u has an upper gradient in Ls

and the assumptions of the previous corollary hold. Then u is continuous and

|u(x)− u(y)| ≤ C

(
log

C1M

d(x, y)

)−1/s

‖g‖s,B(x,C1M)

for all x, y with d(x, y) ≤ M. This estimate is commonly used in the Euclidean
setting. We leave it to the reader to deduce this conclusion from the above corollary.
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Proof of Theorem 7.1. Fix x, y ∈ X and 0 ≤ α < 1. Set B0 = B(x, d(x, y)), and
define Bi = B(x, 2id(x, y)) when i ≤ 1 and Bi = B(y, 2−id(x, y)) when i > 1.

Then, using the Poincaré inequality and the triangle inequality as in the proof
of Theorem 3.2, we have that

|u(x)− u(y)| ≤ C

∞∑

i=−∞

∫

Bi

|u− uBi | dµ

≤ C

∞∑

i=−∞
ri

(∫

2σBi

gp

)1/p

= C

∞∑

i=−∞
r1−α
i rα

i

(∫

2σBi

gp

)1/p

≤ Cd(x, y)1−α
(
M2σd(x,y),p,αg(x) + M2σd(x,y),p,αg(y)

)
,

where

MR,p,αg(x) = sup
r<R

rα

(∫

B(x,r)

gp dµ

)1/p

.

Observe that, according to (44), the above inequality holds everywhere (cf. [104]).

Write Gt = {x ∈ B0 : M4σr0,p,αg(x) < t}. Then

|u(x)− u(y)| ≤ Ctd(x, y)1−α (45)

for all x, y ∈ Gt.

By the covering Lemma 14.12 and the lower bound on µ(B(x, r)) we have

Hs−αp
∞ (B0 \Gt) ≤ Ct−prs

0

∫

5σB0

gpdµ .

Recall that the Hausdorff content Hγ
∞(E), γ ≥ 0, is defined as the infimum of

∑
i rγ

i ,
where the infimum is taken over the set of all countable coverings of the set E by
balls with radii ri.

Define v : B0 → [0, r0) by the formula v(x) = d(x, x0). Then v is Lipschitz
continuous with constant 1, and hence, for each set E ⊂ B0,

Hs−αp
∞ (v(E)) ≤ Hs−αp

∞ (E).

Let α = (s− 1)/p. Then

H1
∞(v(B0 \Gt)) ≤ Ct−prs

0

∫

5σB0

gp dµ .

This implies that the length of the set v(B0 \Gt) ⊂ [0, r0) goes to 0 as t goes to ∞.
Now the theorem follows from the observation that for r ∈ [0, r0) \ v(B0 \ Gt) the
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“sphere” {x : d(x, x0) = r} is contained in Gt and hence inequality (45) applies.
The proof is complete.

Proof of Theorem 7.2. Join the points x, y by a continuum F in A = CB0\B0/C
with diam (F ) ≤ Cd(x, y). Let r = (100Cσ)−1d(x, y), and consider the collection of
all balls B(w, r) with w ∈ A ∩B(x, 2Cd(x, y)). As µ is doubling we find a cover of
A∩B(x, 2Cd(x, y)) consisting of k of these balls with k depending only on C,Cd, σ.
Pick those balls from this cover that intersect F and order them into a chain. That
is, denoting the balls by Vi, Vi ∩ Vi+1 6= ∅ for i = 1, ..., l − 1, and x ∈ V1, y ∈ Vl,
assuming that we have l balls. The claim of Theorem 7.2 follows repeating the proof
of Theorem 7.1 with the following modification: we define Bi = Vi for i = 1, ..., l,
Bi = B(x, 2i(100Cσ)−1d(x, y)) for i < 0 and Bi = B(y, 2−i+l(100Cσ)−1d(x, y)) for
i > l. It is helpful to notice here that the balls Bi, for 1 ≤ i ≤ l, have uniformly
bounded overlap as l ≤ k.

8 Rellich-Kondrachov

The classical Rellich–Kondrachov embedding theorem states that, given a bounded
domain Ω ⊂ IRn with smooth boundary, the Sobolev space W 1,p(Ω), 1 ≤ p < ∞,
is compactly embedded into Lq(Ω), where q ≥ 1 is any finite exponent when p ≥ n
and any exponent strictly less that np/(n − p) when p < n. Of course, here, the
Sobolev space W 1,p(Ω) is defined in the classical way.

In the case of Sobolev spaces associated with vector fields, some compact em-
bedding theorems have been obtained by Danielli, [60], Franchi, Serapioni and Serra
Cassano, [85], Garofalo and Lanconelli, [90], Garofalo and Nhieu, [92], Lu, [176],
Manfredini, [188], Rothschild and Stein, [218].

In this section we extend the Rellich–Kondrachov theorem to the setting of
metric spaces. As we will see in Section 11, Sobolev inequalities for vector fields
are special cases of Sobolev inequalities on metric spaces. Hence our result covers
many of the above results. It extends also an earlier result of HajÃlasz and Koskela,
[106], from the Euclidean setting. In the case of Sobolev spaces on metric spaces
introduced by HajÃlasz, [102], a related compactness theorem has been proved inde-
pendently by KaÃlamajska, [147].

Let µ be a Borel measure on X, doubling on Ω. As usual, Ω ⊂ X denotes
an open subset of a metric space. In order to prove the compactness theorem for
Sobolev functions on Ω, we need to assume that a kind of embedding theorem holds
on Ω. Thus, until the end of the section, we make the following assumption:

The open set Ω ⊂ X satisfies µ(Ω) < ∞ and there exist exponents p > 0 and
q > 1 such that every pair u, g which satisfies a p-Poincaré inequality (5) in Ω (with
given constants CP , σ) satisfies also the global Sobolev inequality

(∫

Ω

|u|q dµ

)1/q

≤ C

(∫

Ω

|u| dµ +
(∫

Ω

gp dµ

)1/p
)

. (46)
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Observe that (46) follows from the Sobolev–Poincaré inequality (7).

Theorem 8.1 Let X, Ω, µ, p > 0 and q > 1 be as above. Let {ui, gi} be a
sequence of pairs, all of which satisfy the p-Poincaré inequality (5) in Ω with given
constants CP , σ. If the sequence ‖ui‖L1(Ω)+‖gi‖Lp(Ω) is bounded, then {ui} contains
a subsequence that converges in Lα(Ω) for any 1 ≤ α < q to some u ∈ Lq(Ω).

Proof. Let {ui, gi} be a sequence satisfying the assumptions of the theorem. Since
the sequence {ui} is bounded in Lq(Ω), we can select a subsequence (still denoted
by {ui}) weakly convergent in Lq(Ω) to some u ∈ Lq(Ω). It remains to prove that
this sequence converges to u in the norm of Lα(Ω) for every 1 ≤ α < q.

Lemma 8.2 Let Y be a set equipped with a finite measure ν. Assume that {vi} ⊂
Lq(Y ), 1 < q < ∞, is a bounded sequence. If vi converges in measure to v ∈ Lq(Y ),
then vi converges to v in the norm of Lα(Y ) for every 1 ≤ α < q.

The lemma is a variant of Proposition 14.9. We postpone the proof of the lemma
for a moment and we show how to use it to complete the proof of the theorem.
According to the lemma it remains to prove that the functions ui converge to u in
measure.

Assume that Ωc 6= ∅; otherwise the proof is even simpler. For t > 0 set Ωt =
{x ∈ Ω : dist (x, Ωc) > t}. Fix ε > 0 and t > 0. For h < t/σ (recall that σ appears
in (5)) and x ∈ Ωt we set

uh(x) =
∫

B(x,h)

u dµ and ui,h(x) =
∫

B(x,h)

ui dµ.

We have

µ({x ∈ Ωt : |ui − u| > ε}) ≤ µ({x ∈ Ωt : |ui − ui,h| > ε/3})
+ µ({x ∈ Ωt : |ui,h − uh| > ε/3})
+ µ({x ∈ Ωt : |u− uh| > ε/3})
= Ai,h + Bi,h + Ch.

Note first that

|ui(x)− ui,h(x)| ≤ Ch (Mσhgp
i (x))1/p ≤ Ch (MΩgp

i (x))1/p

by (16) for almost every x ∈ Ωt. Thus the maximal theorem (see Theorem 14.13)
gives

Ai,h ≤ µ
({

MΩgp
i > C

( ε

h

)p})
≤ C

(
h

ε

)p ∫

Ω

gp
i dµ

h→0−→ 0.

This convergence is uniform with respect to i as the sequence ‖gi‖Lp(Ω) is bounded.
It follows from the definition of the weak convergence in Lq(Ω) that for every x ∈ Ω,
ui,h(x) → uh(x) as i →∞, so Bi,h → 0 as i →∞. Finally Ch → 0 by the Lebesgue
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differentiation theorem (see Theorem 14.15). Now it easily follows that ui → u in
measure. Thus the proof is completed provided we prove the lemma.

Proof of the lemma. Fix 1 ≤ α < q. It suffices to prove that every subsequence
of {vi} contains a subsequence convergent to v in Lα(Y ). In what follows all the
subsequences of {vi} will be simply denoted by {vi}. Take an arbitrary subsequence
of {vi}. The convergence in measure implies that this subsequence contains a sub-
sequence which is convergent almost everywhere. Then, by Egorov’s theorem, for
any ε > 0 there exists a measurable set E ⊂ Y with the property that ν(Y \E) < ε
and vi converges to v uniformly on E. Hence

(∫

Y

|vk − vj |α dν

)1/α

≤ ν(Y \ E)1/α−1/q

(∫

Y \E
|vk − vj |q dν

)1/q

+
(∫

E

|vk − vj |α dν

)1/α

≤ Cε1/α−1/q +
(∫

E

|vk − vj |α dν

)1/α

,

which gives lim supj,k→∞ ‖vk − vj‖Lα(Y ) ≤ Cε1/α−1/q. Since ε > 0 was arbitrary,
the subsequence {vi} is a Cauchy sequence in Lα(Y ) and hence the lemma follows.
This completes also the proof of the theorem.

Below we state another version of the compactness theorem. The proof follows
by some obvious modifications to the above proof.

Theorem 8.3 Let X be a doubling space and let s be the lower decay order of the
measure from (21). Suppose that all the pairs ui, gi satisfy a p-Poincaré inequal-
ity in X (with fixed constants CP , σ). Fix a ball B and assume that the sequence
‖ui‖L1(B) + ‖gi‖Lp(5σB) is bounded. Then there is a subsequence of {ui} that con-
verges in Lq(B) for each 1 ≤ q < ps/(s− p), when p < s and for each q ≥ 1 when
p ≥ s.

Notice that this theorem gives compactness in the entire space provided the space
has finite diameter.

We would like to thank Agnieszka KaÃlamajska for an argument that simplified
our original proof of the compactness theorem.

9 Sobolev classes in John domains

In the p-Poincaré inequality (5) we have allowed g to be integrated over a larger
ball than u is integrated over. One cannot, in general, reduce the radii of the
balls on the right hand side. To see this, consider the following example: let Ω =
(0, 1)∪(2, 3)∪(4, 5) and u ≡ 0 on (0, 1), u ≡ 1 on (2, 3)∪(4, 5), g ≡ 0 on (0, 1)∪(2, 3)
and g ≡ const. is very large on (4, 5). The details are left to the reader.



SOBOLEV MET POINCARÉ 39

Hence in the Sobolev type inequalities like Theorem 5.1 or Theorem 6.1 we have
to integrate g over a larger ball as well.

We show in this section that one can use balls of the same size provided the
geometry of balls is sufficiently nice. This leads us to define John domains.

The first subsection is devoted to study of the geometry of John domains and
in the second subsection we study Sobolev inequalities in John domains.

9.1 John domains

When dealing with Sobolev type inequalities in domains in IRn one usually assumes
that the domain is “nice” in the sense that its boundary is locally a graph of a
Lipschitz function. This notion of being “nice” is not appropriate for the setting
of metric spaces and so one has to define a “nice” domain using only its interior
properties. This leads to John domains.

Definition. A bounded open subset Ω of a metric space is called a John domain
provided it satisfies the following “twisted cone” condition: There exist a distin-
guished point x0 ∈ Ω and a constant C > 0 such that, for every x ∈ Ω, there is a
curve γ : [0, l] → Ω parametrized by the arclength and such that γ(0) = x, γ(l) = x0

and
dist (γ(t), Ωc) ≥ Ct. (47)

(The length l depends on x.)

Notice that every rectifiable curve in a metric space can be parametrized by
arclength, see Busemann [22], or Väisälä [246].

John domains in IRn were introduced by Martio and Sarvas, [192]. They are
named after F. John who considered similar domains in [137].

The class of John domains in IRn is much larger than the class of domains with
the interior cone condition. In general, the Hausdorff dimension of the boundary of
a John domain can be strictly larger than n− 1.

The above definition of John domain is still not appropriate for many metric
spaces, as points in an arc-wise connected metric space may not be joinable by
rectifiable curves. For example, if Γ ⊂ IR2 is the von Koch snowflake curve and
Ω ⊂ Γ is a nontrivial subcurve, then Ω is not a John domain. However, we would
like to include at least some of the metric spaces that lack rectifiable curves in the
class of John domains; see Example 9.1. The following definition seems to give a
proper generalization of John domains.

Definition. A bounded open subset Ω of a metric space (X, d) is called a weak John
domain provided there is a distinguished point x0 ∈ Ω and a constant 1 ≥ CJ > 0
such that for every x ∈ Ω there exists a curve γ : [0, 1] → Ω such that γ(0) = x,
γ(1) = x0 and for every t ∈ [0, 1]

dist (γ(t), Ωc) ≥ CJd(x, γ(t)). (48)
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We call such a curve a weak John curve. If Ωc = ∅, then we set dist (γ(t), Ωc) = +∞
and hence (48) is always satisfied.

Notice that this definition can be also used in the setting of quasimetric spaces
(i.e., when the triangle inequality is replaced by ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)),
K ≥ 1). In general, it can happen that even a very nice metric space does not
contain nontrivial rectifiable curves. With the metric ρ(x, y) = |x − y|1/2 on the
real axis, any interval is of infinite length.

Example 9.1 If f : S2 → S2 is a quasiconformal mapping and γ ⊂ S2 is any
smooth Jordan curve, then any connected part of Γ = f(γ) is a weak John domain.
This includes the class of Jordan curves Γ ⊂ S2 such that both components of S2\Γ
are John domains, see Näkki and Väisälä, [205].

There are also many other fractal sets whose “nice” subsets are weak John
domains, while they cannot be John domains because of the lack of rectifiable
curves.

Example 9.2 Let X be a bounded arc-wise connected metric space. If we take
Ω = X, then Ω is weak John domain, since (48) is satisfied for any curve joining x
and x0.

The reader may find the preceding example somewhat artificial. Let us briefly
clarify the issue. Our aim is to deduce a p-Poincaré inequality for Ω whenever
such an inequality holds for all balls in Ω, that is, B(x, r) ⊂ Ω. If we are given an
underlying space X, then we consider the balls of the space X that are contained in
Ω. Otherwise, the collection of the balls can be fairly large. For example, let Ω be
a bounded domain in IRn so that Ω equipped with the restrictions of the Euclidean
distance and volume is a doubling space. If we neglect IRn, and consider Ω as
our entire doubling space, we shall obtain a Poincaré inequality for Ω, provided we
assume a Poincaré inequality for the pair u, g for all balls of Ω. These balls consist
of the intersections of all Euclidean balls centered in Ω with Ω, see Corollary 9.9.

It is known that in the Euclidean case X = IRn the class of weak John domains
coincides with the class of John domains, see Väisälä, [247, Theorem 2.18]. In a
metric space this is no longer true. Clearly every John domain is a weak John
domain, but the converse implication may fail. However, we generalize the result
by proving that under a mild additional condition on the space X, the above two
definitions are equivalent, see Proposition 9.6.

The crucial property of John domains for us is that they satisfy a chain condition
that is essential in order to effectively use the Poincaré inequality on the balls
contained in the domain.

Let us slightly modify the chain condition we employed in connection with the
Trudinger inequality.

Definition. We say that Ω satisfies a C(λ,M) condition, where λ, M ≥ 1, if there
is a “central” ball B0 ⊂ Ω such that to every x ∈ Ω and every r > 0 there is a
sequence of balls B0, B1, B2, . . . , Bk, (B0 is fixed and k may depend on x, r) with
the following properties
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1. λBi ⊂ Ω for i = 0, 1, 2, . . . , k and Bk ⊂ B(x, r),

2. M−1ri ≤ dist (x, λBi) ≤ Mri for i = 1, 2, . . .,

3. there is a ball Ri ⊂ Bi ∩Bi+1, such that Bi ∪Bi+1 ⊂ MRi for i = 0, 1, 2, . . .,

4. no point of Ω belongs to more than M balls λBi.

A variant of the above chain condition was employed in HajÃlasz and Koskela,
[105], [106].

Theorem 9.3 Assume that X is a metric space which is doubling on Ω ⊂ X. If
Ω ⊂ X is a weak John domain, then Ω satisfies the C(λ,M) condition for any λ ≥ 1
with some M depending on λ, CJ and doubling constant only.

Proof. Assume first that Ω 6= X. Let B0 = B(x0, dist (x0, Ωc)/(4λ)). Assume that
x is far away from B0. Say x ∈ Ω \ 2B0. Let γ be a weak John curve. First we
define a sequence of balls B′

i as follows. The centers xi of all balls B′
i lie on γ.

Let B′
0 = 1

2B0. Assume that we have already defined B′
i. Then we trace along γ,

starting from the center xi towards x, until we leave B′
i for the last time. We let

this point be the center xi+1 of B′
i+1 and we define

r′i+1 =
CJ

4λ
d(x, xi+1) . (49)

Now we define Bi = 2B′
i. Properties 1. and 2. are evidently satisfied provided

we choose k large enough. Property 3. follows from the fact that consecutive balls
have comparable radii and xi+1 lies on the boundary of B′

i+1 (ball Ri is centered
at xi+1 and of radius equal to minimum of r′i, r′i+1). For property 4. assume that
y ∈ λBi1 ∩ λBi2 ∩ . . . ∩ λBil

. It follows from the construction that the radii of
the balls λBij , j = 1, 2, . . . , l and the distances between centers of the balls are all
comparable to d(x, y). Indeed, the radii are comparable and the distance of the
centers times 2λ are no less than the radii. Thus there exists a constant t > 0
such that tBi1 , tBi2 ,. . . , tBil

are pairwise disjoint and all these balls are contained
in a ball centered at y and having radius comparable to d(x, y), so the doubling
condition implies the upper bound for l.

The case when x ∈ 2B0 is similar. If x ∈ Ω \ B0, we define B1 = 1
4B0 and

the rest of the argument goes as above. Otherwise, we consider the union of two
curves: the weak John curve for x and the weak John curve for some point y with
d(y, x0) = 1

2dist (x0,Ωc). This curve, traced first from x to x0 and then from x0 to
y, is easily seen to be a John curve with a new distinguished point y and a new
John constant only depending on CJ . One can then define desired chain by first
replacing the role of x0 in the above argument by y and then adding a chain joining
y to x0. We leave the details to the reader.

Suppose finally that Ω = X. Then X is bounded. We fix x0 ∈ Ω and define
B0 = B(x0, diam (X)/4). The rest of the argument is the same as in the case
X 6= Ω except that in (49) we replace CJ by 1. The proof is complete.
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Lemma 9.4 Let (X, d) be an arcwise connected metric space such that bounded and
closed sets in X are compact. Assume that the metric d has the property that for
every two points a, b ∈ X the distance d(a, b) is equal to the infimum of the lengths
of curves that join a and b. Then there exists a shortest curve γ from a to b with
d(a, b) = d(a, z) + d(z, b), for every z ∈ γ.

Remark. Observe that the compactness of the sets that are bounded and closed is
a stronger assumption than the space being locally compact. The two conditions
are equivalent if the space is complete.

This lemma is due to Busemann, [22, page 25], (cf. [76, page 592]). The idea of
the proof is the following. Let {γk}∞k=1 be a sequence of rectifiable curves joining
a with b and such that the length of γk converges to d(a, b). Parametrize each
γk by arclength. Scaling the arclength parametrizations we may assume that all
curves are defined on the interval [0, 1]. Now it easily follows that the family {γk}
is equicontinuous (because of the good parametrization). By a standard diagonal
method we can find a subsequence of {γk} which converges on a dense subset of
[0, 1]. The equicontinuity implies the uniform convergence on the whole interval. It
is easy to prove that the length of the limiting curve is d(a, b). For a detailed proof,
see [22, page 25].

Corollary 9.5 Let the metric space (X, d) satisfy the assumptions of the above
lemma. Then each ball B ⊂ X is a John domain with a universal constant C.

This corollary shows that balls in a Carnot–Carathéodory metric (see Section 11)
are John domains.

The chain condition is closely connected to the concept of a John domain as
the following proposition shows. Analogs of this result can be found in Buckley,
Koskela and Lu, [20], and in Garofalo and Nhieu, [92], where the authors employ a
Boman chain condition that is different from ours.

Proposition 9.6 Let X be a metric space which is doubling on Ω ⊂ X. Assume
that Ω has the following local connectivity property: there exists a constant δ ≥ 1
such that for every ball B with δB ⊂ Ω, every two points x, y ∈ B can be connected
by a rectifiable curve contained in δB and of length less than or equal to δd(x, y).
Then the following three conditions are equivalent:

1. Ω is a John domain,

2. Ω is a weak John domain,

3. Ω is a C(λ,M)-domain for each λ ≥ 2δ and for some M.

Proof. The implications 1⇒ 2⇒ 3 hold without any local connectivity assumptions
on Ω: the first implication is immediate from the definitions and the second one
follows from Theorem 9.3. We prove the implication 3 ⇒ 1. Fix x ∈ Ω and
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let {Bi}k
0 be an associated chain, for λ = 2δ and r = d(x, Ωc)/λ. We define

Bk+1 = B(x, d(x, Ωc)/2). If the radii of the balls Bi were to increase geometrically
when i decreases we would obtain the John curve simply by joining the centers
of the balls in our chain by curves obtained from the local connectivity condition.
However, this need not be the case. This difficulty can be rectified as follows.

If the entire chain is contained in B(x,Cd(x, Ωc)), the bounded overlap condition
for the chain and the doubling property imply that the length of the subchain (i.e.,
the number of balls) joining the boundary of Bk+1 to x0 does not exceed a uniform
constant that depends on the doubling constant, the constants in the chain condition
and on C. The above connect-the-dots argument applies in this case. Otherwise,
we consider the subchain joining Bk+1 to ∂B(x,Cd(x, Ωc)). Again, the length of
this subchain is bounded by a uniform constant and the radii are bounded from
below by a multiple of d(x, Ωc). Pick a point y1 with d(y1, x) = Cd(x, Ωc) that is
contained in one of the balls of the subchain. If the constant C is sufficiently large,
then d(y1, Ωc) ≥ 2d(x, Ωc). Consider a chain joining y1 to x0. We now repeat the
above argument for the subchain joining y1 to ∂B(x,C2d(x, Ωc)). By continuing
inductively we obtain a new chain with the appropriate geometric behavior. We
leave it to the reader to provide the details.

9.2 Sobolev type inequalities

In the main theorem of this section (Theorem 9.7) we show how the claims of
Theorem 5.1 and Theorem 6.1 extend to the setting of John domains.

The study of the Sobolev type inequalities in John domains in IRn originated in
the papers of Boman, [13], Bojarski, [12], Goldshtein and Reshetnyak, [97], Hurri,
[130], Iwaniec and Nolder, [132], Kohn, [158], and Martio, [191]. It was then gen-
eralized to the Carnot–Carathéodory spaces by Jerison, [133], and then to more
general situations by Franchi, Gutiérrez and Wheeden, [76], Garofalo and Nhieu,
[92], HajÃlasz and Koskela, [105], Lu [175], [178]. Other related references include
Buckley and Koskela, [16], [17], [18], Buckley, Koskela and Lu, [19], [20], Chen and
Li, [37], Chua, [42], Hurri-Syrjänen, [131], HajÃlasz and Koskela, [106], Franchi, [74],
Lu, [178], Maheux and Saloff-Coste, [186], Saloff-Coste, [221], Smith and Stegenga,
[231], [232].

Buckley and Koskela, [17], [18], showed that the class of John domains is nearly
the largest one for which one can prove the Sobolev-Poincaré embedding theorem.

Theorem 9.7 Let X be a metric space equipped with a measure which is doubling
on a weak John domain Ω ⊂ X. Assume that the measure µ satisfies the condition

µ(B(x, r)) ≥ Cb

( r

diamΩ

)s

µ(Ω) ,

whenever x ∈ Ω and r ≤ diam Ω. If the pair u, g satisfies a p-Poincaré inequality
(5), p > 0, in Ω, then all the claims of Theorem 5.1 hold with B and 5σB replaced
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by Ω. For example, we get that if 0 < p < s and the pair u, g has the truncation
property, then

inf
c∈IR

(∫

Ω

|u− c|p∗ dµ

)1/p∗

≤ C(diamΩ)
(∫

Ω

gp dµ

)1/p

, (50)

where p∗ = sp/(s− p).

If in addition the space is connected and p = s > 1, then the Trudinger inequality
holds in Ω, i.e.,

∫

Ω

exp
(

C1|Ω|1/s|u− uΩ|
diamΩ ‖g‖Ls(Ω)

)s/(s−1)

dµ ≤ C2 .

The constants C, C1, C2 depend on p, s, σ, CP , Cd, Cb and CJ only.

Remarks. 1) As follows from the proof, the above theorem actually holds for any
open set that satisfies the C(σ,M) condition. 2) We have stated explicitly only a
generalization of one part of Theorem 5.1, inequality (50). It is left to the reader
to formulate generalizations of the other cases. 3) Observe that |u−uΩ| is replaced
by |u− c| and infimum over c ∈ IR is taken. This is necessary if p∗ < 1, as then we
cannot apply inequality (9).

Proof. By Theorem 9.3 the domain Ω satisfies the chain condition for any given
λ = σ. Thus we obtain inequality (43) with balls Bi as in the chain condition; in
particular with σBi ⊂ B. The proofs of Theorem 5.3 and Theorem 6.1 give the
claim.

Corollary 9.8 Let X be a doubling space satisfying the assumptions of Lemma 9.4.
Suppose that the measure µ satisfies condition (21). Then all the claims of Theo-
rem 5.1 hold with the integrals of g taken over B instead of 5σB. If, in addition,
the space is connected and s > 1, then the Trudinger inequality (42) holds with the
integral of g taken over B.

Remark. This corollary applies to the Carnot–Carathéodory spaces, see Proposi-
tion 11.5.

Proof. By Corollary 9.5 every ball is a John domain with a universal constant
C and hence we may apply Theorem 9.7. The proof is complete.

We have already mentioned that any bounded arc-wise connected set Ω = X is
a weak John domain. To illustrate this issue we state the following special case of
the above results.

Corollary 9.9 Let Ω ⊂ IRn be an arbitrary bounded domain. Assume that
|B(x, r) ∩ Ω| ≥ Crn, whenever x ∈ Ω and r ≤ diamΩ. Assume that u ∈ W 1,p(Ω),
1 ≤ p < n, satisfies

∫

Ω∩B

|u− uB | dx ≤ Cr

∫

2B∩Ω

|∇u| dx ,
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whenever B = B(x, r), x ∈ Ω and r ≤ diamΩ. Then the global Sobolev inequality

(∫

Ω

|u− uΩ|p
∗
dx

)1/p∗

≤ C(diamΩ)
(∫

Ω

|∇u|p dx

)1/p

holds, where p∗ = np/(n− p).

Proof. Take X = Ω. The condition |B(x, r) ∩ Ω| ≥ Crn means that the space X
equipped with the Lebesgue measure and the Euclidean metric is doubling. Since
X = Ω, we conclude that Ω is a weak John domain and hence the claim follows
from Theorem 9.7. The proof is complete.

As the last application of the chain method we improve the so-called representa-
tion formula (33). The result below is a generalization and simplification of earlier
results due to Capogna, Danielli and Garofalo, [30], Franchi, Lu and Wheeden, [80],
[81], and Franchi and Wheeden, [86].

Theorem 9.10 Assume that X is a metric space which is doubling on a weak John
domain Ω ⊂ X. If the pair u, g satisfies a p-Poincaré inequality (5), p > 0, in Ω,
then for almost every x ∈ Ω we have the inequality

|u(x)− uB0 | ≤ C

∞∑

j=−∞

(∫

Aj(x)∩Ω

g(y)pd(x, y)p

µ(B(x, d(x, y)))
dµ(y)

)1/p

,

where Aj(x) = B(x, 2j) \B(x, 2j−1) and B0 = B(x0,dist (x0, Ωc)/(4σ)), x0 ∈ Ω, is
a fixed ball.

In particular when p = 1 we get

|u(x)− uB0 | ≤ C

∫

Ω

g(y)d(x, y)
µ(B(x, d(x, y)))

dµ(y) .

Proof of Theorem 9.10. By Theorem 9.3 the domain satisfies the C(λ,M) condition
with λ = σ. Then we have

|u(x)− uB0 | ≤ 2
k∑

i=0

|uBi − uBi+1 |

≤ C

k∑

i=0

ri

(∫

σBi

gp dµ

)1/p

.

Each ball σBi is covered by a finite number, say no more than l, of the annuli Aj(x).
Hence if σBi ∩Aj(x) 6= ∅ we get

rj

(∫

σBi

gp dµ

)1/p

≤ C

j+l∑

ν=j−l

(∫

Aν(x)∩Ω

gp(y)d(x, y)p

µ(B(x, d(x, y)))
dµ(y)

)1/p

.
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Now observe that the doubling condition and the bounded overlapping of the balls
σBi implies that the number of balls σBi with σBi ∩ Aj(x) 6= ∅ is bounded by a
constant not depending on j. This easily implies the claim.

There are several related results when p = 1. For the Euclidean case see Gold-
shtein and Reshetnyak [97], Martio [191] and HajÃlasz and Koskela [106]; for the
Carnot–Carathéodory case see Franchi, Lu and Wheeden [80], Capogna, Danielli
and Garofalo [30], and for the case of doubling spaces see Franchi, Lu and Wheeden
[81], Franchi and Wheeden [86].

10 Poincaré inequality: examples

The purpose of this section is to illustrate the results obtained up to now in the
paper: we collect basic examples of pairs that satisfy p-Poincaré inequalities.

We will pay particular attention to the validity of the truncation property. Recall
that this property is used to prove the Sobolev embedding in the borderline case
with the sharp exponent.

Two classes of examples, Carnot–Carathéodory spaces and graphs, require a
longer presentation, and so we discuss them in Sections 11 and 12.

10.1 Riemannian manifolds.

The pair u, |∇u|, where u ∈ Lip (IRn), satisfies the 1-Poincaré inequality and hence
all the p-Poincaré inequalities for 1 ≤ p < ∞. Obviously the pair u, |∇u| also has
the truncation property.

This result extends to those Riemannian manifolds whose Ricci curvature is
bounded from below. Let M be a complete Riemannian manifold of dimension n,
and let g denote the Riemannian metric tensor. Denote the canonical measure on
M by µ. Assume that the Ricci curvature is bounded from below i.e. Ric ≥ −Kg
for some K ≥ 0. Then the Bishop–Gromov comparison theorem implies that

µ(B(x, 2r)) ≤ 2n exp(
√

(n− 1)K2r)µ(B(x, r)),

see Cheeger, Gromov and Taylor [35]. Moreover Buser’s inequality, [23], implies
that ∫

B

|u− uB | dµ ≤ C(n) exp(
√

Kr)r
∫

B

|∇u| dµ.

This shows that for any R > 0 both the doubling property and the 1-Poincaré
inequality hold on all balls with radii less than R. If we assume that the Ricci
curvature is nonnegative (i.e. K = 0), then we can take R = ∞. Obviously,
the pair of a Lipschitz function and the length of its gradient has the truncation
property in this setting as well.
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Thus the results of our paper imply that in the above setting, the Sobolev-
Poincaré inequality holds, see Maheux and Saloff-Coste [186] and also HajÃlasz and
Koskela [105].

An excellent introduction to the Buser inequality and the comparison theorems
can be found in Chavel’s book, [33].

For related and earlier works on Poincaré and Sobolev inequalities on manifolds
with a bound on the Ricci curvature see Chen and Li [37], Gallot [88], Kusuoka and
Stroock [163], Li and Schoen [170], Li and Yau [172], Saloff-Coste [220], [221].

10.2 Upper gradients.

Let (X, d, µ) be a metric space with a Borel measure, not necessarily doubling.

Definition. We say that a Borel function g : Ω → [0,∞] is an upper gradient on
Ω of another Borel function u : Ω → IR, if for every 1-Lipschitz curve γ : [a, b] → Ω
we have

|u(γ(b))− u(γ(a))| ≤
∫ b

a

g(γ(t)) dt. (51)

Note that g ≡ ∞ is an upper gradient of any Borel function u.

Definition. We say that the space supports a p-Poincaré inequality inequality on
Ω, 1 ≤ p < ∞, if every pair u, g of a continuous function u and its upper gradient g
on Ω satisfies the p-Poincaré inequality (5) in Ω (with some fixed constants CP > 0,
σ ≥ 1).

If we say that the space supports a p-Poincaré inequality, then we mean that
above Ω = X.

Since every rectifiable curve admits an arc-length parametrization that makes
the curve 1-Lipschitz, the class of 1-Lipschitz curves coincides with the class of
rectifiable curves, modulo a parameter change.

It is necessary to assume that the function g is defined everywhere, as we require
the condition (51) for all rectifiable curves. We refer the reader to Busemann, [22],
or Väisälä, [246, Chapter 1], for more information on integration over rectifiable
curves.

The notions of an upper gradient and a space supporting a p-Poincaré inequal-
ity were introduced by Heinonen and Koskela, [118], and then applied and further
developed by Bourdon and Pajot, [15], Cheeger, [34], Franchi, HajÃlasz and Koskela,
[77], Heinonen and Koskela, [119], Kallunki and Shanmugalingam, [148], Koskela
and MacManus, [161], Laakso, [164], Semmes, [226], Tyson, [245], and Shanmu-
galingam, [228].

Notice that above we required the p-Poincaré inequality for continuous functions
and their upper gradients. If X is sufficiently nice, say quasiconvex and each closed
ball in X is compact, then the p-Poincaré inequality follows for any measurable
function and its upper gradient. In fact, it would in such a setting suffice to assume
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the p-Poincaré inequality for Lipschitz functions and their upper gradients. For this
see [119].

Proposition 10.1 If u is a Lipschitz function on a Riemannian manifold M , then
any measurable function g such that g ≥ |∇u| everywhere is an upper gradient of
u. On the other hand, if g ∈ Lp(M) is an upper gradient of u ∈ Lp(M), then
u ∈ W 1,p(M) and g ≥ |∇u| almost everywhere.

Proof. The first part of the proposition is immediate; the second one follows from
the ACL characterization of the Sobolev space, see for example Ziemer [263, Theo-
rem 2.1.4].

Remark. It is not true, in general, that any upper gradient g of u ∈ C∞(M)
satisfies g ≥ |∇u| a.e., unless we assume that g is locally integrable. As an example
take u(x) ≡ x on [0, 1]. Let E ⊂ [0, 1] be a Cantor set with positive length and set
g(x) = 0 if x ∈ E, g(x) = ∞ if x 6∈ E. One can then improve this example and
even obtain g < ∞ everywhere.

Proposition 10.2 If u is a locally Lipschitz function defined on an open subset of
a metric space X, then the function |∇+u|(x) = lim supy→x |u(x)− u(y)|/d(x, y) is
an upper gradient of u.

Remark. The proposition is no longer true if we only assume that u is continuous.
Indeed, if u is the familiar non-decreasing continuous function u : [0, 1] → [0, 1]
such that u(0) = 0, u(1) = 1 and u is constant on connected components of the
complement of a Cantor set, then |∇+u(x)| = 0 a.e. in [0, 1].

Proof of the proposition. Let γ : [a, b] → Ω be 1-Lipschitz. The function u ◦
γ is Lipschitz and hence differentiable a.e. It easily follows that |(u ◦ γ)′(t)| ≤
|∇+u(γ(t))| whenever u ◦ γ is differentiable at t. Hence

|u(γ(b))− u(γ(a))| ≤
∫ b

a

|(u ◦ γ)′(t)| dt ≤
∫ b

a

|∇+u(γ(t))| dt.

The proof is complete.

Theorem 10.3 Assume that the space X supports a p-Poincaré inequality on Ω.
Then any pair u, g of a continuous function and its upper gradient on Ω has the
truncation property.

Proof. Let g be an upper gradient of a continuous function u. We have to prove a
family of p-Poincaré inequalities for all the pairs vt2

t1 , gχ{t1<v≤t2}, where v = ε(u−b)
(see the definition of the truncation property). Since g is an upper gradient of each
of the functions v, we can assume that u = v. Thus it remains to prove the inequality

∫

B

|ut2
t1 − ut2

t1B
| dµ ≤ Cr

(∫

σB

gpχ{t1<u≤t2} dµ

)1/p

. (52)
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The following lemma is due to Semmes, [226, Lemma C.19]. For reader’s con-
venience we recall the proof.

Lemma 10.4 Let g be an upper gradient of a continuous function u. Let 0 < t1 <
t2 < ∞, and let V be an arbitrary open set such that {t1 ≤ u ≤ t2} ⊂ V . Then gχV

is an upper gradient of ut2
t1 .

Proof. Let γ be a curve as in the definition of the upper gradient. We have to prove
the analog of (51) for ut2

t1 and gχV . If either γ is contained in V or γ is contained in
X \ {t1 ≤ u ≤ t2}, the claim is very easy. In the general case the curve γ splits into
a finite number of parts, each of which is contained in V or in X \ {t1 ≤ u ≤ t2}
and the lemma follows by applying the preceding special cases to those pieces of γ.

Now we can complete the proof of the theorem. Take t1 < s1 < s2 < t2. Then
{s1 ≤ u ≤ s2} ⊂ V , where V = {t1 < u < t2}. Applying the p-Poincaré inequality
to the pair us2

s1
, gχV and passing to the limit as s1 ↘ t1, s2 ↗ t2 we obtain the

desired inequality. This completes the proof.

Theorem 10.3 is interesting provided we can find sufficiently many examples
of non-smooth metric spaces that support a p-Poincaré inequality. The rest of
Section 10 is devoted to the discussion of such examples.

10.3 Topological manifolds.

Definition. A metric space X is called Q-regular, Q > 0, if it is a complete metric
space and there is a measure µ on X so that C1r

Q ≤ µ(B(x, r)) ≤ C2r
Q whenever

x ∈ X and r ≤ diam X.

It is well known that one can replace µ in the above definition by the Q-
dimensional Hausdorff measure, see for example [226, Lemma C.3].

Semmes, [226], proved a p-Poincaré inequality on a large class of Q-regular
metric spaces including some topological manifolds.

The following result is a direct consequence of a more general result of Semmes,
[226].

Theorem 10.5 Let X be a connected Q-regular metric space that is also an ori-
entable topological Q-dimensional manifold, Q ≥ 2, integer. Assume that X satisfies
the local linear contractibility condition: there is C ≥ 1 so that, for each x ∈ X and
R ≤ C−1diam X, the ball B(x,R) can be contracted to a point inside B(x,CR).
Then the space supports a 1-Poincaré inequality.

For related inequalities also see, David and Semmes [62], and Semmes [227].
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10.4 Gluing and related constructions.

Heinonen and Koskela, [118, Theorem 6.15], proved that gluing two spaces that
support a p-Poincaré inequality along a sufficiently large common part results in a
new space that also supports a p-Poincaré inequality. For example, one can glue two
copies of the unit ball of IR2 along the usual 1

3 -Cantor set and the resulting doubling
space supports a p-Poincaré inequality for all p > 2 − log 2

log 3 . This procedure allows
one to build plethora of examples. Hanson and Heinonen, [111], used this type of a
construction recently to build a space that supports the 1-Poincaré inequality but
has no manifold points.

Laakso, [164], constructed recently for each Q > 1 a Q-regular metric space
that supports the 1-Poincaré inequality. Notice that here Q need not be an integer.
These spaces do not admit bi-Lipschitz imbeddings into any Euclidean space. They
are obtained as quotients by finite to one maps of products of intervals with Cantor
sets.

The first authors to find non-integer dimensional Q-regular spaces that support
a Poincaré inequality were Bourdon and Pajot, [15]. Their examples are boundaries
of certain hyperbolic buildings.

10.5 Further examples.

A huge class of examples of spaces that support p-Poincaré inequalities is con-
tained in the class of so-called Carnot–Carathéodory spaces that are discussed in
Section 11. This class includes the Carnot groups that have been mentioned above.

One can also investigate p-Poincaré inequalities on graphs, see Section 12. Here
the situation is however different. Since the space is disconnected, the notion of an
upper gradient is absurd. Moreover, the truncation property does not hold and it
has to be modified.

There are also many other examples that will not be discussed in the paper. The
main class of such examples is given by Poincaré inequalities on Dirichlet spaces.
Roughly speaking we are given a pair u, g satisfying a p-Poincaré inequality on a
doubling space and in addition g is related to u in terms of a Dirichlet form, see
Biroli and Mosco [8], [9], [10], Jost [143], [144], [145], Sturm [236], [237], [238], [239].
Thus this example fits precisely into the setting of our paper. However, the presence
of the Dirichlet form gives additional structure that may lead to results not under
the scope of our more general setting.

The analysis of Dirichlet forms is closely related to the analysis on fractals and
especially with the spectral theory of Laplace operators, see, e.g., Barlow and Bass
[5], Jonsson [139], Kozlov [162], Kigami [151], [152], [153], Kigami and Lapidus
[154], Lapidus [167], [168], Metz and Sturm [197], Mosco [201]. As it follows from
recent works of Jonsson, [139], and Jonsson and Wallin, [141], the spectral theory of
the Laplace operators on fractals is also related to the theory of function spaces on
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fractal subsets of IRn developed by Jonsson and Wallin, [138], [140], see also Triebel
[244]. Some connections with the theory presented in this paper seem evident, but
a better understanding of those connections is still lacking.

11 Carnot–Carathéodory spaces

In this section we give an introduction to the analysis of vector fields — one of the
main areas where the theory of Sobolev spaces on metric spaces is applicable.

In the first subsection we define the so called Carnot–Carathéodory metric as-
sociated with a family of vector fields X = (X1, . . . , Xk). Then, in the second
subsection, we prove that with respect to this metric the “gradient” |Xu| associ-
ated with the given family of vector fields becomes the smallest upper gradient of
u. We also deal with Poincaré inequalities and Sobolev spaces associated with the
given system of vector fields.

The main novelty in our approach is that we develop the analysis on Carnot–
Carathéodory spaces from the point of view of upper gradients. The prime results
of the section are Theorem 11.7 and Theorem 11.12.

In the last three subsections we consider Carnot groups and vector fields satis-
fying Hörmander’s condition — both are examples where pairs u, |Xu| satisfy such
a Poincaré inequality. We also discuss some other classes of vector fields that do
not satisfy Hörmander’s condition, but still support Poincaré inequalities.

11.1 Carnot–Carathéodory metric.

Let Ω ⊂ IRn be an open and connected set and let X1, X2,. . . ,Xk be vector fields
defined in Ω, with real locally Lipschitz continuous coefficients. We identify the Xj ’s
with the first order differential operators that act on u ∈ Lip (Ω) by the formula

Xju(x) = 〈Xj(x),∇u(x)〉, j = 1, 2, . . . , k.

We set Xu = (X1u, . . . , Xku), and hence

|Xu(x)| =



k∑

j=1

|Xju(x)|2



1/2

.

With such a family of vector fields one can associate a suitable degenerate elliptic
operator, like for example L = −∑k

j=1 X∗
j Xj , where X∗

j is the formal adjoint of
Xj in L2 i.e.,

∫
Xju v =

∫
uX∗

j v for all u, v ∈ C∞0 . Both the Poincaré and Sobolev
inequalities for the pair u, |Xu| are then crucial for the Harnack inequality for
positive solutions to Lu = 0 via Moser’s iteration. Since the Poincaré inequality
implies the Sobolev inequality, one needs only check the validity of a Poincaré
inequality. Of course this requires strong restrictions on the class of vector fields.
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Even if one considers degenerate elliptic equations of the divergence form

Lu(x) = div (A(x)∇u(x)) (53)

with a symmetric, nonnegative semi-definite matrix A with smooth coefficients, it is,
in general, necessary to deal with vector fields that have only Lipschitz coefficients
as they arise in the factorization L = −∑

j X∗
j Xj , see Oleinik and Radkevic [208].

For more applications to PDE and references, see Section 13.

How does one prove a Poincaré inequality for the pair u, |Xu|? The natural
approach is to bound u by integrals of |Xu| along curves and then average the
resulting one-dimensional integrals to obtain the desired Poincaré inequality.

In order to have such bounds for u in terms of integrals of |Xu|, one would like
to know that |Xu| is an upper gradient of u. Unfortunately this is rarely the case.

For example, if we have only the single vector field X1 = ∂/∂x1 and γ(t) = (0, t),
u(x1, x2) = x2 in IR2, then |u(γ(1)) − u(γ(0))| = 1, while |Xu| ≡ 0, and so |Xu|
is not an upper gradient of u. It is not an upper gradient even up to a constant
factor. Roughly speaking, the problem is caused by the fact that γ̇ is not spanned
by the Xj ’s.

There is a brilliant idea that allows one to avoid this problem by introducing a
new metric (that is described below) in Ω that makes |Xu| an upper gradient of u
on a new metric space. The metric is such that it restricts the class of 1-Lipschitz
curves to those for which γ̇ is a linear combination of the Xj ’s. To be more precise,
it is not always a metric as it allows the distance to be infinite.

We say that an absolutely continuous curve γ : [a, b] → Ω is admissible if there
exist measurable functions cj(t), a ≤ t ≤ b, satisfying

∑k
j=1 cj(t)2 ≤ 1 and γ̇(t) =∑k

j=1 cj(t)Xj(γ(t)).

Note that if the vector fields are not linearly independent at a point, then the
coefficients cj are not unique.

Then we define the distance ρ(x, y) between x, y ∈ Ω as the infimum of those
T > 0 such that there exists an admissible curve γ : [0, T ] → Ω with γ(0) = x and
γ(T ) = y.

If there is no admissible curve that joins x and y, then we set ρ(x, y) = ∞.

Note that the space (Ω, ρ) splits into a (possibly infinite) family of metric spaces
Ω =

⋃
i∈I Ai, where x, y ∈ Ai if and only if x and y can be connected by an

admissible curve in Ai. Obviously (Ai, ρ) is a metric space and the distance between
distinct Ai’s is infinite.

If we only have the single vector field X1 = ∂/∂x1 in IR2, then ρ(x, y) = |x− y|
if x and y lie on a line parallel to the x1 axis; otherwise ρ(x, y) = ∞. On the other
hand, if Xj = ∂/∂xj for j = 1, 2, . . . , n in IRn, then ρ is the Euclidean metric.

The distance function ρ is given many names in the literature. We will use
the name Carnot–Carathéodory distance. A space equipped with the Carnot–
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Carathéodory distance is called a Carnot–Carathéodory space.

There are several other equivalent definitions for the Carnot–Carathéodory dis-
tance, see, e.g., Jerison and Sanchez-Calle [136] and Nagel, Stein and Wainger
[204]. The Carnot–Carathéodory distance can also be defined for Dirichlet forms,
see Sturm [238].

It has already been mentioned that Lipschitz vector fields arise in connection
with degenerate elliptic equations of the divergence form (53). It seems that Feffer-
man and Phong, [69], where the first to realize that many important properties of the
operator can be read off from the properties of the associated Carnot–Carathéodory
metric. Roughly speaking, they proved that, locally, subellipticity of (53) is equiv-
alent to the estimate ρ(x, y) ≤ C|x− y|ε for some ε > 0.

Other connections with degenerate elliptic equations will be discussed later on
in Section 13. We want to emphasize that the scope of applications of the Carnot–
Carathéodory geometry goes far beyond degenerate elliptic equations and it includes
control theory, CR geometry, and more recently quasiconformal mappings. We refer
the reader to the collection [240] of papers for a comprehensive introduction to the
Carnot–Carathéodory geometry. Other important references include: Franchi, [74],
Franchi and Lanconelli, [78], Garofalo and Nhieu, [92], [91], Gole and Karidi, [98],
Karidi, [150], Liu and Sussman, [174], Nagel, Stein and Wainger, [204], Pansu, [210],
Saloff-Coste, [221], [223], Strichartz, [235], Varopoulos, Saloff-Coste and Coulhon,
[251], to name a few.

Lemma 11.1 Let B(x,R) ⊂⊂ Ω and let supB(x,R) |X| = M . If γ : [0, T ] → Ω,
T < R/M , is an admissible curve with γ(0) = x, then γ([0, T ]) ⊂ B(x, R).

Proof. Assume by contradiction that the image of η is not contained in the ball
B(x,R). Then there is the smallest t0 ∈ (0, T ] such that |x− γ(t0)| = R. Note that
by the Schwartz inequality, |γ̇(t)| ≤ |X(γ(t))|. Hence

R = |x− γ(t0)| =
∣∣∣∣
∫ t0

0

γ̇(t) dt

∣∣∣∣ ≤
∫ t0

0

|X(γ(t))| dt ≤ MT,

which contradicts the assumption T < R/M . The proof is complete.

As as a corollary we obtain the following well known result.

Proposition 11.2 Let G ⊂⊂ Ω. Then there is a constant C > 0 such that

ρ(x, y) ≥ C|x− y|,

for all x, y ∈ G.

Proof. Let x, y ∈ G and let γ : [0, T ] → Ω, γ(0) = x, γ(T ) = y, be any admissible
curve. Fix ε > 0 such that Gε = {x ∈ IRn : dist (x,G) < ε} ⊂⊂ Ω and set
M = supGε |X|. Obviously B(x,R) ⊂ Gε, when R = min{|x − y|, ε}, and hence
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Lemma 11.1 implies that T ≥ R/M ≥ min{M−1, ε(Mdiam G)−1}|x − y|. This
completes the proof.

If ρ(x, y) < ∞ for all x, y ∈ Ω, then ρ is a true metric (called the Carnot–
Carathéodory metric). Proposition 11.2 implies that id : (Ω, ρ) → (Ω, | · |) is contin-
uous. However, it need not be a homeomorphism as the simple example of the two
vector fields ∂x and x+∂y in IR2 shows.

In order to avoid such pathological situations, it is often assumed in the literature
that

id : (Ω, ρ) → (Ω, | · |) is a homeomorphism. (54)

Fortunately, (54) is true for a large class of vector fields satisfying the so-called
Hörmander condition which includes Carnot groups (see the following subsections),
and the case of Grushin type vector fields like those in Franchi, [74], Franchi,
Gutiérrez and Wheeden, [76], and Franchi and Lanconelli, [78].

To keep the generality we do not assume (54) unless it is explicitly stated.

By a Lipschitz function on Ω we mean Lipschitz continuity with respect to the
Euclidean metric in Ω, but when we say that a function is Lipschitz on (Ω, ρ) we
mean Lipschitz with respect to the distance ρ. The same convention extends to
functions with values in Ω or in (Ω, ρ). Functions that are Lipschitz with respect to
ρ will be also called metric Lipschitz. Balls with respect to ρ will be called metric
balls and denoted by B̃.

Lemma 11.3 Every admissible curve γ : [0, T ] → Ω is Lipschitz.

Proof. Use the Schwartz inequality.

Proposition 11.4 A mapping γ : [0, T ] → (Ω, ρ) is an admissible curve if and only
if it is 1-Lipschitz i.e., ρ(γ(b), γ(a)) ≤ |b− a| for all a, b.

Proof. ⇒. This implication directly follows from the definition of ρ.

⇐. Let γ : [0, T ] → (Ω, ρ) be a 1-Lipschitz curve. By Lemma 11.3 it is Lipschitz
with respect to the Euclidean metric on Ω and hence it is differentiable a.e. We have
to prove that γ is admissible. Let t0 ∈ (0, T ) be any point where γ is differentiable.
Since ρ(γ(t0+ε), γ(t0)) ≤ ε for ε > 0, there exists an admissible curve η : [0, ε+δ] →
Ω, η(0) = γ(t0), η(ε + δ) = γ(t0 + ε) for any δ > 0. We have

∫ ε+δ

0

η̇(t) dt = γ(t0 + ε)− γ(t0) = γ̇(t0)ε + o(ε).

By the definition of an admissible curve there are measurable functions cj(t) such
that

∑
j cj(t)2 ≤ 1 and

η̇(t) =
k∑

j=1

cj(t)Xj(γ(t0)) +
k∑

j=1

cj(t)
(
Xj(η(t))−Xj(η(0)

)
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=
k∑

j=1

cj(t)Xj(γ(t0)) + a(t).

Note that, by Proposition 11.2, C|η(t)− η(0)| ≤ ρ(η(t), η(0)) ≤ t, provided ε and δ
are sufficiently small. Hence |a(t)| ≤ |X(η(t))−X(η(0))| ≤ Ct, as the vector fields
have locally Lipschitz coefficients. Thus we conclude that

γ̇(t0) = ε−1

∫ ε+δ

0

η̇(t) dt +
o(ε)
ε

=
ε + δ

ε

k∑

j=1

(∫ ε+δ

0

cj(t) dt

)
Xj(γ(t0)) + ε−1

∫ ε+δ

0

a(t) dt +
o(ε)
ε

.

Selecting suitable sequences εl → 0 and δl → 0 we conclude that γ̇(t0) =∑
j bjXj(γ(t0)),

∑
j b2

j ≤ 1. This completes the proof.

It is well known that any rectifiable curve in a metric space admits an arc-
length parametrization, see [22] or [246, Chapter 1]. This also holds for the Carnot–
Carathéodory distance as a Carnot–Carathéodory space splits into a family of metric
spaces such that each rectifiable curve is entirely contained in one of these metric
spaces. Note also that the arc-length parametrization makes the curve 1-Lipschitz
and hence admissible. This observation implies the following result.

Proposition 11.5 The Carnot–Carathéodory distance between any two points
equals the infimum of lengths (with respect to ρ) of curves that join those two points.
If the points cannot be connected by a rectifiable curve, then their distance is infinite.

11.2 Upper gradients and Sobolev spaces.

The following two results generalize Proposition 10.1.

Proposition 11.6 |Xu| is an upper gradient of u ∈ C∞(Ω) on the space (Ω, ρ).

Proof. Let γ : [a, b] → (Ω, ρ) be a 1-Lipschitz curve. By Lemma 11.3, u ◦ γ is
Lipschitz and hence

|u(γ(b))− u(γ(a))| =
∣∣∣∣∣
∫ b

a

〈∇u(γ(t)), γ̇(t)〉 dt

∣∣∣∣∣ ≤
∫ b

a

|Xu(γ(t))| dt;

the inequality follows from the fact that γ is admissible by Lemma 11.4 and from
the Schwartz inequality. The proof is complete.

Theorem 11.7 Let 0 ≤ g ∈ L1
loc(Ω) be an upper gradient on (Ω, ρ) of a function

u which is continuous with respect to the Euclidean metric. Then the distributional
derivatives Xju, j = 1, 2, . . . , k, are locally integrable and |Xu| ≤ g a.e.
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Notice that when (54) holds, the continuity assumption above can as well be
given with respect to the metric ρ.

The proof of the theorem is rather complicated and thus we first make some
comments and give applications and postpone the proof until the end of the sub-
section.

The proof is particularly easy if u ∈ C∞(Ω) and the vector fields have C1 smooth
coefficients. We present it now as it may help to understand the proof for the general
case.

Since u is smooth, we do not have to worry about distributional derivatives and
we simply prove that g ≥ |Xu| a.e.

The set of the points where |Xu(x)| > 0 is open. Since the desired inequality
holds trivially outside this set, we can assume that |Xu| > 0 everywhere in Ω.
Let aj(x) = Xju(x)/|Xu(x)| and let γ be any integral curve of the vector field
Y =

∑
j ajXj i.e., γ : (−T, T ) → Ω, γ̇(t) =

∑
j aj(γ(t))Xj(γ(t)). Obviously γ is an

admissible curve. Thus γ : (−T, T ) → (Ω, ρ) is 1-Lipschitz and hence

|u(γ(t2))− u(γ(t1))| ≤
∫ t2

t1

g(γ(t)) dt,

for any −T < t1 < t2 < T . On the other hand

|u(γ(t2))− u(γ(t1))| =
∣∣∣∣
∫ t2

t1

〈∇u(γ(t)), γ̇(t)〉 dt

∣∣∣∣ =
∫ t2

t1

|Xu(γ(t))| dt.

This yields ∫ t2

t1

|Xu(γ(t))| dt ≤
∫ t2

t1

g(γ(t)) dt. (55)

If the vector field Y were parallel to one of the coordinate axes, then (55) would
imply that g ≥ |Xu| a.e. on almost every line parallel to that axis and hence
g ≥ |Xu| a.e. in Ω. The general case can be reduced to the case of a vector field
of parallel directions by the rectification theorem. This is obvious if the vector field
is C1-smooth as it is the usual requirement in the rectification theorem, see Arnold
[3]. However the same argument can be also used in the general Lipschitz case. A
construction of the Lipschitz rectification is provided in the proof of Theorem 11.7
(look for Φ : G → Ω).

Now we give two applications of the theorem.

Note that if u is metric L-Lipschitz, then the constant function L is an upper
gradient of u. However, the function u need not be continuous with respect to the
Euclidean metric, even if the Carnot–Carathéodory distance is a metric. This is
easily seen in the previously discussed example of ∂x and x+∂y in IR2. Thus, in
order to apply Theorem 11.7 to a metric L-Lipschitz function, we need to assume
either that the function is continuous with respect to the Euclidean metric or simply
that (54) holds.
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The following special case of Theorem 11.7 was proved by Franchi, HajÃlasz and
Koskela, [77], and in a slightly weaker form earlier by Chernikov and Vodop’yanov,
[38], Franchi, Serapioni and Serra Cassano, [85], and Garofalo and Nhieu, [91].

Corollary 11.8 Assume that (54) holds. If u is metric L-Lipschitz, then the dis-
tributional derivatives Xju, j = 1, 2, . . . , k, are represented by bounded functions
and |Xu| ≤ L a.e.

The following version of Meyers–Serrin’s theorem was discovered in its local form by
Friedrichs, [87], (cf. [214, Lemma 11.27]), and later by Chernikov and Vodop’yanov,
[38, Lemma 1.2], Franchi, Serapioni and Serra Cassano, [84, Proposition 1.2.2], [85,
p. 90], and Garofalo and Nhieu, [92, Lemma 7.6].

Since later on we will need estimates from the proof, rather than the statement
alone, we recall the proof following Friedrich’s argument.

Theorem 11.9 Let X = (X1, X2, . . . , Xk) be a system of vector fields with locally
Lipschitz coefficients in Ω ⊂ IRn and let 1 ≤ p < ∞. If u ∈ Lp(Ω) and (the
distributional derivative) Xu ∈ Lp(Ω), then there exists a sequence uk ∈ C∞(Ω)
such that ‖uk − u‖Lp(Ω) + ‖Xuk −Xu‖Lp(Ω) → 0 as k →∞.

Proof. We will prove that if u has compact support in Ω, then the standard mollifier
approximation gives a desired approximating sequence. The general case follows by
a partition of unity argument.

Let Y (x) =
∑n

j=1 cj(x)∂/∂xj , where the functions cj are locally Lipschitz, de-
note one of Xj ’s. Let ϕε(x) = ε−nϕ(x/ε), 0 ≤ ϕ ∈ C∞0 (Bn(0, 1)),

∫
ϕ = 1, be a

standard mollifier kernel. For a locally integrable function u we have

Y (u ∗ ϕε)(x) =
n∑

j=1

∫
cj(x− y)

∂u

∂xj
(x− y)ϕε(y) dy

+
n∑

j=1

∫
(cj(x)− cj(x− y))

∂u

∂xj
(x− y)ϕε(y) dy

= (Y u) ∗ ϕε(x)

+
n∑

j=1

∫
(u(x− y)− u(x))

∂

∂yj

((
cj(x)− cj(x− y)

)
ϕε(y)

)
dy

= (Y u) ∗ ϕε(x) + Aεu(x), (56)

where the integrals are understood in the sense of distributions. Note that
∣∣∣∣

∂

∂yj

((
cj(x)− cj(x− y)

)
ϕε(y)

)∣∣∣∣ ≤ CL(x, ε)ε−nχBn(0,ε), a.e.,

where L(x, ε) is the Lipschitz constant of all cj ’s on Bn(x, ε). Hence

|Aεu(x)| ≤ CL(x, ε)
∫

Bn(x,ε)

|u(y)− u(x)| dy. (57)
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If u ∈ Lp(Ω) has compact support in Ω, then it easily follows that ‖Aεu‖Lp(Ω) → 0
as ε → 0. Indeed, it is obvious if u is continuous and in the general case we
can approximate u by compactly supported continuous functions in the Lp norm.
If in addition Y u ∈ Lp(Ω), then (Y u) ∗ ϕε → Y u in Lp(Ω) and hence by (56),
Y (u ∗ ϕε) → Y u in Lp(Ω). The proof is complete.

The following result is a corollary of the above proof.

Proposition 11.10 Assume that (54) holds. Let u be metric L-Lipschitz in Ω.
Then the standard mollifier approximation converges to u uniformly on compact
subsets of Ω and

|X(u ∗ ϕε)(x)| ≤ L + |Aεu(x)|,
where |Aεu| → 0 as ε → 0 uniformly on compact subsets of Ω. The above inequality
holds for all x ∈ Ω of distance at least ε to the boundary.

Proof. Condition (54) is used to guarantee that u is continuous with respect to the
Euclidean metric, which in turn together with (57) implies that |Aεu(x)| converges
to zero uniformly on compact sets. By Corollary 11.8, |Y u| ∗ ϕε ≤ L, for any
Y =

∑k
j=1 cjXj with

∑
j c2

j ≤ 1. The desired inequality then results using (56)
with the following choice of the coefficients. Fix an arbitrary point x0 ∈ Ω. If
|X(u∗ϕε)(x0)| = 0, then we are done; otherwise we take cj = Xj(u∗ϕε)(x0)/|X(u∗
ϕε)(x0)|. The proof is complete.

The theorem below shows that, in a certain sense, the analysis of vector fields
is determined by the associated Carnot–Carathéodory metric. The result is also an
affirmative answer to a question posed by Bruno Franchi.

Theorem 11.11 Let X and Y be two families of vector fields with locally Lipschitz
coefficients in Ω and such that (54) holds for the induced Carnot–Carathéodory
metrics ρX and ρY . Then the following conditions are equivalent.

1. There exists a constant C ≥ 1 such that C−1ρX ≤ ρY ≤ CρX .

2. There exists a constant C ≥ 1 such that C−1|Xu| ≤ |Y u| ≤ C|Xu| for all
u ∈ C∞(Ω).

Proof. 1. ⇒ 2. Note that if g is an upper gradient of u ∈ C∞(Ω) on (Ω, ρX), then
the equivalence of the metrics implies that Cg is an upper gradient of u on (Ω, ρY ).
This fact, Proposition 11.6, and Theorem 11.7 imply that |Y u| ≤ C|Xu|. The
opposite inequality follows by the same argument.

2. ⇒ 1. Fix x, y ∈ Ω, and let u(z) = ρX(x, z). Let γ : [0, T ] → (Ω, ρY ) be an
arbitrary 1-Lipschitz curve such that γ(0) = x, γ(T ) = y.

Let uε = u ∗ ϕε be the standard mollifier approximation. By Proposition 11.6,
|Y uε| is an upper gradient of uε on (Ω, ρY ), and hence, invoking Proposition 11.10,
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we get

ρX(x, y) ε→0←− |uε(γ(T ))− uε(γ(0))| ≤
∫ T

0

|Y uε(γ(t))| dt

≤ C

∫ T

0

|Xuε(γ(t))| dt ≤ CT + C

∫ T

0

|Aεu(γ(t))| dt
ε→0−→ CT.

Now it follows from the definition of ρY that ρX ≤ CρY . The opposite inequality
follows by the same argument. The proof is complete.

Let us come back to the question posed at the beginning of the section. How does
one prove a Poincaré inequality for the pair u, |Xu|? The natural approach is to
bound the oscillation of u by integrals of |Xu| over admissible curves — this can be
done as |Xu| is an upper gradient of u. Then the Poincaré inequality should follow
by averaging the resulting line integrals. Unfortunately, in general, this program
is very difficult to handle, and it turns out that many additional assumptions on
the vector fields are needed. One such a proof of a Poincaré inequality will be
presented later on (see Theorem 11.17). Anyhow, if one succeeds in proving a
Poincaré inequality using the above idea, the resulting inequality holds on metric
balls.

Thus the Poincaré inequality we should expect is

∫

B̃

|u− u
B̃
| dx ≤ CP r

(∫

σB̃

|Xu|p dx

)1/p

, (58)

whenever σB̃ ⊂ Ω and u ∈ C∞(σB̃). Here CP > 0, σ ≥ 1, 1 ≤ p < ∞, are fixed
constants and, as usual, B̃ denotes a ball with respect to the Carnot–Carathéodory
metric ρ.

Even if proving inequalities like (58) requires many assumptions on X, there
are sufficiently many important examples where (58) holds. Some of them will be
discussed in the following subsections.

Theorem 11.12 Assume that a system of locally Lipschitz vector fields is such that
condition (54) is satisfied. Fix σ ≥ 1, CP > 0, and 1 ≤ p < ∞. Then the space
(Ω, ρ,Hn) supports a p-Poincaré inequality (with given σ and CP ) if and only if
inequality (58) holds whenever σB̃ ⊂ Ω and u ∈ C∞(σB̃).

Proof. The left-to-right implication is easy to obtain as the function |Xu| is an
upper gradient of u, for u ∈ C∞(Ω). If u ∈ C∞(σB̃), then we can extend u from
the ball (1 − ε)σB̃ to a continuous function on Ω; next extending |Xu| from the
same ball to Ω by ∞ gives an upper gradient on Ω of the extension of u. Now
applying the p-Poincaré inequality on (1− ε)B̃ to the extended pair and passing to
the limit as ε → 0 yields (58).
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For the right-to-left implication we have to prove that, whenever g is an upper
gradient of a continuous function u, then

∫

B̃

|u− u
B̃
| dx ≤ CP r

(∫

σB̃

gp dx

)1/p

, (59)

for all σB̃ ⊂ Ω. Fix a ball B̃. We may assume that g ∈ Lp(σB̃); otherwise the
inequality is obvious.

Since g is an upper gradient of u on (σB̃, ρ), Theorem 11.7 implies that |Xu| ≤ g

a.e. in σB̃. Then, by Theorem 11.9, there is a sequence of functions uk ∈ C∞(σB̃)
such that ‖uk − u‖

Lp(σB̃)
+ ‖Xuk −Xu‖

Lp(σB̃)
→ 0. Thus, if we pass to the limit

in the inequality (58) applied to uk’s, we obtain the p-Poincaré inequality for the
pair u, |Xu|. This together with the estimate |Xu| ≤ g yields (59). The proof is
complete.

There is an obvious way to define a Sobolev space associated with a system of
vector fields. Namely, we define W 1,p

X (Ω), 1 ≤ p ≤ ∞, as the set of those u ∈ Lp(Ω)
such that |Xu| ∈ Lp(Ω), where Xu is defined in the sense of distributions, and we
equip the space with the norm ‖u‖Lp(Ω)+‖Xu‖Lp(Ω) under which W 1,p

X (Ω) becomes
a Banach space.

According to Theorem 11.9, when 1 ≤ p < ∞, one can equivalently define the
space as the completion of C∞(Ω) in the above norm.

We will return to the construction of a Sobolev space associated with the system
of vector fields in Section 13.

Proof of Theorem 11.7. Let Y =
∑k

j=1 cjXj , where cj ’s are arbitrarily chosen

constant coefficients with
∑k

j=1 c2
j ≤ 1.

Let Φ(x, t) be the function uniquely defined by the conditions Φ(x, 0) = x and
d
dtΦ(x, t) = Y (Φ(x, t)). The properties of Φ are collected in the following lemma.
For the proof, see Franchi, Serapioni and Serra Cassano, [85, p.101], or Hartman,
[112], Hille, [122].

Lemma 11.13 If Ω′ ⊂⊂ Ω, then there exists T > 0 such that Φ : Ω′×(−2T, 2T ) →
Ω. Moreover for every t ∈ (−2T, 2T ), the mapping Φ(·, t) : Ω′ → Ω is bi-Lipschitz
onto the image with the inverse Φ(·,−t); the mapping Φ(·, t) is differentiable a.e.
and

∂Φi

∂xj
(x, t) = δij + aij(x, t),

where δij is the Kronecker symbol and |aij(x, t)| ≤ C|t|, with a constant C which
does not depend neither on x ∈ Ω′ nor on t ∈ (−T, T ). This implies that the
Jacobian of Φ satisfies

JΦ(x, t) = 1 + J̃Φ(x, t), |J̃Φ(x, t)| ≤ C|t|, (60)

for the given range of x and t.
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Let Ω′ ⊂⊂ Ω. It suffices to show that |Xu| ≤ g a.e. in Ω′; the theorem will follow
then by an exhaustion of the domain Ω.

Define the directional derivative of u in the direction of Y by the formula
Ỹ u(x) = d

dt |t=0u(Φ(x, t)).

The plan of the proof of the theorem is the following. In the first step we prove
that Ỹ u exists a.e. and that |Ỹ u| ≤ g a.e. In the second step we prove that Ỹ u
is actually the distributional derivative and in the last step we show that, by an
appropriate choice of the cj ’s, we get |Ỹ u| = |Xu|.

Step 1. We show that Ỹ u exists a.e. and |Ỹ u| ≤ g a.e.

If Y (x) = 0, then Ỹ u(x) = 0, and hence |Ỹ u(x)| ≤ g(x). Thus it remains to
prove the inequality in the open set where Y 6= 0.

Observe that the curves t 7→ Φ(x, t) are admissible, and hence, for −2T < t1 <
t2 < 2T ,

|u(Φ(x, t2))− u(Φ(x, t1))| ≤
∫ t2

t1

g(Φ(x, t)) dt.

Thus, if for given x, the function t 7→ g(Φ(x, t)) is locally integrable, then the above
inequality implies that the function t 7→ u(Φ(x, t)) is absolutely continuous and

|Ỹ u(Φ(x, t))| =
∣∣∣∣
d

dt
u(Φ(x, t))

∣∣∣∣ ≤ g(Φ(x, t)), (61)

for almost all t ∈ (−2T, 2T ).

Fix x0 ∈ Ω′ with Y (x0) 6= 0, and let Bn−1(x0, δ) be a sufficiently small ball
contained in the hyperplane perpendicular to Y (x0). For a moment restrict the
domain of definition of Φ to G = Bn−1(x0, δ) × (−T, T ). The uniqueness theorem
for ODE implies that Φ is one-to-one on G. Moreover the properties of Φ collected in
Lemma 11.13 imply that Φ is Lipschitz on G and the Jacobian of Φ : G → Ω satisfies
C1 ≥ |JΦ| ≥ C2 > 0 on G provided δ and T are sufficiently small (note that this
is the Jacobian of a different mapping than that in (60)). Hence |JΦ(Φ−1(z))|−1

is bounded on Φ(G). Note that |JΦ(Φ−1(z))|−1 is defined almost everywhere on
Φ(G). This follows from the observation that if E ⊂ Φ(G), |E| > 0, then by the
change of variables formula 0 < |E| =

∫
Φ−1(E)

|JΦ| and hence |Φ−1(E)| > 0. The
last observation implies also that if we prove that some property holds for almost
all (x, t) ∈ Bn−1(x0, δ) × (−T, T ), then it is equivalent to say that the property
holds for almost all z ∈ Φ(G).

The set Φ(G) is open and it contains x0. Since we can cover the set where Y 6= 0
with such Φ(G)’s it remains to prove that |Ỹ u| ≤ g a.e. in Φ(G).

In order to prove that for almost every z ∈ Φ(G) the directional derivative
Ỹ u(z) exists and satisfies |Ỹ u(z)| ≤ g(z), it suffices to prove that for almost every
x ∈ Bn−1(x0, δ) the function t 7→ g(Φ(x, t)), t ∈ (−T, T ) is integrable, and then the
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claim follows from (61). The integrability follows immediately from the estimate

∫

Bn−1(x0,δ)

∫ T

−T

g(Φ(x, t)) dt dx =
∫

Φ(G)

g(z)|JΦ(Φ−1(z))|−1 dz

≤ C

∫

Φ(G)

g(z) dz < ∞

and the Fubini theorem. Thus we proved that |Ỹ u| ≤ g a.e. in Φ(G) and hence a.e.
in Ω′.

Step 2. Now we prove that Ỹ u = Y u, where Y u is the distributional derivative
defined by its evaluation on ϕ ∈ C∞0 (Ω′) by the formula

〈Y u, ϕ〉 = −
∫

uY ∗ϕ = −
∫

uY ϕ−
∫

uϕ div Y.

In the proof we will need a stronger result than just the inequality |Ỹ u| ≤ g. Let
uσ(z) = (u(Φ(z, σ))− u(z))/σ. We claim that for every ϕ ∈ C∞0 (Ω′)

∫
uσ(z)ϕ(z) dz −→

∫
Ỹ u(z)ϕ(z) dz. (62)

Since uσ → Ỹ u a.e. it suffices to prove that, locally, the family {uσ}0<σ<T is
uniformly integrable. Then the convergence (62) will follow from Proposition 14.9.
According to the Vallée Poussin theorem (see Theorem 14.8), it suffices to prove that
there exists a convex function F : [0,∞) → [0,∞) such that F (0) = 0, F (x)/x →∞
as x →∞, and supσ

∫
Φ(G)

F (|uσ|) < ∞, where G was defined in the first step.

Since g ∈ L1(Φ(G)), then again by Vallée Poussin’s theorem there is a convex
function F with growth properties as above and such that

∫
Φ(G)

F (g) < ∞. Now

|uσ(Φ(x, t))| = σ−1|u(Φ(x, t + σ))− u(Φ(x, t))| ≤ σ−1

∫ t+σ

t

g(Φ(x, s)) ds.

Hence Jensen’s inequality implies

F (|uσ(Φ(x, t))|) ≤ σ−1

∫ t+σ

t

F
(
g(Φ(x, s))

)
ds,

and thus denoting Bn−1
δ = Bn−1(x0, δ) we get

∫

Bn−1
δ

∫ T

−T

F
(
|uσ(Φ(x, t))|

)
dt dx ≤ σ−1

∫

Bn−1
δ

∫ T

−T

∫ t+σ

t

F
(
g(Φ(x, s))

)
ds dt dx

≤
∫

Bn−1
δ

∫ T+σ

−T

F
(
g(Φ(x, s))

)
ds dx.
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Therefore

sup
0<σ<T

∫

Φ(G)

F (|uσ(z)|) dz = sup
0<σ<T

∫

Bn−1
δ

∫ T

−T

F
(
|uσ(Φ(x, t))|

)
|JΦ(x, t)| dt dx

≤ C

∫

Bn−1
δ

∫ 2T

−T

F (g(Φ(x, s)) ds dx < ∞,

which yields desired uniform integrability. This completes the proof of (62).

Now we proceed to prove that Ỹ u = Y u. Fix an arbitrary x0 ∈ Ω′. Note that
Y u = Y (u− u(x0)), and hence

|〈Ỹ u− Y u, ϕ〉| ≤
∣∣∣∣
∫

Ỹ uϕ + (u− u(x0))Y ϕ

∣∣∣∣ +
∫
|u− u(x0)| |ϕ| |div Y | = I1 + I2.

First we prove that sup |〈Ỹ u − Y u, ϕ〉| = C(x0, ε) < ∞, where the supremum is
taken over all ϕ ∈ C∞0 (B(x0, ε)) with ‖ϕ‖∞ ≤ 1. This inequality implies that
Ỹ u − Y u is a signed Radon measure with total variation on Bn(x0, ε) equal to
C(x0, ε).

In what follows we assume that ϕ is compactly supported in Bn(x0, ε) with the
supremum norm no more than 1. As Y has locally Lipschitz coefficients, |div Y | is
locally bounded and hence

I2 ≤ Cεn sup
Bn(x0,ε)

|u− u(x0)|.

The estimates for I1 are more difficult to handle. In what follows we write u instead
of u− u(x0) and simply assume that u(x0) = 0. We have

∫
u(x)Y ϕ(x) dx = lim

t→0

1
t

(∫
u(x)ϕ(x) dx−

∫
u(x)ϕ(Φ(x,−t)) dx

)
= A.

The change of variables x̃ = Φ(x,−t) together with (60) yields
∫

u(x)ϕ(Φ(x,−t)) dx =
∫

u(Φ(x̃, t))ϕ(x̃)(1 + J̃Φ(x̃, t)) dx̃,

and hence by (62)

A = lim
t→0

∫
u(x)− u(Φ(x, t))

t
ϕ(x) dx− lim

t→0

1
t

∫
u(Φ(x, t))ϕ(x)J̃Φ(x, t) dx

= −
∫

Ỹ u(x)ϕ(x) dx− lim
t→0

1
t

∫
u(Φ(x, t))ϕ(x)J̃Φ(x, t) dx.

Hence

I1 =
∣∣∣∣limt→0

1
t

∫
u(Φ(x, t))ϕ(x)J̃Φ(x, t) dx

∣∣∣∣

≤ C lim
t→0

∫

Bn(x0,ε)

|u(Φ(x, t))| dx ≤ Cεn sup
Bn(x0,ε)

|u− u(x0)|.
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This and the estimate for I2 yields that Ỹ u−Y u is a signed Radon measure whose
total variation on Bn(x0, ε) is estimated from above by

|Ỹ u− Y u|(Bn(x0, ε)) ≤ Cεn sup
B(x0,ε)

|u− u(x0)|.

This in turn implies that the measure |Ỹ u − Y u| is absolutely continuous with
respect to the Lebesgue measure, so Ỹ u − Y u ∈ L1

loc, and then by the Lebesgue
differentiation theorem

|Ỹ u(x0)− Y u(x0)| = lim
ε→0

∫

Bn(x0,ε)

|Ỹ u− Y u| ≤ C lim
ε→0

sup
Bn(x0,ε)

|u− u(x0)| = 0

for almost all x0. Thus Ỹ u = Y u, and hence by Step 1, |Y u| ≤ g a.e.

Step 3. Repeating the above arguments for all the rational coefficients cj , we
conclude that there is a subset of Ω′ of full measure such that for all rational cj ’s
with

∑
j c2

j ≤ 1 there is |∑j cjXju| ≤ g at all points of the set. If |Xu| = 0 at a
given point, then |Xu| ≤ g at the point. If |Xu| 6= 0, then approximating coefficients
c̃j = Xju/|Xu| by rational coefficients and passing to 0 with the accuracy of the
approximation yields |Xu| = |∑j c̃jXju| ≤ g. The proof of the theorem is complete.

11.3 Carnot groups.

The aim of this subsection is to give a background on the so-called Carnot groups
which are prime examples of spaces that support the p-Poincaré inequality for any
1 ≤ p < ∞. Carnot groups are special cases of Carnot–Carathéodory spaces as-
sociated with a system of vector fields satisfying Hörmander’s condition that will
be described in the next subsection. For a more complete introduction to Carnot
groups, see Folland and Stein [73, Chapter 1] and also Heinonen [114].

Before we give the definition we need to collect some preliminary notions and
results.

Let g be a finite dimensional real Lie algebra. We say that g is nilpotent of step
m if for some positive integer m, g(m) 6= {0}, g(m+1) = {0}, where g(1) = g and
g(j+1) = [g,g(j)]. A Lie algebra is called nilpotent if it is nilpotent of some step m.
A Lie group G is called nilpotent (of step m) if its Lie algebra is nilpotent (of step
m).

Let V be the underlying vector space of the nilpotent Lie algebra g. Define the
polynomial mapping ◦ : V × V → V by the Campbell–Hausdorff formula

X ◦ Y =
∞∑

p=1

(−1)p+1

p

∑

ni+mi≥1
i=1,2,...,p

(n1 + m1 + . . . + np + mp)−1

n1!m1! · · ·np!mp!

×(adX)n1(adY )m1 . . . (adX)np(ad Y )mp−1Y,
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where (ad A)B = [A,B]. We adopt here the convention that if mp = 0, then the
term in the sum ends with . . . (adX)np−1X. Note also that if mp > 1, then the
term in the sum is zero.

The formal series on the right hand side of the Campbell–Hausdorff formula is
in fact a polynomial, because the Lie algebra is nilpotent. One can check that the
mapping defines a group structure on V with the Lie algebra g. Since connected
and simply connected Lie groups with isomorphic Lie algebras are isomorphic, we
obtained a full description of simply connected nilpotent Lie groups.

In what follows the group identity will be denoted by 0; however for the group
law we use multiplicative notation: xy.

One can write the Campbell–Hausdorff formula in the form

X ◦ Y = X + Y +
1
2
[X, Y ] + . . .

where the dots indicate terms of order greater than or equal to 3. Note that the map
t 7→ tX is a one parameter subgroup of V . Hence the exponential map exp : g → V
is identity. Then one can find a basis in V so that in the induced coordinate system
the Jacobi matrix of the left multiplication by a ∈ V is a lower triangular matrix
with ones on the diagonal. Thus the Jacobi determinant equals one. Hence the
Lebesgue measure is the left invariant Haar measure. The same argument applies
to the right multiplication, and so the Lebesgue measure is the bi-invariant Haar
measure.

A Carnot group is a connected and simply connected Lie group G whose Lie
algebra g admits a stratification g = V1 ⊕ · · · ⊕ Vm, [V1, Vi] = Vi+1, Vi = {0}
for i > m. Obviously a Carnot group is nilpotent. Moreover a Carnot group is
nilpotent of step m if Vm 6= 0. Note that the basis of V1 generates the whole Lie
algebra g. Carnot groups are also known as stratified groups.

Being nilpotent, Carnot group is diffeomorphic to IRn for some n.

Let X1, X2, . . . , Xk form a basis of V1. We identify X1, X2,. . . ,Xk with the left
invariant vector fields.

The following result is due to Chow, [40], and Rashevsky, [213]. For modern
proofs see Belläıche [7], Gromov [101], Herman [121], Nagel, Stein and Wainger
[204], Strichartz [235], Varopoulos, Saloff-Coste and Coulhon [251].

Proposition 11.14 The Carnot–Carathéodory distance associated with the basis
X1, X2,. . . ,Xk of V1 is a metric i.e., every two points of the Carnot group can be
connected by an admissible curve.

The aim of this subsection is to prove that a Carnot group with the above Carnot–
Carathéodory metric supports the p-Poincaré inequalities for all 1 ≤ p < ∞ (see
Theorem 11.17). This is a special case of Jerison’s result (see Theorem 11.20) that
will be described in the next subsection.
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By G we will denote a Carnot group of step m and ρ will be the Carnot–
Carathéodory metric associated with the basis X1,. . . , Xk of V1.

As the Carnot–Carathéodory metric is not given in an explicit form, it is quite
difficult to handle. Therefore it is convenient to introduce new distances that can
be defined explicitly and that are equivalent to the Carnot–Carathéodory metric.

A Carnot group admits a one-parameter family of dilations that we next de-
scribe.

For X ∈ Vi and r > 0 we set δrX = riX. This extends to a linear map that is
an automorphism of the Lie algebra g. This in turn induces an automorphism of
the Lie group via the exponential map.

Observe that the metric ρ has the two important properties of being left invariant
and commutative with δr in the sense that ρ(δrx, δry) = rρ(x, y).

A continuous homogeneous norm on G is a continuous function | · | : G → [0,∞)
that satisfies 1) |x−1| = |x|, 2) |δrx| = r|x| for all r > 0 and 3) |x| = 0 if and only
if x = 0.

One such homogeneous norm is given by |x| = ρ(0, x).

Proposition 11.15 Let |·| be a continuous homogeneous norm. Then the following
results hold.

1. There exist constants C1, C2 > 0 such that C1‖x‖ ≤ |x| ≤ C2‖x‖1/m, for
|x| ≤ 1. Here ‖ · ‖ denotes a fixed Euclidean norm.

2. The distance %(x, y) = |x−1y| is a quasimetric i.e., it has all the properties of
metric but the triangle inequality that is replaced by a weaker condition: there
is a constant C > 0 such that for all x, y, z ∈ G

%(x, y) ≤ C(%(x, z) + %(z, y)). (63)

3. Balls B(x, r) = {y : %(x, y) < r} are the left translates of B(0, r) by x, and
B(0, r) = δrB(0, 1).

4. The number Q =
∑m

j=1 j dim Vj will be called the homogeneous dimension. It
satisfies |δr(E)| = rQ|E| and hence |B(x, r)| = CrQ for all x ∈ G and all
r > 0, where |E| denotes the Lebesgue measure of the set E.

5. Any two continuous homogeneous norms are equivalent in the sense that if | · |′
is another continuous homogeneous norm on G, then there exist C1, C2 > 0
such that C1|x|′ ≤ |x| ≤ C2|x|′ for all x ∈ G.

For a proof, see Folland and Stein [73, Chapter 1]. Anyway the proof is easy and it
could be regarded as a very good exercise.

In the literature the concept of a homogeneous norm is defined as above but with
the additional property of being C∞-smooth on G\{0}. This property is irrelevant
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to us. Thus we delete it and add the adjective “continuous” to indicate that we do
not assume smoothness.

To give an explicit example of a continuous homogeneous norm note that any
element x ∈ V can be represented as x =

∑m
j=1 xj , where xj ∈ Vj . Fix an Euclidean

norm ‖ · ‖ in V . Then

|x| =
m∑

j=1

‖xj‖1/j ,

is a continuous homogeneous norm on G (after identification of G with V ).

The continuous homogeneous norm induced by the Carnot–Carathéodory metric
x 7→ ρ(0, x) satisfies (63) with C = 1. For general continuous norms we only have
C ≥ 1. See also Hebisch and Sikora, [113], for a construction of a homogeneous
norm (i.e. smooth on G \ {0}) with C = 1.

Mitchell, [199], proved that the Hausdorff dimension of a Carnot group is equal
to its homogeneous dimension, see also [101, p. 102]. This dimension, in general,
is larger than the Euclidean dimension of the underlying Euclidean space. This
shows that the Carnot–Carathéodory geometry is pretty wild and the metric is not
equivalent to any Riemannian metric.

It is an exercise to show that inequality 1. of the above proposition implies that
for every bounded domain Ω ⊂ G, there are constants C1, C2 > 0 such that

C1‖x− y‖ ≤ ρ(x, y) ≤ C2‖x− y‖1/m, (64)

whenever x, y ∈ Ω. Note that inequality (64) along with Lemma 9.4 imply that
every two points can be connected by a geodesic — the shortest admissible curve.

So far we have not given any examples of the Carnot group. Let us fill the gap
right now.

Example 11.16 The most simple nontrivial example of a Carnot group is the
Heisenberg group IH1 = C× IR with the group law

(z, t) ◦ (z′, t′) = (z + z′, t + t′ + 2Im zz′).

The basis consisting of the left invariant vector fields X,Y, Z, such that X(0) =
∂/∂x, Y (0) = ∂/∂y, T (0) = ∂/∂t, is given by

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

Note that [X, Y ] = −4T and all the other commutators are trivial. Thus the Lie
algebra is stratified, h = V1 ⊕ V2 with V1 = span{X,Y } and V2 = span{T}. The
Carnot–Carathéodory metric is defined with respect to the vector fields X, Y . The
group IH1 is a nilpotent group of step 2 and its homogeneous dimension is 4. The
family of dilations is given by δr(z, t) = (rz, r2t) for r > 0. Moreover the function
|(z, t)| = (t2 + |z|4)1/4 is a homogeneous norm.
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The following theorem states that a Carnot group supports a 1-Poincaré in-
equality. This is a corollary of a much more general theorem of Jerison (see The-
orem 11.20). For completeness we provide a clever proof due to Varopoulos, [249]
(see also [223, page 461]).

Proposition 11.17 Any Carnot group equipped with the Lebesgue measure and the
Carnot–Carathéodory metric supports a 1-Poincaré inequality.

Proof. Let G be a Carnot group with the Carnot–Carathéodory metric that we
denote by ρ. Let u, g be a pair of a continuous function and its upper gradient. It
suffices to prove that

∫

B

|u(x)− uB | dx ≤ Cr

∫

2B

g(x) dx (65)

on every ball of radius r. Obviously we can assume that the ball B is centered at
0. Set |z| = ρ(0, z) and let γz : [0, |z|] → G be a geodesic path that joins 0 with z.
Observe that s 7→ xγz(s) is the shortest path that joins x with xz. Hence

|u(x)− u(xz)| ≤
∫ |z|

0

g(xγz(s)) ds.

This and the left invariance of the Lebesgue measure yields
∫

B

|u(x)− uB | dx ≤ 1
|B|

∫

B

∫

B

|u(x)− u(y)| dy dx

=
1
|B|

∫

G

∫

G

χB(x)χB(xz)|u(x)− u(xz)| dz dx

≤ 1
|B|

∫

G

∫

G

∫ |z|

0

χB(x)χB(xz)g(xγz(s)) ds dx dz.

Invoking the right invariance of the Lebesgue measure we obtain
∫

G

χB(x)χB(xz)g(xγz(s)) dx =
∫

G

χBγz(s)(ξ)χBz−1γz(s)(ξ)g(ξ) dξ

≤ χ2B(z)
∫

2B

g(ξ) dξ, (66)

Here we denote by Bh the right translation of B by h. The above inequality
requires some explanations. If the expression under the sign of the middle interval
has a nonzero value, then ξ = xγz(s) = yz−1γz(s) for some x, y ∈ B. Hence
z = x−1y ∈ 2B. Thus ξ = xγx−1y(s) lies on a geodesic that joins x with y and
so ρ(x, ξ) + ρ(y, ξ) = ρ(x, y), which together with the triangle inequality implies
ξ ∈ 2B and hence (66) follows. Now

∫

B

|u(x)− uB | dx ≤ 1
|B|

∫

G

∫ |z|

0

χ2B(z)
∫

2B

g(ξ) dξ ds dz
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=
1
|B|

∫

2B

∫

2B

|z|g(ξ) dξ dz

≤ Cr

∫

2B

g(ξ) dξ.

The proof is complete.

Remarks. 1) The above proof easily generalizes to more general unimodular
groups, see [249], [223, page 461].

2) Applying Theorem 9.8 to inequality (65) we conclude that the ball 2B on
the right hand side can be replaced by B, and, moreover, the exponent on the left
hand side can be replaced by Q/(Q − 1), where Q is the homogeneous dimension
of the group. This inequality in turn implies the isoperimetric inequality. Such
an isoperimetric inequality was proved first in the case of the Heisenberg group by
Pansu, [209], and in the general case of the Carnot groups by Varopoulos, [251].

For a more complete treatment of Sobolev inequalities on Lie groups with the
Carnot–Carathéodory metric, see Gromov [101], and Varopoulos, Saloff-Coste and
Coulhon [251] and also Folland [71], [72], Nhieu [206], [207].

11.4 Hörmander condition.

Definition. Let Ω ⊂ IRn be an open, connected set, and let X1, X2,. . . ,Xk be
vector fields defined in a neighborhood of Ω, real valued, and C∞ smooth. We
say that these vector fields satisfy Hörmander’s condition, provided there is an
integer p such that the family of commutators of X1, X2, . . . , Xk up to the length
p i.e., the family of vector fields X1,. . . ,Xk, [Xi1 , Xi2 ],. . . , [Xi1 , [Xi2 , [. . . , Xip ]] . . .],
ij = 1, 2, . . . , k, span the tangent space IRn at every point of Ω.

The definition easily extends to smooth manifolds, but for simplicity we will
consider the Euclidean space only.

As an example take the vector fields X1 = ∂/∂x1, X2 = xk
1∂/∂x2, where k is

a positive integer. These two vector fields do not span IR2 along the line x1 = 0.
However X1, X2 and commutators of the length k + 1 do.

Another example is given by vector fields on a Carnot group. Namely, if G is a
Carnot group (see the previous subsection) with the stratification g = V1⊕ . . .⊕Vm

of its Lie algebra, then the left invariant vector fields associated with a basis of V1

satisfy Hörmander’s condition.

The above condition was used by Hörmander [128], in his celebrated work on hy-
poelliptic operators, see also Bony [14], Chemin and Xu [36], Fefferman and Sánchez-
Calle [70], Hörmander and Melin [129], Jerison [133], Morbidelli [200], Nagel, Stein,
and Wainger [204], Rothschild and Stein [218], Sánchez-Calle [224], Varopoulos,
Saloff-Coste and Coulhon [251]. Related references will also be given in Section 13.

As usual, the Carnot–Carathéodory distance associated with a family of vector
fields satisfying Hörmander’s condition will be denoted by ρ.
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The following result provides the full version of the theorem of Chow and
Raschevsky, whose special case was discussed earlier (see Proposition 11.14). For
the proof, see the references given there. In some more simple settings the theorem
was proved earlier by Carathéodory, [32].

Theorem 11.18 Let an open and connected set Ω ⊂ IRn and a system of vector
fields satisfying Hörmander’s condition in Ω be given. Then any two points in Ω
can be connected by a piecewise smooth admissible curve, and hence the Carnot–
Carathéodory distance is a metric.

Nagel, Stein and Wainger, [204], studied the geometry of Carnot–Carathéodory
spaces in detail and, in particular, they gave a more quantitative version of Chow–
Raschevsky’s theorem. Let us quote some of their results.

In what follows B̃(x, r) will denote a ball with respect to the metric ρ.

Theorem 11.19 Let X1, . . . , Xk be a system of vector fields satisfying
Hörmander’s condition as above, and let ρ be the associated Carnot–Carathéodory
metric. Then for every compact set K ⊂ Ω there exist constants C1 and C2 such
that

C1|x− y| ≤ ρ(x, y) ≤ C2|x− y|1/p (67)

for every x, y ∈ K. Moreover there are r0 > 0 and C ≥ 1 such that

|B̃(x, 2r)| ≤ C|B̃(x, r)| (68)

whenever x ∈ K and r ≤ r0.

Here, as usual, |B̃| denotes the Lebesgue measure. In the previous subsection we
proved the theorem in the special case of a Carnot group. The general case is
however much more difficult, see also Gromov [101], and Varopoulos, Saloff-Coste
and Coulhon [251, Section IV.5]. Estimate (67) has been obtained independently
by Lanconelli [165].

Assume for a moment that Ω = IRn. If Ω′ ⊂ IRn is bounded with respect to
the Euclidean metric, then by (67) it is also bounded with respect to ρ. However,
if Ω′ is bounded with respect to ρ, then it need not be bounded with respect
to the Euclidean metric. Indeed, if one of the vector fields is x2

1∂/∂x1, then the
Carnot–Carathéodory distance to infinity is finite because of the rapid growth of
the coefficient. Hence, in general, (68) holds only for r < r0 for some sufficiently
small r0 and r0 cannot be replaced with 5 diam ρ(Ω′), even if diam ρ(Ω′) < ∞, as
was required for the measure in the definition of doubling in Ω′.

Proposition 11.17 is a special case of the following Poincaré inequality of Jerison
[133], see also Jerison and Sanchez–Calle [136], and Lanconelli and Morbidelli [166].

Theorem 11.20 Let X1, . . . , Xk be a system of vector fields satisfying
Hörmander’s condition in Ω. Then for every compact set K ⊂ Ω there are con-
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stants C > 0 and r0 > 0 such that for u ∈ Lip (B̃)
∫

B̃

|u− uB̃ | dx ≤ Cr

∫

2B̃

|Xu| dx, (69)

whenever B̃ is a ball centered at K with radius r < r0.

In fact, Jerison proved the inequality with the L2 norms on both sides, but the
same argument works with the L1 norm. Then Jerison proved that one can replace
the ball 2B̃ on the right hand side of (69) with B̃. As we have already seen this can
be done in a much more general setting, see Section 9.

11.5 Further generalizations

The results of the previous two subsections concern Poincaré inequalities for smooth
vector fields satisfying Hörmander’s condition. It is a difficult problem to find a large
class of vector fields with Lipschitz coefficients such that the Poincaré type inequal-
ities hold on the associated Carnot–Carathéodory spaces. The lack of smoothness
does not permit one to use a Hörmander type condition. There are few results of
that type, see Franchi [74], Franchi, Gutiérrez and Wheeden [76], Franchi and Ser-
apioni [83], Franchi and Lanconelli [78], Jerison and Sanchez-Calle [136]. It seems
that Franchi and Lanconelli, [78], were the first to prove a Poincaré type inequal-
ity for a Carnot–Carathéodory space. They probably also were the first to prove
estimates of the type as in Theorem 11.19.

12 Graphs

Let G = (V, E) be a graph, where V is the vertex set and E the set of edges. We
say that x, y ∈ V are neighbors if they are joined by an edge; we denote this by
x ∼ y. Assume that the graph is connected in the sense that any two vertices can be
connected by a sequence of neighbors. We let the distance between two neighbors
to be 1. This induces a geodesic metric on V that we denote by %. The graph is
endowed with the counting measure: the measure of a set E ⊂ V is simply the
number V (E) of elements of E. For a ball B = B(x, r) we use also the notation
V (B) = V (x, r). We say that G is locally uniformly finite if d = supx∈V d(x) < ∞,
where d(x) is the number of neighbors of x. The length of the gradient of a function
u on V at a point x is

|∇Gu|(x) =
∑
y∼x

|u(y)− u(x)|.

Many graphs have the following two properties:

1. The counting measure is doubling i.e.,

V (x, 2r) ≤ CdV (x, r),
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for every x ∈ V and r > 0.

2. The p-Poincaré inequality holds i.e., there are constants C > 0 and σ ≥ 1
such that

1
V (B)

∑

x∈B

|u(x)− uB | ≤ CP r

(
1

V (σB)

∑

x∈σB

|∇Gu|p(x)

)1/p

, (70)

for any ball B and any function u : V → IR.

Observe that the doubling condition implies that the graph is locally uniformly
finite.

The Euclidean, or more generally, the upper gradients have the truncation prop-
erty. Unfortunately the truncation property is no longer valid for the length of the
gradient on a graph. This is because, in general, |∇Gut2

t1 | is not supported on the set
{t1 < u ≤ t2}. However, intuition suggests that |∇Gu| should still have properties
similar to those of a gradient with the truncation property.

If v ∈ Lip (IRn) and p > 0, then

∞∑

k=−∞
|∇v2k

2k−1 |p =
∞∑

k=−∞
|∇v|pχ{2k−1<v≤2k} ≤ |∇v|p (71)

almost everywhere. It turns out that a version of inequality (71) is satisfied also
by the length of the gradient on a graph. More precisely we have the following
estimate.

Lemma 12.1 Let G be locally uniformly finite i.e., d = supx∈V d(x) < ∞. If
v : V → IR and p > 0, then

∞∑

k=−∞

∣∣∣∇Gv2k

2k−1

∣∣∣
p

(x) ≤ C(p, d)|∇Gv|p(x)

for each x ∈ V.

Proof. Fix x ∈ V and let

vM (x) = max{v(w) : %(w, x) ≤ 1} ,

vm(x) = min{v(w) : %(w, x) ≤ 1} .

Note that |∇Gv|(x) ≥ |vM (x)− vm(x)|. Assume for simplicity that vm(x) > 0 (the
case vm(x) ≤ 0 follows by the same argument). Let j ∈ ZZ be the least integer and
i ∈ ZZ the largest integer such that

2j ≥ vM (x) ≥ vm(x) ≥ 2i.
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We have

|vM (x)− vm(x)| = vM (x)− 2j−1 +
j−2∑

k=i+1

(2k+1 − 2k) + 2i+1 − vm(x).

Hence

|∇Gv|p(x) ≥ C

(
|vM (x)− 2j−1|p +

(
j−2∑

k=i+1

2k

)p

+ |2i+1 − vm(x)|p
)

≥ C

(
|vM (x)− 2j−1|p + (1− 2−p)

j−2∑

k=i+1

2kp + |2i+1 − vm(x)|p
)

≥ C

(
1
dp
|∇Gv2j

2j−1 |p(x) +
1− 2−p

dp

j−2∑

k=i+1

|∇Gv2k+1

2k |p(x)

+
1
dp
|∇Gv2i+1

2i |p(x)
)

≥ C(p)
dp

j−1∑

k=i

|∇Gv2k+1

2k |p(x)

=
C(p)
dp

∞∑

k=−∞
|∇Gv2k+1

2k |p(x).

The proof is complete.

The inequality of the lemma is a good substitute for the truncation property;
it allows one to mimic the proofs of Theorems 2.1 and 2.3. We will generalize
Corollary 9.8. This result deals with sharp inequalities with integrals on the different
sides of the inequality taken over the same domain. As pointed out in Section 9,
a Poincaré inequality does not, in general, guarantee that one could use balls of
the same size on the different sides of the inequality. We described a sufficient
condition in terms of the geometry of balls that, in particular, holds for the Carnot-
Caratheodory metrics. As ρ is a geodesic metric, it should come as no surprise that
we can reduce the size of σ in (70) down to 1.

The following theorem is related to some results in Bakry, Coulhon, Ledoux and
Saloff-Coste [4], Coulhon [54].

Theorem 12.2 Assume that the counting measure is doubling, and that for some
constants Cb > 0, s ≥ 1

V (x, r)
V (x, r0)

≥ Cb

(
r

r0

)s

whenever B(x, r) ⊂ B(x0, r0). Suppose that each function u : V → IR satisfies the
p-Poincaré inequality (70) with a fixed p > 0.
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1. If 0 < p < s, then there is a constant C > 0 such that

(
1

V (B)

∑

x∈B

|u(x)− uB |p
∗
)1/p∗

≤ Cr

(
1

V (B)

∑

x∈B

|∇Gu|p(x)

)1/p

(72)

for any ball B of radius r and any function u : V → IR, where p∗ = sp/(s−p).

2. If p = s > 1, then there are constants C1, C2 > 0 such that

1
V (B)

∑

x∈B

exp
(

C1V (B)1/s|u(x)− uB |
(diamB)‖∇Gu‖Ls(B)

)s/(s−1)

≤ C2

for any ball B of radius r and any function u : V → IR.

3. If p > s, then there is C > 0 such that

|u(x)− u(y)| ≤ C%(x, y)1−s/prs/pV (B)−1/p‖∇Gu‖Lp(B) ,

for all x, y ∈ B, where B is an arbitrary ball of radius r, and for any function
u : V → IR.

The constants C, C1, C2 depend on p, s, σ, Cd, Cb and CP only.

Remark. If sp/(s − p) < 1, then we have to replace uB by uB0 in (72), where
B0 = (2σ)−1B.

Proof. The proof involves arguments similar to those used in the previous sec-
tions, and so we only sketch the main ideas, leaving the details to the reader.

First of all, under the local finiteness of the graph, one may assume that r > 10σ
(as for r ≤ 10σ we only have a finite collection of non-isometric balls). We follow
the line of ideas from Section 9. Given a ball B(x0, r) and a point x ∈ B(x0, r),
we join x to x0 by a chain x = x1, ..., xm of length less than r of vertices. If
we trace along the chain for l steps with l the least integer larger or equal to 4σ,
then B(xl, 2σ) ⊂ B(x0, r). Following the chain towards x we may construct a chain
B0 = B(x0, r/(2σ)), B1, ..., Bk = B(xl, 2) of balls as in the C(σ,M) condition of
Section 9. Next,

|u(x)− uB0 | ≤
l−1∑

i=1

|u(xi+1)− u(xi)|+ |uB(xl,2) − u(xl)|+
k−1∑

i=0

|uBi+1 − uBi |

≤
l−1∑

i=1

|∇Gu|(xi) +
∑

y∈B(xl,2)

|∇Gu|(y)

+ C

k∑

i=0

ri


 1

V (σBi)

∑

y∈σBi

|∇Gu|p(y)




1/p

. (73)
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We employed here the observation that |u(xi+1) − u(xi)| ≤ |∇Gu|(xi). Inequality
(73) is a good substitute for (33), (43) as |∇Gu|(y) equals to the product of the
radius and the Lp-average of |∇Gu| over the ball σB(y, σ−1).

Now assume that p < s. Write sp/(s− p) = p∗. Using a version of Theorem 5.1
as in Section 9 we conclude the weak type inequality

sup
t≥0

V ({x ∈ B : |u(x)− uB0 | > t})tp∗
V (B)

≤ Crp∗
(

1
V (B)

∑

x∈B

|∇Gu|p(x)

)p∗/p

.

To obtain the desired strong type inequality one reasons as follows.

Define v± as in the proof of Theorem 2.1 (with Ω replaced by B). It suffices to
prove suitable Lp∗ estimates for v+ and v−. In what follows v denotes either v+ or
v−. We have

sup
t≥0

V {x ∈ B : vt2
t1 > t}tp∗

V (B)
≤ Crp∗

(
1

V (B)

∑

x∈B

|∇Gvt2
t1 |p

)p∗/p

,

and hence

1
V (B)

∑

x∈B

vp∗(x) ≤
∞∑

k=−∞

2kp∗V ({x ∈ B : v2k−1

2k−2 ≥ 2k−2})
V (B)

≤ Crp∗
(

1
V (B)

∑

x∈B

∞∑

k=−∞
|∇Gv2k−1

2k−2 |p(x)

)p∗/p

≤ Crp∗
(

1
V (B)

∑

x∈B

|∇Gv|p(x)

)p∗/p

≤ Crp∗
(

1
V (B)

∑

x∈B

|∇Gu|p(x)

)p∗/p

.

If p = s, then the method described above provides us with a chains that are
sufficiently good to mimic the proof of Theorem 6.1.

Once we have good chains also the Hölder continuity with the same balls on
both sides follows when p > s.

The proof is complete.

Remarks. 1) The doubling property 1. and the Poincaré inequality 2. are very
important in the potential theory on graphs. Indeed, independently Delmotte, [64],
[65], Holopainen and Soardi, [127], and Rigoli, Salvatori and Vignati, [216], proved
that 1. and 2. imply the so-called Harnack inequality for p-harmonic functions. As
a consequence, they concluded a Liouville type theorem stating that every bounded
p-harmonic function on G is constant. Recall that u : V → IR is 2-harmonic if
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it satisfies the mean value property, i.e., u(x) = d(x)−1
∑

y∼x u(y) for all x ∈ V .
For a definition of p-harmonic functions with p 6= 2, see, e.g., [127]. The proof of
the Harnack inequality employs the Sobolev–Poincaré inequality as it relies on the
Moser iteration. As we have already seen properties 1. and 2. imply the Sobolev–
Poincaré inequality. Papers related to the Harnack inequalities on graphs include
Auscher and Coulhon [2], Chung [43], Chung and Yau [44], Lawler [169], Merkov
[196], Rigoli, Salvatori and Vignati [217], Schinzel [225], Zhou [262].

The Moser iteration was originally employed in the setting of elliptic and
parabolic equations; see the next section.

2) There are many examples of graphs for which both properties 1. and 2. are
satisfied. A very nice example is given by a Cayley graph associated with a finitely
generated group. We say that the group G is finitely generated if there is a finite set
{γi}k

i=1 such that every element g ∈ G can be presented as a product g = γε1
i1
· · · γεl

il
,

εi = ±1. Then the vertex set of the Cayley graph is the set of all elements of G and
two elements g1, g2 ∈ G are connected by an edge if g1 = g2γ

±1
i for some generator

γi. Thus we may visualize finitely generated groups as geometric objects. This
point of view has been intensively used after Milnor’s paper, [198].

We say that the group is of polynomial growth if V (r) ≤ CrC for all r > 0
and some C ≥ 1. One of the most beautiful results in the area is due to Gromov
[100]. He proved that a group is of polynomial growth if and only if it is virtually
nilpotent, and hence by the theorem of Bass, [6], V (r) ≈ rd for some positive integer
d.

Thus if the group is of polynomial growth, then it satisfies the doubling property
1. It is also known that it satisfies the 1-Poincaré inequality.

Proposition 12.3 If G is a finitely generated group of polynomial growth V (r) ≈
rd, d positive integer, then there is a constant C > 0 such that

1
V (B)

∑

x∈B

|u(x)− uB | ≤ Cr
1

V (2B)

∑

x∈2B

|∇Gu(x)|

for every ball B ⊂ X.

The reader may prove the proposition as an easy exercise mimicing the proof of
Theorem 11.17.

Other examples of graphs with properties 1. and 2. can be found in Holopainen
and Soardi [127], Coulhon [54], Coulhon and Saloff-Coste [58], [59], Saloff-Coste
[222].

3) The analysis on graphs is also important in the study of open Riemannian
manifolds because, roughly speaking, one can associate with given manifold a graph
with similar global properties. This method of discretization of manifolds has been
in active use after the papers of Kanai, [149], and Mostow, [203]. Related refer-
ences include Coulhon [52] [53], Coulhon and Ledoux [57], Coulhon and Saloff-Coste
[56], [58], [59], Chavel [33], Delmotte [64], [65], Holopainen [123], Holopainen and
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Soardi [126], [127], Soardi [230], Varopoulos [248], and Varopoulos, Saloff-Coste and
Coulhon [251].

13 Applications to P.D.E and nonlinear potential
theory

The results presented in the paper directly apply to the regularity theory of degen-
erate elliptic equations associated with vector fields. Below we describe some of the
applications.

13.1 Admissible weights

Let A = (A1, . . . , Am) : IRn × IRm → IRm be a Carathéodory function satisfying
the growth conditions

|A(x, ξ)| ≤ C1ω(x)|ξ|p−1, A(x, ξ) · ξ ≥ C2ω(x)|ξ|p,

where 1 < p < ∞, C1, C2 > 0 are fixed constants and 0 < ω ∈ L1
loc(IR

n). We will
denote by dµ = ω dx the measure with the density ω.

Given A, we consider the equation

m∑

j=1

X∗
j Aj(x,X1u, . . . , Xmu) = 0, (74)

where X = (X1, . . . , Xm) is a family of vector fields with locally Lipschitz co-
efficients in IRn. Recall that X∗

j denotes the formal adjoint of Xj , that is,∫
Xjuv =

∫
uX∗

j v for all u, v ∈ C∞0 .

The theory of nonlinear equations of the type (74), especially when X is a system
of vector fields satisfying Hörmander’s condition, is an area of intensive research; see,
e.g., Buckley, Koskela and Lu [19], Capogna [25], Capogna, Danielli and Garofalo
[27], [31], Chernikov and Vodop’yanov [38], Citti [45], Citti and Di Fazio [46], Citti,
Garofalo and Lanconelli [47], Danielli, Garofalo and Nhieu [61], Franchi, Gutiérrez
and Wheeden [76], Franchi and Lanconelli [78], Franchi and Serapioni [83], Garofalo
and Lanconelli [90], Garofalo and Nhieu [92], HajÃlasz and Strzelecki [108], Jerison
[133], Jerison and Lee [134], [135], Jost and Xu [146], Lu [177], [179], [180], [181],
Marchi [189], Vodop’yanov and Markina [254], Xu [258], [259], Xu and Zuily [260].
The above papers mostly deal with the nonlinear theory. References to the broad
literature on the linear theory can be found in these papers.

Equation (74) is a generalization of the classical weighted p-harmonic equation.
Indeed, if X = ∇ and A(ξ) = ω(x)|ξ|p−2ξ we get the equation

div
(
ω(x)|∇u|p−2∇u

)
= 0.
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In what follows we assume that the condition (54) is satisfied i.e. we assume that
the Carnot–Carathéodory distance ρ is a metric such that the identity map is a
homeomorphism between the Euclidean metric and ρ.

We call u a weak solution of (74) if

∫

IRn

m∑

j=1

Aj(x,Xu)Xjϕ(x) dx = 0,

for any ϕ ∈ C∞0 (IRn). We assume that the weak solution belongs to the weighted
Sobolev space W 1,p

X (IRn, µ) defined as the closure of C∞ functions in the norm

‖u‖1,p,X,ω =
(∫

IRn

|u(x)|pω(x) dx

)1/p

+
(∫

IRn

|Xu(x)|pω(x) dx

)1/p

.

Already in the “classical” case i.e. when Xu = ∇u one has to put many additional
conditions on the weight ω in order to have a reasonable theory.

The first condition concerns the definition of the Sobolev space. One needs
the so-called uniqueness condition which guarantees that the “gradient” X is well
defined in the Sobolev space associated to X. Later we will clarify this condition.

The regularity results for solutions to (74), like Harnack inequality and Hölder
continuity, are usually obtained via the Moser iteration technique. For that the
essential assumptions are a doubling condition on µ, (with respect to the Carnot–
Carathéodory metric), the Poincaré inequality

(∫

B̃

|u− u
B̃
|p dµ

)1/p

≤ Cr

(∫

B̃

|Xu|p dµ

)1/p

, (75)

for all smooth functions u in a metric ball B̃, and a Sobolev inequality

(∫

B̃

|u|q dµ

)1/q

≤ Cr

(∫

B̃

|Xu|p dµ

)1/p

, (76)

with some q > p for all smooth functions u with compact support in a metric ball
B̃.

Given the above assumptions one can mimic the standard Moser iteration tech-
nique replacing Euclidean balls by metric balls. This leads to the Harnack inequality
which states that if u is a positive solution to (74) on 2B̃, then

sup
B̃

u ≤ C inf
B̃

u ,

where the constant C does not depend on B̃. Then the iteration of the Harnack
inequality implies that each weak solution to (74) is locally Hölder continuous with
respect to ρ and hence — if condition (67) is satisfied — locally Hölder continuous
with respect to the Euclidean metric.
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The fact that the above conditions are essential for the Moser iteration was
observed first by Fabes, Kenig and Serapioni, [67]. They considered the “classical”
linear setting, X = ∇, p = 2.

It seems that Franchi and Lanconelli, [78], were the first to apply the Moser
technique for the Carnot–Carathéodory metric as above. Then the idea was ex-
tended by many authors to more difficult situations; see, e.g., Capogna, Danielli
and Garofalo [27], Chernikov and Vodop’yanov [38], Franchi [74], Franchi and Lan-
conelli [79], Franchi, Lu and Wheeden [81], Franchi and Serapioni [83], Jerison [133],
Lu [180]. There are moreover many other related papers.

Saloff-Coste, [221], and Grigor’yan, [99], independently realized that in certain
settings, a Poincaré inequality implies a Sobolev inequality and hence one can delete
assumption (76) as it follows from (75). This result was extended then to more
general situations by several authors: Biroli and Mosco, [9], Maheux and Saloff-
Coste, [186], HajÃlasz and Koskela, [105], Sturm, [239], Garofalo and Nhieu, [92].

The result presented below (Theorem 13.1) is in the same spirit. This is a
generalization of a result of HajÃlasz and Koskela, [105].

The following definition is due to Heinonen, Kilpeläinen and Martio, [120], when
X = ∇ and due to Chernikov and Vodop’yanov, [38], in the case of general vector
fields.

We say that ω ∈ L1
loc(IR

n), ω > 0 a.e., is p-admissible, 1 < p < ∞, if the measure
defined by dµ = ω(x) dx satisfies the following four conditions:

1. (Doubling condition) µ(2B̃) ≤ Cdµ(B̃) for all metric balls B̃ ⊂ IRn.

2. (Uniqueness condition) If Ω is an open subset of IRn and ϕi ∈ C∞(Ω) is a
sequence such that

∫
Ω
|ϕi|p dµ → 0 and

∫
Ω
|Xϕi−v|p dµ → 0, where v ∈ Lp(µ),

then v ≡ 0.

3. (Sobolev inequality) There exists a constant k > 1 such that for all metric
balls B̃ ⊂ IRn and all ϕ ∈ C∞0 (B̃)

(∫

B̃

|ϕ|kp dµ

)1/kp

≤ C2r

(∫

B̃

|Xϕ|p dµ

)1/p

.

4. (Poincaré inequality) If B̃ ⊂ IRn is a metric ball and ϕ ∈ C∞(B̃), then
∫

B̃

|ϕ− ϕ
B̃
|p dµ ≤ C3r

p

∫

B̃

|Xϕ|p dµ.

One can easily modify the above definition and consider vector fields defined in
an open subset Ω of IRn with the estimates in the above conditions depending on
compact subsets of Ω. However for clarity we assume the global estimates. We do
not care to present the results in their most general form. We aim to present the
method. Various generalizations are then obvious.
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The uniqueness condition guarantees that any function u ∈ Lp(IRn, µ) that
belongs to W 1,p

X (IRn, µ) has a uniquely defined gradient Xu as the limit of gradients
Xuk of smooth functions uk which converge to u in the Sobolev norm. If the
uniqueness condition were not true, then we would find uk ∈ C∞ such that uk → 0
in Lp(µ) and Xu → v 6≡ 0 in Lp(µ). Then the zero function would have at least two
gradients 0 and v i.e. (0, 0) and (0, v) would be two distinct elements in W 1,p

X (IRn, ω).

Theorem 13.1 Let 0 < ω ∈ L1
loc(IR

n) and let X be a system of vector fields in IRn

satisfying condition (54). Then the weight ω is p-admissible, 1 < p < ∞, if and
only if the measure µ associated with ω is doubling with respect to the metric ρ (i.e.
µ(2B̃) ≤ Cdµ(B̃) for all metric balls B̃ ⊂ IRn) and there exists σ ≥ 1 such that

∫

B̃

|u− u
B̃
| dµ ≤ Cr

(∫

σB̃

|Xu|p dµ

)1/p

,

whenever B̃ ⊂ IRn is a metric ball of radius r and u ∈ C∞(σB̃).

Proof. The necessity is obvious. Now we prove the sufficiency. First note that the
uniqueness of the gradient 2. was recently proved by Franchi, HajÃlasz and Koskela,
[77, Corollary 13].

Next, by Corollary 9.8, we conclude the Sobolev–Poincaré inequality
(∫

B̃

|ϕ− ϕ
B̃
|p∗ dµ

)1/p∗

≤ Cr

(∫

B̃

|Xϕ|p dµ

)1/p

,

for all ϕ ∈ C∞(B̃) with some p∗ > p (remember that the doubling condition implies
(21) with s = log2 Cd). For our purpose the exact value of p∗ is irrelevant. It is
only important that p∗ > p. This and the Hölder inequality imply the Poincaré
inequality 4.

Now we are left with the Sobolev inequality 3. Since p∗ > p we have p∗ = kp
for some k > 1. For ϕ ∈ C∞0 (B̃) we have

(∫

B̃

|ϕ|kp dµ

)1/kp

≤
(∫

B̃

|ϕ− ϕ
B̃
|kp dµ

)1/kp

+ |ϕ
B̃
|.

The Sobolev–Poincaré inequality provides us with the desired estimate for the first
summand on the right hand side. Thus it suffices to estimate |ϕ

B̃
|. The Poincaré

inequality applied to the ball B̃ gives
(∫

B̃

|ϕ− ϕ
B̃
|p dµ

)1/p

≤ Cr

(∫

B̃

|Xϕ|p dµ

)1/p

, (77)

and when applied to the ball 2B̃ gives
(∫

B̃

|ϕ− ϕ
2B̃
|p dµ

)1/p

≤
(∫

2B̃

|ϕ− ϕ
2B̃
|p dµ

)1/p
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≤ C2r

(∫

2B̃

|Xϕ|p dµ

)1/p

= 2Cr

(∫

B̃

|Xϕ|p dµ

)1/p

. (78)

Thus
(

1− µ(B̃)

µ(2B̃)

) (∫

B̃

|ϕ
B̃
|p dµ

)1/p

=
(∫

B̃

|ϕ
B̃
− ϕ

2B̃
|p dµ

)1/p

≤ 3Cr

(∫

B̃

|Xϕ|p dµ

)1/p

.

In the proof of the equality we employ the fact that ϕ is supported in B̃ and the
inequality follows from the triangle inequality and inequalities (77) and (78). It
follows from the doubling property and the geometry of metric balls in IRn that
1− µ(B̃)/µ(2B̃) > C > 0 and hence

|ϕ
B̃
| ≤ C ′r

(∫

B̃

|Xϕ|p dµ

)1/p

.

The proof is complete.

13.2 Sobolev embedding for 0 < p < 1

The classical Sobolev–Poincaré inequality

(∫

B

|u− uB |p
∗
dx

)1/p∗

≤ C

(∫

B

|∇u|p
)1/p

,

holds when 1 ≤ p < n. It is easy to see that it fails when 0 < p < 1, and even
a weaker version of the Poincaré inequality fails for the range 0 < p < 1. For an
explicit example, see Buckley and Koskela [16].

However Buckley and Koskela, [16], and in a more general setting Buckley,
Koskela and Lu, [19], proved that if u is a solution to the equation div A(x,Xu) = 0
in a John domain with respect to the Carnot–Carathéodory metric, then u satisfies
a Sobolev–Poincaré inequality for any 0 < p < s, where s is given by condition (21).

As we will see, one of the results of the paper, Theorem 9.7, which states that
for any 0 < p < s, a p-Poincaré inequality implies a Sobolev–Poincaré inequality,
can be regarded as an abstract version of the above result. In particular this gives
a new proof of the result of Buckley, Koskela and Lu.

More precisely, assume that X = (X1, . . . , Xm) are locally Lipschitz vector fields
in IRn. Assume that the associated Carnot–Carathéodory metric satisfies condition
(54), the Lebesgue measure is doubling with respect to the Carnot–Carathéodory
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distance i.e. |2B̃| ≤ Cd|B̃| for all metric balls B̃ ⊂ IRn, and that condition (21) is
satisfied.

In addition we assume that the 1-Poincaré inequality is satisfied i.e. there is
C > 0 and σ ≥ 1 such that

∫

B̃

|u− u
B̃
| dx ≤ CP r

∫

σB̃

|Xu| dx ,

for all metric balls B̃ ⊂ IRn and all u ∈ C∞(σB̃).

Let A : IRn × IRm → IRm be a Carathéodory function such that

|A(x, ξ)| ≤ C1|ξ|q−1, A(x, ξ) · ξ ≥ C2|ξ|q ,

where 1 < q < ∞ is given. (Observe that in contrast with the previous section we
do not allow a weight ω.)

The following result is a variant of the result of Buckley, Koskela and Lu, [19].

Theorem 13.2 Let Ω ⊂ IRn be a John domain with respect to the Carnot–
Carathéodory metric. Then for any 0 < p < s there is a constant C > 0 such
that if u is a solution to equation div A(x,Xu) = 0, in Ω, then

inf
c∈IR

(∫

Ω

|u− c|p∗ dx

)1/p∗

≤ Cdiam Ω
(∫

Ω

|Xu|p
)1/p

.

The constant C depends on n, p, s, Cb, Cd, C1, C2, CP , and CJ only.

Proof. Let u be a solution to div A(x,Xu) = 0 in Ω. The first fact we need is that
the gradient |Xu| of the solution u satisfies a weak reverse Hölder inequality. This
is well known. However, for the sake of completeness, we provide a proof.

Given a metric ball B̃, let ηR be a cut-off function such that 0 ≤ ηR ≤ 1,
ηR|B̃ ≡ 1, ηR ≡ 0 outside 2B̃ and |XηR| ≤ 1/R. Using the distance function with
respect to ρ we easily construct a cut-off function with the metric Lipschitz constant
1/R. Then the estimate |XηR| ≤ 1/R follows from Corollary 11.8.

Now, using the test function (u− u
2B̃

)ηR, where 2B̃ ⊂ Ω is any metric ball and
ηR is the associated cut-off function, we conclude from a standard computation the
Caccioppoli estimate ∫

B̃

|Xu|q ≤ C

Rq

∫

2B̃

|u− u
2B̃
|q .

Then we estimate the right hand side by the Sobolev–Poincaré inequality and con-
clude that there is p < q such that for all metric balls B̃ with 2B̃ ⊂⊂ Ω

(∫

B

|Xu|q dx

)1/q

≤ C

(∫

2B̃

|Xu|p dx

)1/p

. (79)

This inequality is known under the name weak reverse Hölder inequality.
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It is well known that the weak reverse Hölder inequality has the self-improving
property: if inequality (79) holds for some 0 < p < q and all B̃ with 2B̃ ⊂ Ω, then
for any 0 < p < q there is a new constant C such that (79) holds for any B̃ with
2B̃ ⊂ Ω, see [19, Lemma 1.4]. This together with the 1-Poincaré inequality shows
that the pair u, g satisfies a p-Poincaré inequality in Ω for any p > 0. Hence the
claim follows from Theorem 9.7. The proof is complete.

14 Appendix

Here we collect the results in the measure theory that are needed in the paper. All
the material is standard. Since we could not find a single reference that would cover
the material we need, we have made all the statements precise and sometimes we
have even given proofs. Good references are Federer [68], Mattila [193], and Simon
[229].

In the appendix we do not assume that the measure µ is doubling.

14.1 Measures.

Throughout the paper by a measure we mean an outer measure, and by a Borel
measure, an outer, Borel-regular measure i.e., such a measure µ on a metric space
(X, d) that all Borel sets are µ-measurable and for every set A there exists a Borel
set B such that A ⊂ B and µ(A) = µ(B). In the case of a Borel measure we also
assume that the measure of each ball is strictly positive and X =

⋃∞
j=1 Uj , where

Uj are open sets with µ(Uj) < ∞.

Note that if the space X is locally compact, separable and µ(K) < ∞ for every
compact set K, then X can be written as a union of a countable family of open sets
with finite measure.

Theorem 14.1 Suppose that µ is a Borel measure on (X, d). Then

µ(A) = inf
U⊃A

U−open

µ(U)

for all subsets A ⊂ X, and

µ(A) = sup
C⊂A

C−closed

µ(C)

for all measurable sets A ⊂ X.

For the proof, see [68, Theorem 2.2.2. and Section 2.2.3], [193, Theorem 1.10] or
[229, Theorem 1.3].

If the space is locally compact and separable, the supremum over closed sets in
the above theorem equals to the supremum over compact sets.
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As a corollary to the above theorem we obtain the following well known result.

Theorem 14.2 If µ is a Borel measure on a metric space (X, d), then for every
1 ≤ p < ∞, continuous functions are dense in Lp(X, µ).

Proof. Simple functions are dense in Lp(X, µ), see [219, Theorem 3.13], so it suffices
to prove that characteristic functions can be approximated by continuous functions.
Fix ε > 0. If A ⊂ X is measurable, µ(A) < ∞, then there exists a closed set C
and an open set U such that C ⊂ A ⊂ U , µ(U \C) < ε. Now by Urysohn’s lemma,
there exists a continuous function ϕε on X such that 0 ≤ ϕε ≤ 1, ϕε|C = 1 and
ϕε|X\U = 0. Then obviously ‖χA − ϕε‖p → 0 as ε → 0. This completes the proof.

In order to have a variety of Borel measures one usually assumes that the space
be locally compact. In the definition of the doubling measure one does not assume
anything about the metric space. However, as we will see, the existence of a doubling
measure is such a strong condition that the space is “almost” locally compact.

We say that a subset A of a metric space (X, d) is an ε-net if for every x ∈ X
there is y ∈ A with d(x, y) < ε. A metric space (X, d) is called totally bounded if
for each ε > 0 there exists a finite ε-net.

The following two lemmas are well known.

Lemma 14.3 A metric space (X, d) is compact if and only if it is complete and
totally bounded.

Lemma 14.4 Every metric space is isometric to a dense subset of a complete met-
ric space.

The first lemma follows from a direct generalization of the proof that every
bounded sequence of real numbers contains a convergent subsequence, while the
second lemma follows by adding the “abstract limits” of Cauchy sequences to the
space.

Theorem 14.5 If a metric space (X, d) admits a Borel measure µ which is locally
uniformly positive in the sense that for every bounded set A ⊂ X and every ε > 0

inf
x∈A

µ(B(x, ε)) > 0, (80)

then (X, d) is isometric to a dense subset of a locally compact separable metric space.

Proof. The fact that X is a union of countably many open sets of finite measure
and (80) imply that X can be covered by balls X =

⋃∞
j=1 Bj with µ(2Bj) < ∞.

According to Lemma 14.3 and Lemma 14.4 it suffices to prove that for every
j = 1, 2, . . . and every ε > 0 there is a finite ε-net in Bj . This, however, easily
follows from (80) and the condition µ(2Bj) < ∞. The proof is complete.

It is of fundamental importance to note that the doubling condition implies local
uniform positivity of the measure, as follows from the following result.
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Lemma 14.6 Let µ be a Borel measure on a metric space X. Assume that µ is
doubling, in the following sense, on a bounded subset Y ⊂ X: there is a constant
Cd ≥ 1 such that

µ(B(x, 2r)) ≤ Cdµ(B(x, r)),

whenever x ∈ Y , and r ≤ diam Y . Then

µ(B(x, r)) ≥ (2 diam Y )−sµ(Y )rs,

for s = log2 Cd, x ∈ Y and r ≤ diam Y .

The above lemma together with Theorem 14.5 shows that doubling spaces are iso-
metric to dense subsets of locally compact separable metric spaces. The analogous
result holds also when the measure is doubling on some open set only. Note that a
doubling measure is finite on bounded sets.

The above remark together with the following result shows that a doubling
measure can be extended to a doubling measure on the larger locally compact
space.

Proposition 14.7 Let Y ⊂ X be a dense subset of a metric space (X, d). Let µ be
a Borel measure on (Y, d), finite on bounded sets. Then there exists a unique Borel
measure µ̄ on (X, d) such that

µ̄(U) = µ(U ∩ Y )

for every open set U ⊂ X. Moreover, if µ is doubling on (Y, d), then µ̄ is doubling
on (X, d) with the same doubling constant.

Proof. Set µ̄(A) = infB⊃A, B−Borel µ(B ∩ Y ) for an arbitrary set A ⊂ X. One
easily verifies that µ̄ is a Borel measure on (X, d). This proves the existence of the
measure. The uniqueness follows form Theorem 14.1.

Assume now that µ is doubling. Then obviously µ̄ is doubling with the same
doubling constant on all balls centered at Y . Since any ball in X can be “approxi-
mated” by balls centered at Y , the result follows.

Remark. If we removed the assumption that µ be finite on bounded sets, Y would
still have the property Y =

⋃∞
j=1 Uj , where the sets Uj are open with µ(Uj) < ∞.

However then this property would not necessarily be true for µ̄. For example, let
Y be the complement of a Cantor set in [0, 1], and X = [0, 1]. Then Y consists of
countable many intervals. Equip Y with a measure so that the measure of each of
the intervals is 1. Then X cannot be decomposed into a countable number of open
sets with finite µ̄-measure.

14.2 Uniform integrability.

In this section µ is an arbitrary measure on a set X.
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Assume that µ(X) < ∞. We say that a family {uα}α∈I of µ-measurable func-
tions on X is uniformly integrable if supα∈I

∫
X
|uα| dµ < ∞ and

lim
µ(A)→0

sup
α∈I

∫

A

|uα| dµ = 0.

The following theorem is due to Vallée Poussin. For a proof, see Dellacherie and
Meyer [63], or Rao and Ren [212].

Theorem 14.8 Let µ be a measure on a set X with µ(X) < ∞ and let {uα}α∈I be a
family of µ-measurable functions. Then the following two conditions are equivalent.

1. The family {uα}α∈I is uniformly integrable.

2. There exists a convex smooth function F : [0,∞) → [0,∞) such that F (0) = 0,
F (x)/x →∞ as x →∞ and

sup
α∈I

∫

X

F (|uα|) dµ < ∞.

The following well known result is a very useful criteria for convergence in L1.

Proposition 14.9 Let µ(X) < ∞. If un are uniformly integrable on X and un → u
a.e., then

∫
X
|un − u| dµ → 0.

Proof. It follows directly from Egorov’s theorem and the definition of uniform
integrability that the sequence un is a Cauchy sequence in the L1 norm, and hence
un converges to u in L1. The proof is complete.

14.3 Lp and Lp
w spaces.

In the following two theorems µ is an arbitrary σ-finite measure on X. The first
result is known as Cavalieri’s principle.

Theorem 14.10 If p > 0 and u is measurable, then
∫

X

|u|p dµ = p

∫ ∞

0

tp−1µ(|u| > t) dt.

The claim follows from Fubini’s theorem applied to X × [0,∞).

We say that a measurable function u belongs to the Marcinkiewicz space Lp
w(X)

if there is m > 0 such that

µ(|u| > t) ≤ mt−p for all t > 0. (81)

If u ∈ Lp(X), then (81) with m =
∫

X
|u|p dµ is known as Chebyschev’s inequality,

so Lp(X) ⊂ Lp
w(X). The converse inclusion does not hold. However, the following,

well known result holds.
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Theorem 14.11 If µ(X) < ∞ then Lp
w(X) ⊂ Lq(X) for all 0 < q < p. Moreover,

if u satisfies (81), then

‖u‖Lq(X) ≤ 21/q

(
qm

p− q

)1/p

µ(X)1/q−1/p. (82)

Proof. Fix t0 > 0. Using Theorem 14.10 and the estimates µ(|u| > t) ≤ µ(X)
for t ≤ t0 and µ(|u| > t) ≤ mt−p for t > t0 we get

∫

X

|u|q dµ ≤ q

(∫ t0

0

tq−1µ(X) dt + m

∫ ∞

t0

tq−p−1 dt

)
= tq0µ(X) +

qm

p− q
tq−p
0 .

Then inequality (82) follows by choosing t0 = (qm/(p− q))1/pµ(X)−1/p.

14.4 Covering lemma.

Theorem 14.12 (5r-covering lemma.) Let B be a family of balls in a metric space
(X, d) with sup{diam B : B ∈ B} < ∞. Then there is a pairwise disjoint subcollec-
tion B′ ⊂ B such that ⋃

B∈B
B ⊂

⋃

B∈B′
5B

If (X, d) is separable, then B′ is countable and we can represent B′ as a sequence
B′ = {Bi}∞i=1, and so

⋃

B∈B
B ⊂

∞⋃

i=1

5Bi.

See Federer [68, 2.8.4-6], Simon [229, Theorem 3.3], or Ziemer [263, Theorem 1.3.1]
for a clever proof.

14.5 Maximal function.

Assume that the measure µ is doubling on an open set Ω ⊂ X. The following
theorem is a version of the well known maximal theorem of Hardy, Littlewood and
Wiener.

Theorem 14.13 (Maximal theorem.) If X, Ω and µ are as above, and the maximal
function MΩu is defined as in the introduction, then

1. µ({x ∈ Ω : MΩu(x) > t}) ≤ Ct−1
∫
Ω
|u| dµ for t > 0 and

2. ‖MΩu‖Lp(Ω) ≤ C‖u‖Lp(Ω) for 1 < p ≤ ∞.

In the first inequality the constant C depends on Cd only, while in the second one
it depends on Cd and p.
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For a proof in the case of Lebesgue measure, see Stein, [233, Chapter 1]. We assume
that the reader is familiar with that proof and we show how to modify the argument
in order to cover our setting. It sufices to prove 1.; one then proceeds as in [233].
Inequality 1. would follow from this inequality for the restricted maximal function
MΩ,Ru provided we prove it with a constant C that does not depend on R. To this
end, note first that the doubling condition implies that Ω is separable and hence
the second part of Theorem 14.12 applies. Then the argument from the case of the
Lebesgue measure works without any changes. We had to work with the restricted
maximal function in order to obtain a suitable covering consisting of balls with radii
less than R (if we did not have the upper bound for the radii, we could not apply
Theorem 14.12).

We will also need a more general result. For c ≥ 1 and x ∈ Ω define Fc(x) as the
family of all measurable sets E ⊂ Ω such that E ⊂ B(x, r) and µ(B(x, r)) ≤ cµ(E)
for some r > 0. Then we define a new maximal function by

Mc
Ωu(x) = sup

E∈Fc(x)

∫

E

|u| dµ.

Obviously Mc
Ωu ≤ cMΩu, and thus we obtain as a corollary to Theorem 14.13 the

following result.

Corollary 14.14 Theorem 14.13 holds with MΩ replaced by Mc
Ω. The only differ-

ence is that now the constants C in Theorem 14.13 depend also on c.

14.6 Lebesgue differentiation theorem.

We say that a sequence of nonempty sets {Ei}∞i=1 converges to x if there exists a
sequence of radii ri > 0 such that Ei ⊂ B(x, ri) and ri → 0 as i →∞.

Theorem 14.15 Let µ be doubling on Ω ⊂ X and u ∈ L1
loc(Ω, µ). Then for µ-a.e.

x ∈ Ω we have

lim
r→0

∫

B(x,r)

u(y) dµ(y) = u(x). (83)

Moreover, if we fix c ≥ 1, then for µ-a.e. x ∈ Ω and every sequence of sets Ei ∈
Fc(x), i = 1, 2, . . . that converges to x we have

lim
i→∞

∫

Ei

u(y) dµ(y) = u(x). (84)

See [233, Chapter 1] for a proof in the case of the Lebesgue measure in IRn. The
same argument works also in our setting as it only relies on two facts: the weak
type inequality for the maximal function (see Theorem 14.13 and Corollary 14.14)
and the density of continuous functions in L1 (see Theorem 14.2).
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Let µ be doubling on Ω ⊂ X. Given u ∈ L1
loc(Ω, µ) it is often convenient to

identify u with the representative given everywhere by the formula

u(x) := lim sup
r→0

∫

B(x,r)

u(y) dµ(y) . (85)

Theorem 14.15 shows that taking the limit above only modifies u on a set of
measure zero. We say that x ∈ Ω is a Lebesgue point of u if

lim
r→0

∫

B(x,r)

|u(y)− u(x)| dµ(y) = 0,

where u(x) is given by (85). It follows from Theorem 14.15 that almost all points
of Ω are Lebesgue points of u. Observe that if x ∈ Ω is a Lebesgue point of u, then
both (83) and (84) are true.
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[82] Franchi, B., Pérez, C., Wheeden R.L.: Self–improving properties of John–
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[118] Heinonen, J., Koskela, P.: Quasiconformal maps on metric spaces with controlled
geometry. Acta Math. 181 (1998), 1–61.

[119] Heinonen, J., Koskela, P.: A note on Lipschitz functions, upper gradients and
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