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Sobolev meets Poincaré

Piotr Hajrasz and Pekka KoSKELA

Abstract — We prove that a very weak form of the Poincaré inequality implies a Sobolev-Poincaré
inequality in the abstract setting of metric spaces.

Sobolev rencontre Poincaré

Résumé — Nous démontrons qu’une forme trés faible d’inégalité de Poincaré implique une inégalité
de Sobolev-Poincaré dans la situation abstraite des espaces métriques.

Version frangaise abrégée — Le but de cette Note est la démonstration du théoréme 1 qui
affirme que, dans le cadre trés général des espaces métriques, une inégalité faible de Poincaré
entraine une inégalit¢ de Sobolev-Poincaré. Ce résultat — dont la preuve est élémentaire —
a un certain nombre d’applications; parmi ses corollaires simples on trouve le théoréme de
Saloff-Coste [1], theorem 2.1 et une caractérisation utile des poids p-admissibles [2]. De plus,
il y a des relations intéressantes du théoréme 1 avec les résultats récents de Jerrison [3] et
Franchi, Gutiérrez et Wheeden [4].

Soit X un espace métrique. Nous disons que 2 C X remplit la condition de chaine C (A, M)
avec A, M 2 1 s’il existe une boule fixée By C € telle que pour chaque x € €2 on peut trouver
une suite de boules By, By, Bs, ... avec les trois propriétés suivantes.

1. AB; C Qpour I =0, 1, 2,... et B; est centrée en = pour tout 7 suffisamment grand.

2. Pour i 2 0, B; est de rayon 7;, M~ ! (diam Q)27 < r; £ M (diam ) 27°.

3. Pour tout ¢ 2 0, il y a une boule R; C B; N B,y telle que B; U B;11 C MR;.

THEOREME 1. — Soit Q € C (A, M) un sous-ensemble d'un espace métrique X. Admettons que
la mesure v définie sur X a la propriété de doublement, u(2B) < Cqu(B); B = B(x, r),
x € Q, et v < bdiam Q. Admettons encore que pour des fonctions g > 0, g € LP, 0 < p < 00,
w € Li _(Q, w)la version abstraite de Uinégalité faible de Poincaré,

loc
1/p
][Iu —upldp = Cyr (][ g" du) ,
B JRA8

soit vérifiée pour chaque boule B telle que N\B C Q. Alors il existe k > 1 qui ne dépend que
de p et Cy, et une constante Co = Co (C1, Cq, p, k, A, M) telle qu'on ait 'inégalité globale de
Sobolev-Poincaré suivante

1/kp 1/p
(][ lu — ug|™ du) < Oy (diam ) (][g” du) .
9) Q

Si kp < 1, on remplace uq par up,.

MaIN ResuLT. — The purpose of this Note is the proof of theorem 1 which, roughly
speaking, states that, in the very general setting of metric spaces, a weak Poincaré inequality
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implies a Sobolev-Poincaré inequality. This result has a number of applications and its proof
is surprisingly elementary. In particular, the theorem of Saloff-Coste ([1], theorem 2.1)
is a very special case of theorem 1; also it provides an elementary characterization of
p-admissible weights [2] and it simplifies and extends some of the results by Jerison [3],
and Franchi, Gutiérrez and Wheeden [4].

Let X be a metric space. We say that Q C X satisfies the chain condition C (A, M),
where A, M = 1, if there exists a distinguished ball By C 2 such that for every
x € ) there exists an infinite sequence of balls By, By, B, ... (called “chain”) with the
following properties.

1. AB; Cc Q for+= 20,1, 2,... and B; is centered at x for all sufficiently large <.

2. For i > 0 the radius r; of B; satisfies M ! (diam Q)27 <, £ M (diam Q) 27,

3. For every ¢ 2 0 there is a ball R; C B; N B;y; such that B, U B,;; C MR,.

Here and in what follows, by B we always denote a ball and by ¢B, where ¢t > 0, a ball
concentric with B and with radius ¢ times that of B. By C we denote a general constant
which can change its value even in a single line. The above chain condition is different
from the commonly used Boman’s chain condition (cf. [4]).

If  C R" is a bounded domain with smooth boundary then it satisfies the C (A, M)
condition for all A = 1. The following lemma and its corollary provide us with more
sophisticated examples.

LEMMA 1. — Let (X, d) be a metric space such that bounded and closed sets are compact.
Assume that the metric d has the property that for every two points a, b € X the distance
d(a, b) is equal to the infimum of the lengths of continuous curves that join a and b
(in particular we assume that such a curve always exists). Then there exists a shortest
path ~ from a to b. This curve has the following segment property. For every z € v,
d(a, b) = d(a, z) + d(z, b).

This lemma is due to Busemann [5], p. 25 (c¢f. [4], p. 592).

COROLLARY 1. — Fix A\ 2 1. Let the metric space (X, d) fulfill the hypothesis of the
lemma above. Then every ball B C X satisfies the C (A, M) condition with a certain M
which depends on the choice of \.

The main result of this Note reads as follows.

THEOREM 1. — Let Q C X, Q € C (A, M). Assume that i is a doubling measure:
w(2B) £ Cyp(B) whenever B = B(xz,r),z € Q,r < 5diam$Q. Assume that
g>0,g€LP(Q pn),0<p<oc ue Ll (9 u) are such that the following abstract

loc

version of the local weak Poincaré inequality holds:

" . 1/p
(M 7Z|“ —upldp = Cyr <][ g’ du)
J B JAB

whenever AB C ) and r is the radius of the ball B. Then there exists k > 1 which depends
on p and the doubling constant Cy only, and Cy = Cy (C1, Cy, p, k, N\, M) such that the
Sfollowing global Sobolev-Poincaré inequality holds

. 1/kp . 1/p
(2) <][ lu — ug|*” du) < O (diam Q) (]Z g’ d/t) .
Ja Ja

If kp < 1, we replace ug by ug,. .

Here and in what follows uy = ]Zu dp = /L(K)_l / wdjt.
JK J K
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Remark. — If we know in addition that 8y = log, Cy < p, then we can prove more.
Namely, for 69 = p, we get exponential integrability, and, for 6, < p, Holder continuity
of u. Moreover, there is a two-weighted version of the above theorem where integration
in the different sides in (1) and (2) is with respect to different measures, see [6].

. 1/kp
Proof. — Tt suffices to assume up, = 0 and estimate ( [u|*P .Letz € Ay =
Q
{Ju| > t} be a Lebesgue point of u. Let By, By, Bs,... be a chain assigned to x. We

have |up,| — |u(x)| > t, up, = 0. Using the doubling property and Poincaré inequality

(1) we compute

t< fu(x) —up,| £ (Jus, —ur, |+ up,,, —ur,|)

1=0

S . 00 i 1/p
§CZ ][ |U—UB,|dM§CZ7',¢ <7[ gpd,u) .
i=0 7/ Bi i—0 JAB,

Let ¢ > 0. Then

o0 . 1/p s s} e}
Z’I',‘(}Z g”du) gC’t:C’tZ‘Z"€>C’1‘ (diam ) EZr
1=0 JAB; 1=0 i=0

Evidently, there exists a term in the first sum which is greater than or equal to the
corresponding term in the latter sum. Combining this with the fact that for certain C,
which does not depend on i, AB; C B (z, Cr;), and using the doubling property we
conclude that there exists 7, > 0 with

(diam Q)"* / ( gPdp > CtP Y (B (z, 1)),
B(r,r,)NQ

It is well known that the iteration of the doubling condition implies that u (B (z, r)) 2
270 11 (Q) (r/diam Q)? for all & = 8y = log, Cy, €  and r < diam 2. We can assume
that 0 < € < 1, so p(e — 1) < 0. Then

3) w(Q)P (e=1)/6 (diam Q)? / g dp 2 CtP (B (x, 'r,,.))H(p(E*l)/b).
' J B (x,r, )N

Applying a Vitali type lemma we obtain a collection of pairwise disjoint balls
B., = B(x;,re,), © = 1,2, 3,..., with A; C UF)B We can assume that 6 > p
and hence 0 < (6 + p(e —1))/6 < 1. Now the doublmg property and (3) give

1 (A, )1+(1>(€ 1)/8) <cC Z (B, 1+(11(€ 1)/6)
1=1

o0

§Ct_”LZ/ gPdp S Ct™P L / g* du,
= JB..na Ja

where L = (diam Q)7 p ()P ¢=D/% This is a weak type estimate. Now the theorem
follows by a standard argument (which goes back to Marcinkiewicz) involving integration
with respect to ¢.

The method used in the above proof can be easily modified to obtain an imbedding
theorem in domains with very irregular boundaries [7].
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AppLICATIONS. — Consider the following degenerate equation in 2 C R™
4) divA(z, Vu) =

where A (z, €).€ 2 Crw (2) [€P, |[A(z, £)] £ Cow (z) |€[P7! and w > 0, w € L ().
Weak solutions are defined in the welghted Sobolev space W7 (Q, w). In order to extend

Moser’s technique to the case of equation (4) one needs to put some conditions on w.
These conditions are listed in the following definition, see [2].

DEFINITION. — We say that w € L{ (R"), w > 0 a.e. is p-admissible, 1 < p < oo, if the
measure defined by dp = w () da satisfies the following four conditions:

1. (Doubling condition) i (2 B) £ C; u(B) for all balls B C R™.

2. (Uniqueness condition) If € is an open subset of R™ and ¢; € C*° () is a sequence

such that / lpi|? dpp — 0 and / [V, —v|P du — 0, where v € L? (i), then v = 0.

3. (Sobolev inequality) There exists a constant k£ > 1 such that for all balls B C R"
and all ¢ € C§°(B)

1/kp . 1/p
(][|<p|k"’ (iu) S Cyr (7[ |Vel? d,u) :
B JB

4. (Poincaré inequality) If B C R" is a ball and ¢ € C™ (B), then
/ lo —wplPdu = Csr? / [Vel? dp.
B B

Moser’s technique extends to the case when w is p-admissible weight, and one also
obtains a rich potential theory, see [2].
As an application of theorem 1 we have the following characterization.

THEOREM 2. — Let w > 0 be a locally integrable function. Then the weight w

is p-admissible if and only if the measure p associated with w is doubling (i.e.,
p(2B) £ Cyp(B) for all balls B C R") and

. . 1/p
][|u —ug|dp < Cyr <][ |V ul? du) )
B 2B

whenever B is a ball with radius r and v € C*> (2 B).

Proof. — Evidently the conditions stated in the theorem are necessary. For sufficiency
notice first that the Poincaré and Sobolev inequalities follow from theorem 1. We are left
with the uniqueness property. This has been shown by Semmes (cf. [8], [6]).

Our second application concerns the results of Jerison [3], Saloff-Coste [1], and Franchi,
Gutiérrez and Wheeden [4]. If L is a subelliptic operator on a manifold as in [1] or if L
is a strongly degenerated Grushin type operator considered in [4], then there is a certain
metric p and a gradient V ; canonically associated with the operator L. This metric induces
the standard topology. The metric is defined as an infimum of the length of subunit curves
and hence corollary | applies. Also, very often, we have a natural doubling measure
associated with L (doubling with respect to the metric p) (cf. [3], [9], [1], [4]). Hence given
such a measure p and metric p, theorem 1 applies when 2 is an arbitrary ball. In such a
special case, under the assumption that L is a subelliptic operator on a smooth manifold,
has real C'™ coefficients, is formally self adjoint with respect to u, and p = 2, the fact
that a Poincaré inequality, with ¢ = |V u|, implies a Sobolev inequality was proved by
Saloff-Coste ([1], theorem 2.1). His result is an immediate consequence of theorem 1.
Moreover, even in this setting, theorem 1 is more general than Saloff-Coste’s result.
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Theorem 1 also directly applies to Grushin type operators considered by Franchi, Gutiérrez
and Wheeden in [4] and gives some extensions of their results. Moreover, theorem 1 gives
a new, simpler proof of a result of Jerison [3] according to which a strong form of the
Poincaré inequality follows from its weak form.

FURTHER RESULTS. — In theorem 1 we put the geometric condition C (A, M) on the
metric. If we do not make any assumptions concerning the metric, then we arrive at a
weaker version of theorem 1 which roughly speaking reads as follows. If the measure p
is doubling and (1) holds in every ball B C X, then also the following weak version of
the Sobolev-Poincaré inequality holds

. 1/kp . 1/p
(7[ |u— ug|* du) <Cr <][ g° du)
JB 2B

in every ball B C X, where £ > 1 depends on p and the doubling constant only. We
have two independent proofs for this fact (see [6]). One is a modification of the method
used above and the second is an application of the Sobolev imbedding on metric spaces
proved in [10]. These arguments clearly also establish versions of the Sobolev inequality,
i.e., inequalities for compactly supported functions.
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