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Abstract. With a map f : Ω → Rn, Ω ⊂ Rn, that belongs to the John Ball class A+
p,q(Ω)

where n − 1 < p < n and q ≥ p/(p − 1) one can associate a set valued map F whose
values F (x) ⊂ Rn are subsets of Rn describing the topological character of the singularity
of f at x ∈ Ω. Šverak conjectured that Hn−1(F (S)) = 0, where S is the set of points at
which f is not continuous and Hn−1 is the Hausdorff measure. The purpose of our paper is
to confirm this expectation.

Mathematics Subject Classification (2000): 74B20

1 Introduction

The study of elastic deformations leads to regularity questions of Sobolev mappings.
When a body occupying a region Ω ⊂ Rn is deformed, the change of the position
of a particle x ∈ Ω determines a mapping f : Ω → Rn. Such a mapping f is a
minimizer of an energy integral of the form

I(f, Ω) =
∫

Ω

W (x, f(x),∇f(x)) dx.

Here ∇f is the weak gradient of f. The competing functions naturally need to have
finite energy and thus one is lead to inquire the regularity properties of mappings f
for which I(f, Ω) < ∞. In the fundamental work of Ball [1] a suitable competing
class is recognized as

A+
p,q = {f ∈ W 1,p

loc (Ω,Rn) : ∇f ∈ Lp(Ω), (1)

adj∇f ∈ Lq(Ω), det ∇f > 0 a.e. in Ω},
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where p > n− 1 and q ≥ p/(p− 1). Here adj∇f is the adjugate of ∇f, consisting
of all the (n − 1)-minors of ∇f.

Šverak [13] showed that each f ∈ A+
p,q, where p > n − 1 and q ≥ p/(p − 1),

generates a set-valued mapping F on Ω; see Sect. 2 for the construction of F. If f
is continuous at a point x, then F (x) is a vector, i.e. it consists of a single point.
If, however, f is not continuous at x, then F (x) ⊂ Rn is a compact connected set
that describes the topological character of the singularity at x. He proved that f
is continuous outside a set S of vanishing variational p-capacity (for p ≥ n, f is
continuous everywhere). Moreover, no holes are formed under f . The set F (S) tells
us how the discontinuity set S is deformed under the mapping f . Šverak showed
that the volume of F (S) is zero and that the (n− 1)-dimensional measure of F (x)
is zero for each x ∈ S. Physically, the former conclusion means that there is no
creation of matter in S and the latter that no point in S can result in a crack in f(Ω);
these two physically relevant conclusions then hold in Ω. Šverak conjectures that,
in fact, the (n − 1)-dimensional measure of the entire F (S) is zero (so that no
cracks are formed), see [13, p. 119]. The purpose of this short note is to confirm
this expectation by establishing the following result.

Theorem 1 Let Ω ⊂ Rn be a domain and suppose that f ∈ A+
p,q(Ω), where

n − 1 < p < n and q ≥ p/(p − 1). Let F be the associated set-valued map and
S the corresponding singular set. Then Hn−p(S) = 0 and Hn−1(F (E)) = 0 for
each E ⊂ Ω with Hn−p(E) < ∞. In particular Hn−1(F (S)) = 0.

Müller, Tang, andYan [12] have shown that most of the theory of A+
p,q-mappings

developed by Šverak for n − 1 < p < n and q ≥ p/(p − 1) extends, with the
same conclusions, to a larger class of A+

p,q-mappings for n − 1 < p < n and
q ≥ n/(n− 1). This includes construction of the set-valued mapping F associated
with f ∈ A+

p,q and the fact that Hn−1(F (x)) = 0 for every x ∈ S. It is natural to
inquire if Theorem 1 could hold in this larger class of mappings. The answer turns
out to be negative at least when the distortion of the dimension of general sets is
considered.

Proposition 2 Assume that we are given n − 1 < p < n and a nonempty open
and bounded set Ω ⊂ Rn. Then there exists a homeomorphism f ∈ A+

r,q(Ω) ⊂
A+

p,q(Ω) for some r > n and q > n/(n − 1) which maps a set of vanishing
(n− p)-dimensional measure onto a set of Hausdorff dimension larger than n− 1.

We do not know if Hn−1(F (S)) = 0 for f ∈ A+
p,q(Ω), n − 1 < p < n and

q ≥ n/(n − 1).
It turns out that a mapping constructed by Gehring and Väisälä, [6], has all

properties that we need. Indeed, for given 0 < s < n and 0 < t < n they
have constructed a quasiconformal homeomorphism f : Rn → Rn which maps
a Cantor type set K ⊂ Ω of dimension s onto another Cantor type set f(K) of
dimension t. Take s < n−p and t > n−1. Then Hn−p(K) = 0 and the Hausdorff
dimension of f(K) is larger than n − 1. Since det ∇f > 0 a.e. and, by the higher
integrability of the gradient of a quasiconformal mapping, [5], f ∈ W 1,r

loc (Rn) for
some r > n, we conclude that adj∇f ∈ Lq

loc, where q = r/(n − 1) > n/(n − 1)
and hence f |Ω ∈ A+

r,q(Ω). This gives us the claim of the proposition.
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2 Construction and basic properties of F

Let f ∈ A+
p,q(Ω), where p > n − 1 and q ≥ p/(p − 1). For x ∈ Ω we define rx =

dist(x, ∂Ω). Since f ∈ W 1,p
loc (Ω,Rn) and p > n − 1, the Fubini and the Sobolev

embedding theorems guarantee that there is a set Zx ⊂ (0, rx) of measure zero
such that for each r ∈ (0, rx) \ Zx the trace fr = f |Sn−1(x,r) belongs to the space
W 1,p(Sn−1(x, r)) (and so is continuous) and adj∇f |Sn−1(x,r) ∈ Lq(Sn−1(x, r)).

Recall that for a bounded domainG ⊂ Rn, and a continuous mappingg : ∂G →
Rn one can define the topological degree deg(g, ∂G, y) for all y ∈ Rn \ g(∂G).
The degree is integer-valued, constant on components of Rn \ g(∂G) and equal
to zero on the unbounded component of Rn \ g(∂G), see e.g. [4]. Employing the
notion of topological degree we define for r ∈ (0, rx) \ Zx

E(f, x, r) = {y ∈ Rn \ fr(Sn−1(x, r)) : deg(fr, S
n−1(x, r), y) ≥ 1}

∪fr(Sn−1(x, r)).

Since E(f, x, r) consists of the image of the sphere fr(Sn−1(x, r)) plus some
of the bounded components of Rn \ fr(Sn−1(x, r)) (those components where
degree is ≥ 1), the set E(f, x, r) is compact, connected and diam (E(f, x, r)) =
osc Sn−1(x,r) fr.

Using the assumption f ∈ A+
p,q, Šverak proves [13, Lemma 3] that the sets

E(f, x, r) are nested: for r1 ∈ (0, rx)\Zx, r2 ∈ (0, ry)\Zy , such that B(x, r1) ⊂
B(y, r2) we have

E(f, x, r1) ⊂ E(f, y, r2). (2)

The key point in establishing this property is that the topological degree can be
represented using an integral of det ∇f and that det ∇f(x) > 0 a.e. in Ω. It was
later proven by Müller, Tang and Yan [12] that this also holds if we only assume
that p > n − 1 and q ≥ n/(n − 1) above.

In particular, for r1, r2 ∈ (0, rx) \ Zx, r1 < r2, we have

E(f, x, r1) ⊂ E(f, x, r2).

We now simply define

F (x) =
⋂

r∈(0,rx)\Zx

E(f, x, r), and F (A) =
⋃

x∈A

F (x).

Clearly F (x) is compact, connected and

diam (F (x)) = lim
r→0+

diam E(f, x, r). (3)

for every x ∈ Ω. Moreover diam (F (x)) = 0 and so F (x) is a vector whenever f
has a representative that is continuous at x.

It is essential for us that there is a representative of f that is continuous outside
a set of finite (in fact zero) (n − p)-dimensional measure. This observation lead us
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to the correct track for the proof of Theorem 1. We define such a representative by
the formula

f(x) := lim sup
r→0

∫
B(x,r)

f(y) dy for every x ∈ Ω, (4)

where the lim sup is taken coordinate-wise. Here and in what follows the barred
integral denotes the integral average over the ball. The fact that this is a representa-
tive of f follows from the Lebesgue differentiation theorem [2, 1.7.1/Theorem 1].
From now on we will always assume that f ∈ A+

p,q coincides with its representative
given by (4).

It was proved in [13, Corollary 1] that

f(y) ∈ E(f, x, r) for a.e. y ∈ B(x, r) whenever r ∈ (0, rx) \ Zx. (5)

This and the choice of the representative (4) imply that for each z ∈ B(x, r), f(z)
belongs to the smallest box with sides parallel to the coordinate axes containing
E(f, x, r), provided r ∈ (0, rx)\Zx. Hence diam (F (x)) = 0 implies that F (x) =
{f(x)} and that f is continuous at x. Thus F (x) consists of a single point if and
only if f is continuous at x.

Proposition 3 Let Ω ⊂ Rn be a domain and suppose that f ∈ A+
p,q(Ω), where

n−1 < p < n and q ≥ p/(p−1). Then there is a set S ⊂ Ω so that Hn−p(S) = 0
and f is continuous in Ω \ S.

Remarks.

1) Just to make sure that the statement is properly understood: we claim that f is
continuous at every point of Ω \S, which is more than continuity of f restricted
to Ω \ S.

2) The proof of Proposition 3 is a minor variation of the argument of Šverak that
gave continuity outside a set of vanishing variational p-capacity. This improve-
ment on Šverak’s result was observed by Müller and Spector [11, Theorem 7.4],
see also [8, Theorem 4.1 and Theorem 4.5]. For the convenience of the reader
we sketch a direct proof here.

3) Actually Proposition 3 and properties of the mapping F easily imply a stronger
result: the set-valued mapping F is continuous at each point of Ω \ S with
respect to the natural notion of convergence of sets (in the Hausdorff metric).

Proof. Since |∇f |p ∈ L1, it is a well known consequence of a covering argument
that Hn−p(S) = 0, where

S = {x ∈ Ω : lim sup
r→0

rp−n

∫
B(x,r)

|∇f |p > 0},

see [4, Proposition 4.37]. Clearly

lim
r→0

rp−n

∫
B(x,r)

|∇f |p = 0 for each x ∈ Ω \ S. (6)
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We will prove that f , given by (4), is continuous at every point of Ω \ S. Fix
x ∈ Ω \ S and 0 < r < dist(x, ∂Ω)/4. Then f ∈ W 1,p(Sn−1(x, s)) for a.e.
r < s < 2r and by the Fubini theorem we find an allowable r < s < 2r with∫

Sn−1(x,s)
|∇f |p dσ ≤ r−1

∫
B(x,2r)

|∇f |p dx. (7)

On the other hand, by the Sobolev embedding theorem on spheres,

osc
Sn−1(x,s)

f ≤ Cs1−(n−1)/p

(∫
Sn−1(x,s)

|∇f |p dσ

)1/p

. (8)

Here and in what follows C will denote a general constant whose value can change
even in the same string of estimates. Combining inequalities (7) and (8) and the
fact that diam (E(f, x, s)) = osc Sn−1(x,s) fs we arrive at

(diamE(f, x, s))p ≤ Crp−n

∫
B(x,2r)

|∇f |p dx.

It thus follows from (6) and (3) that diam (F (x)) = 0 and hence f is continuous
at x. This completes the proof of the proposition.

3 Proof of Theorem 1

Proof of the fact that Hn−1(S) = 0 is contained in Proposition 3. Now let E ⊂ Ω be
a set of finite (n − p)-dimensional measure. We will show that Hn−1(F (E)) = 0.
Clearly we can assume that Ω is bounded. Take an arbitrary m > 0 such that
Hn−p(E) ≤ m < ∞. It follows from the definition of the Hausdorff measure and
a standard covering argument, [9, Theorem 2.1], that for given ε > 0 there is a
family of pairwise disjoint balls {B(xi, ri)}∞

i=1 such that ri < ε for all i and

E ⊂
∞⋃

i=1

B(xi, 5ri),
∞∑

i=1

rn−p
i ≤ C(n)m.

Pick, using the Fubini theorem for each ri, an allowable 5ri < si < 10ri, si ∈
(0, rxi

) \ Zxi
, so that∫
Sn−1(xi,si)

|adj∇f | dσ ≤ Cr−1
i

∫
B(xi,10ri)

|adj∇f | dx.

This and the area formula, [13, (3) and Theorem 1], yield

Hn−1(f(Sn−1(xi, si)))

≤
∫

Sn−1(xi,si)
|adj∇f | dσ ≤ Cr−1

i

∫
B(xi,10ri)

|adj∇f | dx.

We will need now the Hardy–Littlewood maximal function

Mh(x) = sup
B: x∈B

∫
B

|h|,



226 P. Hajłasz, P. Koskela

where, as usual, B denotes a ball. We have∫
B(xi,10ri)

|adj∇f | dx = Crn
i

∫
B(xi,10ri)

|adj∇f | dx

≤ Crn
i inf

x∈B(xi,ri)
M |adj∇f |

≤ Crn
i

∫
B(xi,ri)

M |adj∇f | dx

= C

∫
B(xi,ri)

M |adj∇f | dx.

Thus Hölder’s inequality applied twice yields
∞∑

i=1

Hn−1(f(Sn−1(xi, si))) ≤ C

∞∑
i=1

r−1
i

∫
B(xi,ri)

M |adj∇f | dx

≤ C

∞∑
i=1

r
n
p −1
i

(∫
B(xi,ri)

(M |adj∇f |)p/(p−1) dx

)(p−1)/p

≤ C

( ∞∑
i=1

rn−p
i

)1/p( ∞∑
i=1

∫
B(xi,ri)

(M |adj∇f |)p/(p−1) dx

)(p−1)/p

≤ Cm1/p

(∫
⋃∞

i=1 B(xi,ri)
(M |adj∇f |)p/(p−1) dx

)(p−1)/p

. (9)

Boundedness of Ω implies that |adj∇u| ∈ Lq(Ω) ⊂ Lp/(p−1)(Ω). Since, by
the Hardy–Littlewood theorem, [9, Theorem 2.19], the maximal function forms a
bounded operator in Lp/(p−1), we conclude that the function (M |adj∇f |)p/(p−1)

is integrable. This, the estimate of the measure∣∣∣∣∣
∞⋃

i=1

B(xi, ri)

∣∣∣∣∣ = C

∞∑
i=1

rn
i ≤ Cεp

∞∑
i=1

rn−p
i ≤ Cmεp → 0 as ε → 0,

and the absolute continuity of the integral imply that the right hand side of (9) goes
to zero as ε → 0.

Next, from (2) and the definition of F , we conclude that F (E) ⊂ ⋃i E(f , xi,
si). Thus it suffices to show each E(f, xi, si) with Hn−1(E(f, xi, si)) > 0 can be
covered by balls {B(yj , Rj)}j so that∑

j

Rn−1
j ≤ C(n)Hn−1(f(Sn−1(xi, si))). (10)

By definition, E(f, xi, si) is the union of f(Sn−1(xi, si)) and a bounded open set
whose boundary is contained in f(Sn−1(xi, si)). Hence Hn−1(E(f, xi, si)) > 0
implies that Hn−1(f(Sn−1(xi, si))) > 0. Clearly we can cover f(Sn−1(xi, si))
by balls satisfying (10). The existence of a cover like in (10) for the remaining
open set in E(f, xi, si) is a consequence of the following result, due to Gustin,
[7], and known as the boxing inequality. For an elementary proof see e.g. [3], [10,
1.2.1/Theorem 2].



Formation of cracks under deformations with finite energy 227

Lemma 4 If U ⊂ Rn is a bounded open set, then there is a covering of the closure
U by a finite collection of balls B(yj , Rj), such that

∑
j Rn−1

j ≤ C(n)Hn−1(∂U).

Remarks.

1) It is assumed in [10, 1.2.1/Theorem 2] that the boundary of U is smooth, but
this assumption is never employed in the proof.

2) For a more general statement of Lemma 4 in which U is replaced by any compact
set K of positive (n − 1)-dimensional measure, see [7]. This result can easily
be reduced to the above special case.
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