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Sobolev meets Poincark 

Piotr HAJLASZ and Pekka KOSKELA 

Abstract - We prove that a very weak form of the PoincarC inequality implies a Sobolev-Poincare 
ineq~iality in the abstract setting of metric spaces. 

Sobolev rencontre Poincare 

Version jkzngaise abrigie  - L e  but de cette Note est la demonstration du theoreme 1 qui 
affirme que, dans le cadre tres general des espaces metriques, une inegalite fiaible de Poincare 
entraine une inegalite de Sobole\--Poincare. Ce resultat - dont la preuve est elementaire - 
a un certain nombre d'applications; parmi ses corollaires simples on trouve le theoreme de 
Saloff-Coste [I], theorem 2.1 et une caracterisation utile des puiils p-admissibles [ 2 ] .  D e  plus, 
il )- a des relations interessantes du theoreme 1 a\-ec les resultats recents de Jerrison [3] et 
Franchi, Gutierrez et  n-heeden [4]. 

Soit X un espace metrique. Nous disons que 12 c X remplit la condition de chaine C (A. LllI) 
avec A. 31 > 1 s'il existe une boule fixee Bo C (2 telle que pour chaque .r. E fl on peut trouver 
une suite de boules Bo B1. L12. d\eL les trois proprietes sunantes 

1 AB, C R pour I = 0. 1 2 et B, est centree en I pour tout I suffisamment grand 
2 Pour 1 > 0 B, est de ra!on 7 ,  (dlani 12) 2-' < I ,  < ilI ((liar11 R) 2 - I  

3 Pour tout 1 > 0, 11 T a une boule R, c B, n B,+l telle que B, U B,+l c MR, 
THEOREME 1. - S o i t  12 E C (A, 1\1) un sous-eizscmble d 'un  espa1.c. mitriqzle X .  Adnzettons que 

1~1 nzesure / I  ilq'finie sur X a la propriiti d~ douhlement, /L ( 2  B )  < Ccl / L  (B): Ll = Ll ( .r .  r ) ,  
.r: E 12, et r. < 5 tliarrrC2. ~4dmet tons  encore que pour des ji~nctiolzs g > 0. g E L". 0 < p < x, 
u E L:<,,. (12, / I ) / ( /  rersion ilhstrliite ile l 'ine~yaliti . f i ~ b l e  de Polncare, 

soit ~>t;l.$ie pozu clzilqlte boule B telle qzie XB C R. A l u u  il esiste k > 1 p i  ne dipend qzte 
de p et C,,, et une i,uizstnnte C2 = C2 (C1. Cd. 11. k r  A. -II) telle q1Oun i ~ i t  l ' inegalitt globnle i/e 
Soholez,-Poinral.c;c suirante 

Sz k p  < 1.  on renzpla~e ~ L Q  par uo , .  

MAIN RESULT. - The purpose of this Note is the proof of theorem 1 which, roughly 
speaking. states that, in the very general setting of metric spaces. a weak Poincar6 inequality 
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implies a Sobolev-Poincark inequality. This result has a number of applications and its proof 
is surprisingly elementary. In particular. the theorem of Saloff-Coste ([I]. theorem 2.1) 
is a very special case of theorem 1: also it provides an elementary characterization of 
11-admissible weights [2] and it simplifies and extends some of the results by Jerison 131. 
and Franchi. Gutierrez and Wheeden [4]. 

Let X be a metric space. We say that 12 c X satisfies the chain condition C'(X. *\I). 
where A. 111 2 - 1. if there exists a distinguished ball B,, C 12 such that for every 
.I: E 12 there exists an infinite sequence of balls Bo. B1. B2. ... (called "chain") with the 
following properties. 

1. XB, c (2  for i = 0. 1 ,  2. ... and R, is centered at .I: for all sufficiently large i .  
2. For i 2 - 0 the radius r. ,  of B, satisties 121-I (tliarn ( 2 )  2-I < r., < (dial11 (2) 2 - ' .  
3. For every .I > (1 there is a ball R, c B, n B,+l such that B, U B,+l c AIR, .  

Here and in what follows. by B we always denote a ball and by tB. where t > 0. a ball 
concentric with B and with radius t times that of B. By C we denote a general constant 
which can change its value even in a single line. The above chain condition is different 
from the cornmonly used Boman's chain condition (cf: 14)). 

If Q c R" is a bounded domain with smooth boundary then it satisfies the C (A. AI) 
condition for all X 2 - I .  The following lemma and its corollary provide us with more 
sophisticated examples. 

LEMMA 1.  - Let (X, (1) he a rnetric space s~rch tlqczt bo~rtzded and closed set.s elre conzpact. 
A s s ~ l ~ i e  tlzrrt the ~ i e t r i c  (1 1zcr.s tlze propert! that for ever-! t ~ . o  poi lit.^ O .  h € ,y the di.sturzc.e 
( / ( ( I .  b )  is eyilul to tlze injirnirrn of the lengths qf ccontinuou.s ci1n.e~ that joirz c1 and h 
(in pnrticular L1.e assunie that sirch u cirrlle crI~va?..s exists). Tlzen tliere exists u slzortest 
path y ,from (7 to b. This cur\*e he1.s the ,follo~~~iri,q segnlent propertj. For el.erT z E y, 
(1 (a. h )  = d ( n .  a )  + d ( a .  b ) .  

This lemma is due to Busemann [5]. p. 25 (cf: [4]. p. 592). 

COROLLARY 1. - Fix X > 1. Let the metric space (S. (1) firlfill the h p o t h e s i . ~  of the 
lenzrnn above. Then rlJer:\. blill B C S .satisjie.s the C (A. 211) conclitiorz rt.it11 ci certcrirl M 
~vhicli depe1id.s on the choice qf' A. 

The main result of this Note reads as follows. 

THEOREM 1 .  - Let 12 C X. (1  E C (A. 31). A.ssirine that / I  is c1 cio~lbling tnerisi~re: 
/ I  ( 2  B) 5 - C:,, / r  ( B )  1.17henever B = B ( : r .  I . ) .  .r E a, I .  < 5 diain Q,,. Ass~rnir ~ J I C L ~  

> 0, g E L1' ( i t ,  / L ) .  (1 < p < x, u E L:,,,. ( ( 2 %  1 1 )  (Ire .such that the,follo~~,irzg abstnrct 
~,er.sion o f  the local wectk Poirlcare ineq~lality holds: 

\thenever XB c 1 2  arzcl r 1s tlze radius of the bull B Then there exist5 A. > 1 I . I ~ K / I  depends 
on 11 ar~d the c/oublirzg constant C,, on/\, alld C'] = C2 (C1. C,,. 1). X . A.  111) ~ L K I Z  thcit the 
follou zng plobc~l so hole^^-Pornt crrP irzequallt~ holcls 

If Xp < 1. we replace u s )  by u ~ , ,  . 

Here and in what follows u~ = Z L  d p .  
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R e m ~ ~ r k .  - If we know in addition that 6,, = log, C,! < p. then we can prove more. 
Namely. for ho = J). we get exponential integrability. and. for < 1). Holder continuity 
of u .  Moreover. there is a two-weighted version of the above theorem where integration 
in the different sides in ( 1 )  and (2) is with respect to different measures. see [6]. 

Prooj: - It suffices to assume u*,, = 0 and estimate ( f ll l k j l )  ' /""  . Let :r E At = 
< 0 

(1111 > f )  be a Lebesgue point of 11. Let Bo. B1. B2. ... be a chain assigned to .I:. We 
have j ~ l ~ ,  A 111 (.r) j  > t .  ~ L B ~ ,  = 0 .  Using the doubling property and PoincarC inequality 
( 1 )  we compute 

31 

t 5 1 ( - ( 1 .  - f l R ,  I + , - 1 ,  1 )  
1=o 

Let E > 0. Then 

Evidently. there exists a term in the first sum which is greater than or equal to the 
corresponding term in the latter sum. Combining this with the fact that for certain C. 
which does not depend on i .  XB, c B ( : I : .  C,"r.,). and using the doubling property we 
conclude that there exists r,, > 0 with 

It 1s well known that the iteration of the doubling cond~tion implies that p (B ( r . r ) )  2 
2-91 ( 1 2 )  ( I  /(1ldn1f2)"or all h 2 h,, = log, C,, r E 0 and r < d ~ ~ ~ n i  fl We can assume 
that 0 < tl < 1. 50 J ) ( E - I )  < 0 Then 

Applying a Vita11 type lemma we obtaln a collection of pairwise disjoint balls 
X 

B, = B ( r , .  r ,  ). , = 1. 2. 3 ,  .... with A+ c U 5 B, . We can assume that 6  > I, 
1=1 

and hence 0 < (6 + p ( F  - l ) ) / 6  < 1. Now the doubling property and ( 3 )  give 

where L = (diarli12)Ii  ~1 (12)I'('-l)'\ This is a weak type estimate. Now the theorem 
follows by a standard argument (which goes back to Marcinkiewicz) involving integration 
with respect to f .  

The method used in the above proof can be easily modified to obtain an imbedding 
theorem in domains with very irregular boundaries [7]. 
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APPLICATIONS. - Consider the following degenerate equation in St C R" 

where A (.r. <) . ( 2 CI d (.r) I(I1'. 1-4 (.r. <)I 5 C2 w ( , I )  i ( l ~ ' ~ '  and d > 0. d E L:,,< (a). 
Weak solutions are defined in the weighted Sobolev space ll;lOci' (f2. d ) .  In order to extend 
Moser's technique to the case of equation (4) one needs to put some conditions on d .  
These conditions are listed in the following definition. see [2]. 

DEFINITION. - We say that w E L:<,, ( R " ) ,  w > 0 a.e. is p-admissible. 1 < p < x. if the 
measure defined by (I/, = w ( . r : )  ti:[. satisfies the following four conditions: 

1. (Doubling condition) j~ ( 2  B) < C1 j~ ( B )  for all balls B C R".  
2. (Uniqueness condition) If !I is an open subset of R" and p,., E C" (12) is a sequence 

such that p ,  1'' (111 - 0 and ICgl - 7111' dl1 4 0. where ' r s  E Ll' ( j ~ ) .  then 'il E 0. b I 
3. (Sobolev inequality) There exists a constant k: > 1 such that for all balls B c R" 

and all p E C,? ( B )  

(filpl'.l~ d j L )  ""' < C2 7. (fil Y p  d j L )  "". 

4. (PoincarC inequality) If B C R" is a ball and (F E C" ( B ) .  then 

Moser's technique extends to the case when LL is p-admissible weight, and one also 
obtains a rich potential theory, see [2]. 

As an application of theorem 1 we have the following characterization. 

T H E ~ R E ~ I  2. - Let d > O be u locctll~~ integrable .function. Then the ~veight w 
is p-admissible zf und only i f  the measure jr associated wit11 w is doubling (i.e., 
11 ( 2  B )  < C1 / I  ( B )  for all balls B c R " )  and 

 h hen ever B is a ball ~t , i th radius r and (1 E C" ( 2  B) 
Proqf!f: - Evidently the conditions stated in the theorem are necessary. For sufficiency 

notice first that the PoincarC and Sobolev inequalities follow from theorem 1. We are left 
with the uniqueness property. This has been shown by Semmes (cf [8]. [61). 

Our second application concerns the results of Jerison [ 3 ] ,  Saloff-Coste 111, and Franchi. 
Gutierrez and Wheeden [4]. If L is a subelliptic operator on a manifold as in [ l ]  or if L 
is a strongly degenerated Grushin type operator considered in [4]. then there is a certain 
metric /J and a gradient Y L  canonically associated with the operator L. This metric induces 
the standard topology. The metric is defined as an infimum of the length of subunit curves 
and hence corollary 1 applies. Also. very often. we have a natural doubling measure / L  

associated with L (doubling with respect to the metric 0) ( c j  [3]. [9]. [ I ] ,  [4]). Hence given 
such a measure j~ and metric 0. theorem 1 applies when R is an arbitrary ball. In such a 
special case. under the assumption that L is a subelliptic operator on a smooth manifold. 
has real C'" coefficients. is formally self adjoint with respect to p,  and p = 2, the fact 
that a PoincarC inequality, with !I = ICL I L ~ ,  implies a Sobolev inequality was proved by 
Saloff-Coste ([I]. theorem 2.1). His result is an immediate consequence of theorem 1. 
Moreover, even in this setting. theorem 1 is more general than Saloff-Coste's result. 
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Theorem 1 also directly applies to Grushin type operators considered by Franchi, GutiCrrez 
and Wheeden in [4] and gives some extensions of their results. Moreover. theorem 1 gives 
a neb,  simpler proof of a result of Jerison [3] according to which a strong form of the 
PoincarC inequality follows from its weak form. 

FURTHER RESULTS. - In theorem 1 we put the geometric condition C ( A .  M) on the 
metric. If we do not make any assumptions concerning the metric, then we arrive at a 
weaker version of theorem 1 which roughly speaking reads as follows. If the measure p 
is doubling and (1) holds in every ball B c X. then also the following weak version of 
the Sobolev-PoincarC inequality holds 

in every ball B c X. where k > 1 depends on p and the doubling constant only. We 
have two independent proofs for this fact (see [6]). One is a modification of the method 
used above and the second is an application of the Sobolev imbedding on metric spaces 
proved in [lo]. These arguments clearly also establish versions of the Sobolev inequality, 
i.e., inequalities for compactly supported functions. 

The tir\t author wa\ partially supported by KBN grant No. 210579101 and the second by the NSF. Part of this 
re\earch a.a performed while the first author was visiting the Unibersities of Helslnki and Jyvaskyla. He wisher 
to thank the department\ for their ho\pital~ty. 
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