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Polynomial asymptotics and approximation
of Sobolev functions

by

!

PIOTR HAJLASZ and AGNIESZKA KALAMAIJSKA (Warszawa)

Abstract. We prove several results concerning density of C3°, behaviour at infinity
and integral representations for elements of the space L™ = {f | V" f € LP}.

1. Introduction. It was O. Nikodym who first introduced Sobolev
type spaces. They appeared in [9] under the name of Beppo Levi spaces.
Today this name is reserved for spaces of the type L™P(R™) = {f €
D'(R™)|V™f € LP}, also denoted by BL,,(LP(R™)). However, an interest
in spaces of this type really begun with the paper of Deny and Lions [4]

e
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The space L™7 is equipped with a quasinorm ||V™ f|| r». It is well known
that elements of L™7P are locally integrable with exponent p. However, they
need not be p-integrable in the entire space R™. As an example, take any
polynomial of degree less than m.

In this paper we prcve severai results concerning behaviour at infinity,
approximation by C§° and integral representations for functions from the

space L™P. We also deal with the space W7, = L™ N L™?.

The general framework of the subject and the problems discussed here
are certainly not new. They have been developed in many directions (cf. [1]-
131, 6], [8], [11], [13]). The most comprehensive source is [3]. However, the
approach presented in these papers is very technicai, based upon complicated
integral representations and singular integrals. For this reason the authors

deal only with 1 < p < oc.

Cur approach is more elementary, because it depends oniy on a Poincaré
type inequality. We also cover the missing case p = 1. The Poincaré
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inequality was first used in a similar context by Iwaniec and Martin
[5, Lemma 3.4].

Acknowledgements. The authors wish to thank Professor Bogdan Bo-
jarski for stimulating and helpful advice and Professor Tadeusz Iwaniec for
his careful reading of the manuscript and many helpful suggestions.

2. Notation. Let £2 C R™ be an open set, m a positive integer and
1 < p < oco. We define

WTE(R2) = {f € D'(2)| D*f € LP(£2) for |a| < m},
L™(0) = {f € D'(2)| D*f € LP(£2) for la| = m}.
The space W™P(£2) with the norm || fllwmr(2) = ¥ |a1<m 1D Flzo() is a

Banach space. The space L™P((2) is equipped with a quasinorm || f|| L m.»(0)
= szm | D% fllL»(n), vanishing on all polynomials of degree less than

m. Therefore, it induces a Banach norm on the quotient space Lm’p(ﬂ) =
L™P(02) /P™1, where P* denotes the space of polynomials of degree less
than or equal to k. The quasinorm || || Lm.» () is equivalent to the following:

19 flewier = ( (32 10°5@R)" ae) ",

P laj=m

where V™ f denotes the vector field with components D*f, |a] = m. Re-
placing L? by L} . we obtain the definitions of W, ?(£2) and L7?P(£2). It is

well known (see (7, Th. 1.1.2]) that L™?(§2) C W .P(02).

The symbol Cy will stand for the space of continuous functions on R”
vanishing at infinity, which is a Banach space equipped with supremum
norm. It is clear that Cj is the closure of C§° in L norm.

We will also be concerned with two other Sobolev type spaces, namely
W(82) = L7(£2) N L™P(§2) with the norm || fflwr = | fll- + [V™ f|Ls
(this is relevant to Nirenberg’s multiplicative inequalities [10]) and W™ (2).
The latter space is defined as follows: if mp < n or m = n, p = 1, then the
homogeneous Sobolev space is

m
WImP(Q) = () L*P(02),
k=0
where p} = np/(n — (m — k)p), under the convention that np/0 = co. The
norm in this space is given by
m
Fllwrey =D IVFF

k=0

LP%(2)

Obviously, W (£2) and W."?((2) are Banach spaces. For notational sim-

plicity we write pj = p* in the case k& = 0.
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Also, if £2 = R™ the domain {2 will be suppressed in our notation. We
will often use the cut-off functions n € C§°(B™(2)),n > 0, n|g~1) =1 and
nr(z) = n(z/R), for a pair of concentric balls B*(R) C B™"(2R). Clearly,
|Deng| < CR™I* and supp D*ng C {z|R < |z| < 2R} for |a| > 0.

In the sequel the letter C' denotes a constant which may change from
line to line.

Our basic tool is the following Poincaré type inequality (see e.g. [T,
Th. 1.1.11]):

THEOREM 1. If 2 is a bounded (connected) domain with the cone prop-
erty and ¢ € C§°(2) with [, p(x)dz = 1, then every function f € L™P((2),
1 < p < o0, satisfies the inequality

I = P fllwme@) < CIV™ flloea),

where P~ f € P™~1 is the polynomial given by

P = 5 D5 (e ) s an

2 jai<m-1
The constant C does not depend on f.

Remark. Domains with Lipschitz boundary, like a ball, an annulus
{Ry < |z| £ R2} or a cube have the cone property.

In addition we will appeal to the classical Sobolev imbedding theorem
(see e.g. [7, Th. 1.4.5)).

THEOREM 2. If 1 < p < co and eithermp <n orm=mn, p=1, and if
{2 is a bounded domain with the cone property or an infinite cone, then the
space W™P () is continuously imbedded in LP" (02).

In particular, we have

C%ROLLARY 1. Suppose m, n, p are as in Theorem 2 and f € W™P,
Then

| fllwme < CIV™ fllLe,
where the constant C' does not depend on f.

The last prerequisite is the following representation formula (cf. [7, Th.
1.1.10/2}).

THEOREM 3. For every ¢ € C§° we have

o= Y K,*D%,

L
faj=m

m o3

nwn ot "’

where K, (z) = and w, denotes the volume of the unit ball.



58 P. Hajlasz and A. Kalamajska

3. Density results for L™P?. Throughout this section approximation
in L™P? is understood with respect to the quasinorm || |[zm.».

THEOREM 4. Let 1 < p < oo and m =1,2,... The subspace C§° is dense
mn L™P of and only if eithern > 1 orp > 1.

Remark. The case p > 1 has been previously solved by Sobolev [13],
[14] (see also [3]).

Proof of Theorem 4. First we will construct a function feL™!(R)

which cannot be approximated by smooth, compactly supported functions.
Let f be such that f(™ = ¢ (mth derivative), where ¢ € C*(R), Je®#0.

(m)

Now assuming that 1y € Cg°, v, ' — f (m) = ¢ in L' leads to a contradic-
tion, since 0 = [ ¥y — [, 6 # 0.
Next, we prove that if 1 < p < oo, then C§° is dense in L™P(R).

Lemma 1. If p > 1, fo € LP(R), and fry1(z) = f; fu(t)dt, then
fe(z)|z| =% € LP(R) for k=0,1,2,...

Proof The assertion follows by induction and the Hardy inequality
(see e.g. [15)).

Let f € L™?(R). Approximating f by convolution with standard mol-
lifiers we can assume that f € C® N L™P. Set Fy = f™ and Fyiq =
Jo F(t)dt. Our goal is to show that Fi,ng — f in L™P as R — oo.

Applying Leibniz’s formula to (F,,ng )™ it suffices to prove that Fim MR

— Fm) in LP and ngc)Fk — 0in L? for k= 1,...,m. The first convergence
is clear. The second one follows from the estimate

(k) &
Inz Fellrewy < CR™"||FllLr(r<|2i<2R)

ko~ NP
< 2°C| Fp(z)lz| ™ || or(Rje|<2r) = 0 as R — oc®

It remains to show that if n > 2 and 1 < p < oo, then every f € L™P(R™)
can be approximated by functions from C§°. As before, we can assume that
j e C*nL™P By Theorem 1 applied to the annulus {z |1 < |z]| < 2} there
exists a polynomial P, f such that

1D*(f = Puf)ller(i<izi<y < CUV™ fllre(i<izi<2)

for f e L™P({z]1 < |zl < 2}) and |a| < m (the construction fails when
n = 1, because {z|1 < lz| < 2} is not connected). By a simple rescal-
ing argument we obtain the analogous inequality in the annulus {z|R <

x| < 2R}:

1D*(f = Paf)llte(r<izi<ery < CR™1NV™ il Lo (R<tz|<2R)-
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We will prove that (f — Prf)ng — f in L™P as R — oo. According to
Leibniz’s formula it is enough to show that
DP(f — Prf)D'np — 0 in LP as R — oo,
for |8 +~| =m, |7| > 1. We have
\D?(f = Prf)D"nr|l» < CR™DP(f = Paf)l|e(rgiai<2R)
< CR™MR™ Y™ fll 1o (r<ioi<2R)
=CiV™ fllLr(r<izi<2r) — 0 as R — oo,

Remarks. 1) The above theorem might be useful in the L? theory of
Hodge decomposition. For example, Lemma 3.4 of [5] follows directly from
Theorem 4. In fact, our approach via the Poincaré inequality is similar to
that of [5, Lemma 3.4].

2) The same arguments work if (2 is an infinite cone but instead of C§°
we must take smooth functions in {2 with bounded support.

4. Imbedding theorems
4.1. The case mp < n

THEOREM 5. Let mp < n and 1 < p < co. Then for every f € L™?P there
ezists ezactly one polynomial P™~1f € P™~L such that f—P™ ' f € W,
and

(1) If = P™ fllwme < OV fll o
Moreover,
Prolf=f— 3 KoxDf
jol=m
with K, as in Theorem 3.

Remark. Inthe case p > 1 the inequality (1) has already been obtained
by Sedov [11] (see also [3, Th. 14.4]).

Proof of Theorem 5. The uniqueness part is evident. Let ¢, € C5°,
o, — f in L™P (see Theorem 4). By Corollary 1 appiied to ¢n — @m, We
see that o, converges in W, " to a function u. Clearly, D*u = D<f for
i@l = m. Thus u = f — P™~'f for some polynomial P™~1f & P™~ 1
Applying again Corollary 1 to0 {®,}, and letting n go to infinity we obtain
the desired inequality

=P fllwre < CUIVT fllze.

t remains to show that u = > K, * D*f. By Theorem 3 we have

Ldlal=m

Oy = Z Ko *x DY0p.

lxi=m
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Let ¥ € C§°. Since |[K4(z)| < Clz|[™7", it follows that Ko *v € LP | where
1/p+1/p =1, K4(z) = Ku(—z). Thus, by the Fubini Theorem,

(fr0) = > [ D6(y)(Ka *¢)(y) dy.

lo|=m &
Passing to the limit as £ — oc we arrive at the formula
wo)= Y [DUEasp)y)dy=( 3 KaxDf2),
loel=m R™ loej=m
which completes the proof, since 1 was taken arbitrarily.
Remark. An analogous statement holds if {2 is an infinite cone. In this
case, instead of Theorem 3, one uses the representation formula from [12,

Th. 5.3] for C*°({2)-functions with bounded support. The formula applied
to the family of operators P, f = D f.

COROLLARY 2. If mp < n and p > 1, then W."? coincides with the
space of Riesz potentials

Infl@)= [ fl)lz—y/™ " dy
o

for all f € LP(R™).
Remark. This theorem has been established by Lizorkin [6].

Proof of Corollary 2. The standard application of Marcinkiewicz’s
Multiplier Theorem implies that the space of Riesz potentials is equal to the
closure of C§° in the norm ||g{|z -~ + ||V™g||z». It follows from Theorems 4
and 5 that C§° is dense in W¥ . This completes the proof.

4.2. The case m =n, p = 1. As we will see this case is more subtle than
that of mp < n. Note that wrtn Cy is a closed subspace of W' ’l, because
Wot < L.

THEOREM 6. Let f € L™,

(i) If n > 1. then there erists a unique polynomial P~ 1f € P*~1 such
that f — P f ¢ W' N Ch and

[f =P g SCIV Sl
Moreover,

Prlf=f— > KuoxDf

laj=m
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(ii) If n =1, then

If = Fillwrs < 20f2s,
for any fized y € R.

Remarks. 1) Since W11(R) consists of continuous functions, it follows
that the value of f at any point is well defined.

2) Note that in the case n = 1 we do not get an imbedding into W' NC.
A smooth function f such that f(z) =1forz > 1 and f(z) =0for z <0
belongs to L11(R), while f — C does not belong to Cy for any constant C.

Proof of Theorem 6. The result for n > 1 is obtained in much the
same way as in the case mp < n. The case n = 1 follows from the simple
estimate

max{z,y} |
f@)-fwl=| [ rwa<[irolde
R

min{z,y}

4.3. Polynomial asymptotics at infinity. Theorems 5 and 6 state that
if either mp < n, or m = n > 1 and p = 1, then every function f from
L™P has a polynomial behaviour at infinity in the sense that there exists
a polynomial P € P™~! such that f — P belongs to a certain L" space or
to C| 0-

In the case m = n = p = 1 we know that f is bounded (Thecrem 6),
but we have no imbedding in Cy, as follows from the example given in the
remark after Theorem 6.

The following examples show that in all other cases there exist functions
in L™? without polynomial behaviour at infinity in any reascnable sense.

EXAMPLE 1 (The case mp > n and 1 < p < co0). Any smooth function f
such that f(z) = |z|® for |z| > 1 (where 1 > ¢ > O satisfies (m —¢)p > n)
belongs to L™P. In this case lim; .. |f(z) — P(z)] = oo for any poly-
nomial P.

EXAMPLE 2 (The case mp = n and p > 1). Any smooth function
such that f(z) = logloglz! for |z] > e is a member of L™P. In this case
lim; o | f(z) — P(z)| = oc for any polynomial P.

5. Density results for W7,

THEOREM 7. If 1 < p,r < cc, then Cg° is dense tn W7,

Remark. For 1 < r,p < co this result was already known in 3, Th.
14.14]

)
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Proof of Theorem 7. Let f € W,. As before, it can be assumed
that f € C°NW,. Clearly, fng — fin L" as R — oo. We will prove that
fnr — fin L™P as R — co.

First assume that mp < n. It follows from Theorem 5 that || f|lywm»r <
Cl|V™f||z». Let o and 8 be multiindices such that |a| = & > 1 and |8] =
m — k. Since DP f € LPm—& by Holder’s inequality, we obtain

. c
| D*nrDP fl|» < "RT;C”X{R<[m§<2R}Dﬁf“LP

< || DPF|| - —0 asR— o
LPm—k(R<|z|<2R)

This implies the desired convergence.

Assume now that mp > n. We distinguish between two cases: n =1 and
n > 2.

Case n > 2. It follows from the proof of Theorem 4 that
(f = Pafing — f in L™P as R —

where Pgf are the polynomials from the proof of Theorem 4. Therefore, it
remains to prove that (Prf)ng — 0 in L™?.

Recall that Prf was obtained from P; f by a rescaling argument, where

P, f is defined in Theorem 1 and depends on the choice of a function ¢

supported in {z |1 < |z| < 2}. Hence, we have the explicit formula,
(]
T
Paf) = 5 (§) J valn)f(Eas
laj<m—1 R™

where 1, € C§°({1 < |z| < 2}) depends on ¢ only.

Let |3| = m. We have to prove that D?{(Prf)nr) — 0 in LP. It suffices
to show that DY(Prf)D°nr — 0, whenever v + 6§ = (3. If v = 3, then
DY(Pgf) = 0, so we can assumne that |§] > 1. We have

| DY (Prf)D%nzll e < CR™PDY(Prf)llLr(r<iai<2n)-

We need only estimate each of the monomials of Pgzf. The problem reduces
to showing that the quantity

In = RN 0a oo cony| [ waly)f(Ry) dy|
tends to zero as R — oc. We can assume that o > . Note that

1% Lo Re|zj<2m) < CRI®I-NIR™P,

Hence, denoting {z| R < lz| < 2R} by {25, we have
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In < CRMP™™ [ |f(Ry)ldy=CR*=™" [ |f(y)ldy
.Ql QR

< CRn/p—m—an(l—l/T)”f“L,.(QR) —0 as R— oo,

because the exponent of R is negative.

In the case n = 1 the proof is similar, with a slight difference: there is no
Poincaré inequality (Theorem 1) for the one-dimensional annulus {z|1 <
lz| < 2}, but we can use the Poincaré inequality twice, applied to the inter-

vals [—2,—1] and [1,2].

Remarks. 1) It is easy to see that if r = co or p = oo, then C§° is not
dense in W7
2) It follows from the above arguments that C§° is dense in W77 , N Co.
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