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Polynomial asy mptot ics and approximation 
of Sobolev functions 

T I O T R  H - 4 J L X S Z  and A G N I E S Z K A  K . 4 E A M - 4 J S K h  (Warszawa) 

Abstract. M;e prove several results concerning density of C r ,  behaviour at infinity 
and integral representations for elemelits of the space L">p = {f / Ym f E L p ) .  

1. Introduction. i t  was 0. Nikodym who first introduced Sobolev 
type spaces. They appeared in 191 under the name of Beppo Levi spaces. 
Today this name is reserved for spaces of the type L m l p ( R n )  = (f f 
D'(Rn) i Cm f f L"), also denoted by BL,, ( L p ( X n ) ) .  However, an interest 
in spaces of this type really begun with the paper of Deny and Lions 141. 

The space L m'P is ecjiiipped with a quasinorm 1 j Om f L P .  I t  is well known 
that elements of Lm.p are locally integrable with exponent p. However, they 
need not be p-~ntegrabie in the entire space Rn. As an esample, take any 
polynomia: of degree less than m. 

In tnls paper we prcve several results concerning behaviour at infinity. 
approximation by CF and integral representations for functions from the 
space LmJ'. \lye also deal with the space kVrP = Lr ri LmJ'. 

The ger-era1 framework of the subject and the problems discussed here 
are cnrt,ainly not new. They have been de~ieloped in many directions jcf. :I]- 
-31 L , .  '6;. ;8:. ;Ill. ;;3]). The most comprehens~ve source is ;3]. However, the 
approach pesenteci in these papers is very technicai. based upon compiicated 
integral representations and singular integrais. Fdr this reason the authors 
deal m l ' y  with 1 < < X .  

Our approach is more elementary, because it cie?ends oniy on a foincsr6 
type inequality. TTVe also cover tLe misslng case p = 1. The Foincare 
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inequality waE first used in a similar contest by Iwaniec and Martin 
[5, Lemma 3.41. 

Acknowledgements. The authors wish to thank Professor Bogdan Bo- 
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his careful reading of the manuscript and many helpful suggestions. 

2. Notation. Let Q c 2"" be an open set, m a positive integer and 
1 < - p < x. 'CVe define 

IVm*p(Q? = ( f  E 'C'(f2) j D f f f  E Lp( in j  for /a !  <_ m}. 

L" p(L?) = { f E D'(in> 1 D" f  E LYLQ)  for la/ = m). 

The space TVm,P( L?) with the norm i f / iwm.pin,  = ~1,,1, liD" f i l L P ; ~ l  is a 
Banach space. The space Lm1"(!2) is equipped with a quasinorm jljii L m , P ( n )  
- 'ID" 
- C I a l = ,  f  I I I p : n ) .  vazishing on all polynomjals of degree less than 
m. Therefore, it induces a Banach norm on the quotient space LmJ'(R) = 
L"""(l2) l'Pm-l. where  denotes the space of polynomials of degree less 
than or equal to k .  The quasinorm I j  j i  L-,,P(Q) is equivalent to  the following: 

where V m  f denotes the vector fieid with components D" f ,  jal = m. Re- 
placing LF by L&c we obtain the ireSnitions of VC-lr;P(f2) and LE;P(R) .  It is 

- m . p  well known (see ,$. Th. 1.1.21 j that Lml"JR) c kk,,, (0). 
The symbci & will stand for the space of continuous functions on gn 

vanishing at  i nh i t y ,  which is a Banach space equipped with supremum 
norin. It is clear that Co is the closure of CF in L" norm. 

We wiil also be concerned with two other Sobolev type spaces. namely 
W?'.G', .P \ = LV$) ;i imJ'(12] with the norm i j!wn = ; J i l L ;  + ' /Gmf/ IL? 
ithis is rzlevanc to Nirenberg's multiplicative inequalities [ lo] )  and W,"'"(R). 
The latter space is deiined as follows: if m p  < n or m = n, p = I,  then tne 
homogeneous Sobolev space is 

rn 

k=O 

winern pz = npi1r7 - (rn - k ; p j .  under the convention that n p j O  = a. The 
norm in this space is given by 

k c !  

Obviously. W-,"PiRj and I.Ti,"'"Q; are Banach spaces. For notational sim- 
plicity we mrite p j  = 2" IE ihe case k = 0. 



Xiso, if 0 = Rn the donlain 0 will be suppressed in our notation. t5:e 
will often use the cut-off functions r;r E C r ( B n ( 2 ) ) ,  7 >_ 0, vjBnil) -- 1 and 
qR!z) = q(x/R\i, for a pair of concentric balls Bn(R)  c Bn(2R). CIearIy. 
/OavR! I < - C R - I ~ ~  and sup? DayR c {x / R 5 lzi 5 2R) for la1 > 0. 

In the sequel the letter C denotes a constant which may change from 
line to  line. 

Our basic tool is the following Poinear6 type inequality (see e.g. 17, 
Th. 1.1.11;): 

THEOREM 1. If f2 zs a bounded (connected) domain wzth the  cone prop- 
erty and 9 E CF(f2) wzth J12 p/x) dx = 1, then every function f E Lm:P(((2. 
1 I p < m. .satzsfies the inequality 

where P"-I f E pm-l i s  the polynomial given by 

The constant C does not d e ~ e n d  o n  J. 

R e m a r k. Domains with Lipschitz boundary, like a ball, an annulus 
{R1 5 1x1 5 R2)  or a cube have the cone property. 

In addition we will appeal to  the classical Sobolev imbedding theorem 
(see e.g. [7, Th. 1.4.5:). 

TEEOREM 2. If i < p < co and ezther m,p < n or m = n ,  p = 1, and zf 
J2 223. a bounded domazn ~72th the cone pr3perty or an  znfinzte cone. thzn the 
space tVm-P(R) zs contznuou~ly  zmbedded zn LP* (in). 

111 particuiar, we have 

&ROLL.AXY 1. Suppose rn. n, p ow 9s in Theorem 2 and f E iYmJ'. 
Then 

,where the constant C does not  depend o n  j'. 

The last prerequisite is  he foilowing representation formula (cr". [T, Th. 
1.:.19/2:). 

THEGREM 2.  For every a E C r  we /Lave 

,a yJheTe K,  = - 
wd,a. Zin. and 2, denotes the volume of the unzt ball. 
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3. Density results for Lm.P. Throughout this section approximation 
in LrnJ' is ucderstood with respect t o  the quasinorm / (  l j  L m , p .  

THEOREM 4. Let 1 5 p < cc and rn = 1 ,2 , .  . . The subspace C r  is dense 
zn Lmlp if and only ;if exther n > 1 or p > 1. 

R e m a r k. The case p > 1 has been previously solved by Sobolev j13]. 
- ri41 A (see also 131 j. 

P r o o f o f T 11 e o r e m 4. First we will construct a function f E L ~ . ' ( R )  
which cannot be approximated by smooth, c~mpact ly  supported functions. 
Lei f be such that f lm)  = o (mth  derivative), where d E Cr(W), lR 0 # 0. 

i Kom assuming that $:, E C r ,  gim) - f ("1 = a5 in L1 leads to a contradic- 

iion. since O = j; yLm) -+ JE 05 f 0. 
Kext; we proTre that if 1 < p < cc, then C r  is dense in LmjP(R). 

LEMMA 1. if p > 1, f 0  E LP(RJ, and fk+l(x) = S: f k ( t ) d t ,  then 
f k ( ~ ) j z l - ~  E LP(R) for k = 0, 1 , 2 , .  . . 

P r o o f .  The assertion follows by induction and the Hardy inequality 
(see e.g. 115;). 

Let j E Lmj?(!II). Approximatirlg f by convolution with standard mol- 
1 . -  ilners we can assume that f E Cm $ Lm.p. Set Fo = f ' " )  and Fkcl = 
[: Fk i t l  d t .  Our goal is t o  show that Fm qr, -- f in LmlP as R - cx;. 

V J  

Applying LeibniYs formula to  ( F , ~ ~ ) ( ~ )  it suffices to prove that F & ~ " ) ~ ~  
k) 

--, j" " '  in i P  and qk Fk -+ 0 in LP for k = 1. . . . , m. The first convergence 
is clea;. The s e c ~ n d  one follows from the estimate 

It remains G O  show tnat if n > 3 and i 5 :, : x. then every f E Lm,P(Rn) 
car, be approximated by functions from Cy. -1s before, we can assume that, 
7 5 Cm i'Lrn>". By Theorem 1 applied to xhe annulus {X / I 5 1x1 < 2 )  there 
exists 3. polynomiai P: f such that 

for f E L m J " J -  L * ' 1 < - . I  'x i  - < 3: , ,  1 and aii 5 m (the construct~on fails when 
'l, = 1 

L. 3ecause {x i 5 'X I  < 3) is n c ~  connected). By a simple reseal- 
ing argument we obtain tne analogous inequality in -the annulus (xi R < 
xi 5 2 3 1 :  
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N'e will prove that (f - PBf)qR f in Lm>" as R -+ co. According to 
ieibniz's formula it is enough to  show that 

h r  :S + -11 , I  = rn, lnlj >_ 1. We have 

~ ' ( f  - LD~f)D'q~/I~p 5 CR-~'~ID~(J - PRJ)III$~R<.~LR) 
< ~ ~ - l ? I ~ r n -  1 m - H  
- ~ \ I L P ( R < _ \ Z , < ~ X )  

= C1lVn f i l ~ p ( ~ <  zll:~) 4 0 as R -+ a. 

R e  m a r k s. Ij The above theorem might be useful in the L p  theory of 
Hodge aecompositicn. For example. Lemma 3.4 of [3] follows directly from 
Theorem 4. In fact, our approach via the Poincark inequality is similar to 
that of [5, Lemma 3.41. 

2)  The same arguments work if fi is an infinite cone but instead of C r  
we rnust take snlooth functions in J2 with bounded support. 

4. Imbedding theorems 

4.1. The case mp < n 
THEOREM 5. Let mp < n und i < p < m. Then f o ~  every f E L m . p  there 

ezzsts exactly one polynomial P*" -' f E pm-' such that f - l m - ' f  E WFSp 
and 

;a =m 

with K,  as In Theorem 3. 

R e rn a r k. In the case p > ? the inequality (1) has already been obtained 
by Sedov ill] {see also 13. Th. i4.4j). 

P r o o f o f T h e o r e m 5 .  The uniqueness part is evident. Let m, E C r  . 
(3% -+ j' in L m . p  (see Theoren 4:). BY Coroilary 1 appiied to 0, - 0,. we 
see that 0, converges in TKrn.? r,o a functlor, u. CleariLy. D"u = D" f for 

, G I  = m. Thl~s 11 = f - Pm-I f for some polynomial Pm-'f Pm-l. 
Xppiyinq again Coroilar:~ 1 $3 ! c o n ) ,  and lettins 9 go to  infinity we obtain 
t he  deslred :nequali~:; 

1 1  ,? - Dm,--1 ' 1  

, \ . I  L . ~ I L Y ; ~ <  C'iGm f 'IL.=. 
+Da. f .  By Theorem 3 we have It remains r,o show ;bat u = x,,,=, ii:, 
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Let d E CF. Since jli,(x)l 5 C ~ X " - ~ ,  it follows that Fa * y!~ E LP', where 
1/17 + l/p' = 1. K, (x) = K, ( - 2 ) .  Thus. by the Fubini Theorem, 

Passing to  the limit as k -- oc we arrive at the formula 

which completes the proof, since d was taken arbitrarily. 

R e  m a r k. , in analogous statement holds if ,12 is an infinite cone. In this 
case. instead of Theorem 3, one uses the representation formula from [12, 
Th. 5.31 for C'"; ( J?)-functions 1~4th bounded support. The formula applied 
to the family of operators P, f = Da f. 

COROLLARY 2. m p  < n and p > 1, t hen  W,"'" c0incide.s with th,e 
space of Riesz potentials 

Im f (z) = j- f(g)ix - ym-* dll 

Rn 

for al2 f E Li7(Rn>. 

R e  m a r k. This theorem has been established by Lizorkin [6]. 

P r o o f o f C o r o ! 1 a r y 3. The standard application of hlarcinltiewicz's 
Multiplier Theorem implies that the space of Riesz potentials is equal to the 
closure of C r  in the norrn ilgijLT+ + ,lCmgIILP. It follows from Theorems 4 
and 5 that CF is oense in Wb"4,p. This completes the proof. 

4.2. T h e  case rn = n. p = 1. As we will see this case is more subtle than 
that of rnp < n. Xote that W,".' r: Co is a closed subspace of PI/-,"", because 
5p-"~.i LX, 

TXEGREM 6 .  Let d! E Ln3' 
. \ 

, :; :If TZ > 1. tize?z there exzsts c1. ' ~ n z q u e  polynornzal E vn - l  such 
zn-; f = 1&-T3l that  f - L ' C9 and 



(iij If n = 1: then 

R e  m a r k s. 1) Since I/V1 ' ( X )  consists of continuous functions. it follows 
that tile value cf f at any point is well deEned. 

2) Xote that in the case n = 1 we do not get an imbedding into P V ~ " C C ~ .  
X smooth function j' such that f (x) = 1 for z > 1 and f ( x )  = 0 fcr x < 0 
belongs to L1>l jR), while f - C does not belong to Co for any constant C. 

P r o o f o f T h e o r e m 6. The result for n > 1 is obtained in much the 
same way as in the case mp < n. The case n = 1 follows from the simple 
estimate 

4.3. Polynomzal asymptotzcs at znfinity. Theorems 5 and 6 state that 
if either m p  < n. or m -- n > i and p = 1. then every function f from 
L m . p  has a polynomiai behaviour a t  infinity in the sense that there exists 
a polynomial P E Pm-I such that f - P belongs to a certain L' space or 
to c,. 

In the case m = n = L9 = 1 we kcow that f is bounded (Thecrem 6 ) ,  
bnt we have no imbedding in Co. as fo1;ows from tine example given in the 
remark after Theorem 6. 

The following examples shorn- that in all other cases there exist functions 
Tn Lm+without polynomial behaviour a t  infinity in any reasonable sense. 

EXAMPLE 1 [The case mp .> n and ? < p < cx). +Iny smooth function f 
such that f i z )  = Iz!' for 1x1 > 1 (where 1 > E > O satisfies ( m  - ~ ) p  > n:! 
helongs to L "@. In this case l!m,,, i f  (z) - P ( x )  = x for any ~ o l y -  
nomial P. 

E:CAMPLE 2 (The case mp = rz, and p > 1). Any smooth function 
,. I s:ich that f i:; = log iog : z /  :or ,zi  > e is a member of Lm-.P. In this case 

lim,-, ,,fjzj - P(x11 = = !or a q  polynomis; P. 

5 .  Pjensity results for tV-TP 
7- 
i:IEOREM 7 .  ::f I 5 p .  " < x. then C r  zs dense in TvTp. 
R z m a r  'i. For 1 < r. 3 < ,Y; this resuit was aiready known in 13, Th. 

:A. 14;. 
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P r o of  o f T h e  o r  e m 7. Let f E WT:. As before. it can be assunled 
that f c Cm O WTp. Clearly, fqR -- f in Lr as R -+ x. We %rill prove that 
f r lR  t f in Lm.P as R -+ m. 

First assume that mp < n. I t  follows from Theorem 5 that  I /  f 1 ;  w,- P 5 
CIlV7" f j l ~ p .  Let a and ,8 be multiindices such that Iai = k 2 1 and 181 = 

.rrr - k. Since D ~ J  E ~ p L - 6  , by Holder's inequality, we obtain 

This implies the desired convergence. 

Assume now that mp 2 n. TVe distinguish between tm70 cases: n = 1 and 
n 2 2. 

C a s  e n 2 2. It, follows from the proof of Theorem 4 that 

where PR f are the polynonlials from the proof of Theorem 4. Therefore, it 
remains to prove that (PR f ) r j R  -+ 0 in Lm>p. 

Recall that  PR f was obtained from PI f by a rescaling argument. where 
,PI f is defined in Theorem 1 and depends on the choice of a function 9 
supported in (x / 1 < /x/ < 2). Hence, we have the explicit formula, 

where u, E C r (  j l  5 i ~ i  5 2)) depends on 0 only. 
Let 181 = n. We have to  prove that ~ d ( \ f i f ) ~ ~ )  - 0 in L p .  I t  suffices 

xo show that, D"(,PnJ)DO~R -+ 0. whe~lever y - S = 2. If y = 3, then 
DY( P R f )  = 0. so we can assuxe that 16; > 1. We have 

W e  need only estimate each ~f the monomials or" FkZ f . The problem ;educes 
to showing that r;he quantity 

tends zo zero as R - K. &-e can assume that a! 2 Y. Yote that 

Hence. denoting (z R .: - - 2Rj- by 2R, we have 



Sobolev , funct ions 

because the exponent of R is negative. 
In the case n = 1 the proof is sirniiar. with a slight difference: there is no 

Poincart5 Inequality (Theorem 1) for the one-dimensional annu!us (x j 1 L: 
'xi 5 2). but we can use the Poincarg inequality twice, applied to the inter- 
vals ,-2. -11 and [l. 2:. 

R e m a r k s .  1) Is is easy to see that; if r = cc or p = m, then C'r is not 
dense in T/t7;l"p. 

3) It follows from the above arguments that C r  is dense in S/t72,, n Co. 
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