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WHITNEY’S EXAMPLE
BY WAY OF ASSOUAD’S EMBEDDING
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(Communicated by Juha M. Heinonen)

ABSTRACT. In this note we show how to use the Assouad embedding theorem
(about almost bi-Lipschitz embeddings) to construct examples of C™ functions
which are not constant on a critical set homeomorphic to the n-dimensional
cube. This extends the famous example of Whitney. Our examples are shown
to be sharp.

1. INTRODUCTION

In 1935 Whitney [20] published a surprising example of a C"~! function in
R"™ which is not constant on some arc and has all partial derivatives of order <
n — 1 vanishing on that arc. The construction is sharp because it follows from
Sard’s theorem that every C™(R™) function with the first order partial derivatives
vanishing on an arc is constant on that arc (see also [13), p. 374]). Since the Whitney
example a great deal of work has been done in constructing similar examples and
studying conditions under which such phenomena cannot occur; see e.g. [4], [7,
[10], [13], [14], [15], [17], [21]. These are only some of the references and it is not
our purpose to give a complete list of related papers here.

Most of the constructions (including the original one of Whitney and the one
presented below) are based on the same idea. First, one constructs a compact set
K and a suitable continuous function u on K which is not constant on K. Then
employing Whitney’s extension theorem [19] one shows that the function u extends
to a C™(R™) smooth function (for some m) with all partial derivatives of order < m
equal to zero on K. Always the most tricky part of the proof is the construction of
K and u. The application of Whitney’s extension theorem is then straightforward.

Assouad [3] (see also [1], [2], [0]) proved that for any metric space (X, d) that is
doubling (see the definition below) and any s € (0,1) the new metric space (X, d*)
admits a bi-Lipschitz embedding to the Euclidean space RN for some N. We will
employ Assouad’s theorem to construct K and w. The application of the Whitney
extension theorem will then lead to Whitney-type examples.

We will also show that there is a Whitney-type example with the critical set
being the Van Koch snowflake.
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The purpose of this note is to show a new class of Whitney type examples as
well as to show a new application of the wonderful result of Assouad. For other
applications of Assouad’s theorem, see e.g. [5], [9], [16].

1.1. Notation and statement. Now we explain notation and give the precise
statement of the results.

We say that u € C™*(R"), where m is a positive integer and A € (0, 1] if u is
continuously m times differentiable with A-Hd&lder continuous derivatives of order
m. Given u € C™(R"™) we say that a point x € R™ is m-critical if all partial
derivatives of u of order < m vanish at the point . We set

Crity,(u) = {x € R": D%(z) =0 for all 0 < |a|] < m}.

We call a set K C R"™ m-critical for u if K C Crity, (u).

Given K C R", we say that a function v : K — R is m-critical if there exists
a function U € C™(R™) such that K is m-critical for U and U|x = w. Similarly
we say that u : K — R is (m, A)-critical, A € (0,1] is w is m-critical and U can be
chosen in the class C™*(R™).

With the above notation we can state Whitney’s result as follows: There exists
a set K C R™ homeomorphic to the interval [0,1] and an (n — 1)-critical function
u: K — R which is not constant.

The arc K in the original Whitney example consists of infinitely many segments
that connect a Cantor type set in R™. The function u is constant (and it has to
be constant) in each of these segments. Thus u reminds us of the famous Cantor
staircase function.

The theorem below, the main result of the paper, extends Whitney’s example
in several ways: arc is replaced by a higher-dimensional topological cube, and the
class of critical functions v on K is much larger than the corresponding class in
Whitney’s example in the sense that u need not be constant in any subset of K.

The main result of the paper reads as follows.

Theorem 1. Assume given positive integers m and n. Then there exists a positive
integer N and a compact set K C RN homeomorphic to the cube [0,1]" such that
the class of m-critical functions on K form a dense subset of C(K), the space of
all continuous functions on K.

Actually we will construct a homeomorphism & : [0, 1] — K such that for every
Lipschitz function u on [0, 1]", the function u o ®~1 is m-critical on K.

The proof of the theorem also applies to the case in which we take the planar
Van Koch snowflake as K (see [8]). We will denote the snowflake by T'. This yields
the following result.

Corollary 2. The class of (1, a)-critical functions on the Van Koch snowflake T,
where 1 + a = log4/log3, is dense in the space C(I'). However, if § > «, then
(1, B)-critical functions on T' are constant.

Note that log4/log3 is the Hausdorff dimension of the snowflake T'.
In the next section we prove the theorem, show that the example constructed in
the proof is sharp (Proposition B)) and then prove the corollary.

2. PROOF OF THE MAIN THEOREM AND ITS COROLLARY

First we state the Whitney extension theorem and the Assouad embedding the-
orem, the main ingredients in the proof of Theorem [II
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Given a positive integer m, A € (0,1], and a compact set K C R™, Whitney’s
extension theorem [19] provides a necessary and sufficient condition for a continuous
function u : K — R to be the restriction of a function U € C™*(R") (or U €
C™(R")) to K. Actually Whitney dealt with the C™ case only. The case C™*
is similar but slightly more difficult, and the proof can be found e.g. in [12]. The
statement of the Whitney theorem is quite complicated as one may also prescribe all
partial derivatives of u of order < m on K. However in the case we want all partial
derivatives of order < m to be equal to zero on K, i.e. we want u to be (m, \)-
critical (or m-critical), the statement substantially simplifies. We will actually need
this special case of Whitney’s theorem and we state it as the following lemma.

Lemma 3. Assume given a positive integer m, X € (0,1], and a compact set
K C R™. Then a continuous function u : K — R is (m, \)-critical if and only if
there is a constant M > 0 such that |u(x) —u(y)| < M|z —y|™* for all 2,y € K.

Thus a necessary and sufficient condition for u to be (m, \)-critical is the (m+A)-
Holder continuity. It is well known that if u is not constant and vy-Ho6lder continuous
in a regular set (e.g. smooth submanifold), then v < 1. Since we will need m+ \ to
be arbitrarily large, the set K will have to be far from regular, say “fractal”. Fractal
sets admitting nontrivial (m + A)-Holder continuous functions will be obtained as
images of the Assouad embedding that we now describe.

One of the most interesting problems of geometric analysis and geometric topol-
ogy is a question of characterizing those compact metric spaces (X, d) that admit
bi-Lipschitz embedding to some Euclidean space, i.e. a mapping ® : X — R for
some N, such that

Crd(z,y) < [®(z) — 2(y)| < Cod(z,y)

for all z,y € X with some fixed constants C;,Cy > 0. An obvious necessary
condition for X is the doubling condition which we state next.

We say that a metric space (X, d) is doubling if there is a constant M such that
every ball B in X can be covered by at most M balls with half the radius of B.

Since every subset of the Euclidean space is doubling, and the doubling condition
is invariant under bi-Lipschitz mappings, we immediately conclude that in order
for X to be bi-Lipschitz embeddable to the Euclidean space, X has to be doubling.
Unfortunately the doubling condition is not sufficient as there are examples of
doubling metric spaces that do not admit any bi-Lipschitz embedding to any of
the Euclidean spaces (cf. [9]). Assouad proved however an amazing result showing
that a doubling metric space admits an “almost” bi-Lipschitz embedding. We state
Assouad’s theorem as the following lemma.

Lemma 4. Let (X,d) be a doubling metric space. Then for any s € (0,1) there is
N and a bi-Lipschitz embedding ® : (X,d®) — RY i.e. a mapping such that

Cid(z,y)* < [®(z) — (y)| < Cod(z,y)*
for some constants C1,Cs >0 and all z,y € X.

Now we can prove the theorem.

Proof of Theorem [1l The unit cube [0,1]™ is doubling as a metric space with the
Euclidean metric. Hence Assouad’s theorem (Lemma [) asserts that for any s €
(0,1) there is N and a mapping ® : [0, 1] — R such that

(1) Cilz —y” < |0(z) = D(y)| < Colz —y/.
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If we take 1/s = m + A\, A € (0,1), then for any Lipschitz function w on [0, 1]"
the function u o ®~! is (m + \)-Hélder continuous on K = ®([0,1]") and hence by
Lemma [ the function wo ®~1 is (m, \)-critical. In particular wo®~! is m-critical.
The density of m-critical functions in C'(K) follows from the density of Lipschitz
functions in C([0, 1]™). The proof of the theorem is complete. O

Now we show that the above construction is sharp in the following sense.

Let K = ®(]0,1]™) be the set constructed in the proof of Theorem [] and let
1/s =m+ X, X € (0,1), be as above. Recall that for any Lipschitz function u
on [0,1]" the function u o ®~1! is (m, \)-critical on K. In particular (m, \)-critical
functions form a dense subset of C'(K).

Proposition 5. If u is (m, 3)-critical on K, where 3 > X, then u = const on K.

Proof. Assume by contradiction that u(z) # u(y) for some x,y € K. Divide the
segment connecting ®~!(z) and ®~!(y) in [0, 1]™ into k segments of equal length.
Denote the ends of the consecutive segments by z; and z;41. Obviously z; = o1 (z)
and zx.1 = @ 1(y). Now we have

k
0 < Ju(z) —uly)] < Z lu(®(2i)) — u(®(zit1))]

k
< MDY |B(2) = B(ziga)| ")
=1
k
< CMZ |2i — ziqq |(HA (MAA)

i=1

— 0,

— _ m m+A
[ 1(33)—(1) 1(y)|>( +B8)/(m+)

= CMk< 3

as k — oo, because (m+ 3)/(m+ A) > 1. The contradiction proves the claim. The
proof is complete. O

Note that in the proof of Theorem [[] we employed the left-hand side estimate of
(M), while in the proof of Proposition f] we employed the right-hand side estimate

of ().

Now we are left with the proof of the corollary.

Proof of Corollary 2. Following the iterative construction of the Van Koch
snowflake, it is easy to produce its parametrization by the homeomorphism & :
St — T satisfying |®(x) — ®(y)| ~ |z — y|'83/1°84 for 2,y € S'; see e.g. [I8]
p. 151]. Then the corollary follows as a direct consequence of the proof of The-
orem [ in which we replace Assouad’s embedding by the above parametrization.
The fact that (1, 8)-critical functions, 5 > «, are constant on I' is a consequence of
the proposition. The proof is complete. ([

To construct more examples like that, one may also use [II, Lemma 2.3] or
results of [6] to substitute Assouad’s embedding in the proof of Theorem [
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