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Sobolev Mappings, Co-Area Formula
and Related Topics
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ABSTRACT. We generalize the classical area and co-area formulas to
the setting of Sobolev mappings. In one of the versions of the co-area
formula that we obtain, the integral-geometric measure is involved.
The proof is based on a Sard type theorem for Borel mappings be-
tween Euclidean spaces which is of independent interest. We apply
our results to minimizing harmonic mappings.
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1. Introduction

The area and co-area formulas are the most general versions of the
change of variables formula in the integral. Namely the transformation of
variables is made by an arbitrary Lipschitz mapping f: R — R™ in place
of a diffeomorphism. Here we neither assume that f is one-to-one nor that
n =m.

The paper is devoted to study of various problems related to area and
co-area formulas in the case in which the transformation f: R® — R™ be-
longs to the Sobolev space. This is a weaker condition than being Lipschitz
continuous. The core for new results will be a careful study of the structure
of the preimage f!(y) for a generic point y € R™. This will play a crucial
role in all the proofs in Section 5. Actually the main results of the paper
are gathered in Section 5.
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The paper is organized as follows. In Section 2 we recall classical results
from the geometric measure theory. We discuss the area and co-area formu-
las, countably rectifiable sets and the integral geometric measure. Although
the content of the section is classical we state all the results very carefully.

In Section 3 we recall the definition of the Sobolev space and generalize
both the area and the co-area formulas to the case in which the transfor-
mation belongs to the Sobolev space. These results seem to be folklore,
although it is difficult to find a reference for them.

In Section 4 we recall the notion of capacity and the p-quasicontinuous
representative of a Sobolev function. Then we show a simple direct proof
(avoiding the use of p-quasicontinuity) of the fact that a WP function
admits a representative which is continuous on almost all affine planes of
the dimension less than p.

In the last Section 5 we study the structure of the preimage of a point
fY(y) when f is a p-quasicontinuous representative of a Sobolev mapping
f:R* — R™. This leads to a Sard type theorem for Sobolev maps and then
to a version of the co-area formula involving the integral-geometric measure.
At the end of the section we provide an application of the co-area formula
to study of minimizing harmonic maps. This will give a slightly different
proof of the fact that the radial projection z/|z|: B> — S? is a minimizing
harmonic map.

We made some efforts to make the exposition self-contained and so

available to young researchers and graduate students.
NoOTATION. Notation in the paper is fairly standard. The k-dimensional
Hausdorff measure will be denoted by H*. In all the results, even if not
explicitly stated, the Hausdorff measure will be considered for integer di-
mensions only. The Hausdorff dimension of a set E will be denoted by
dim% E.

Since the Lebesgue measure in R™ coincides with H™, [13], [64], we
will use the Hausdorff measure notation to denote the Lebesgue measure.
However we will also denote the Lebesgue measure of a set E by |E|.

Symbols M™ and N will denote Riemannian manifolds of dimensions n
and m respectively. RP? will denote the projective space which can be
obtained from the sphere S? by identification of the antipodal points. The
characteristic function of a set E will be denoted by X,. Lip (f) will denote
the Lipschitz constant of f. By AT we will denote the transpose of the
matrix A. C will denote a general constant that can change its value in the
same string of estimates. Writing C'(n,p) we will indicate that the constant
depends on n and p only.

Any element in the LP space or in the Sobolev space W1P (defined
later) is the equivalence class of functions which differ on a set of measure
zero. Thus when we will say that there exists a representative of a Sobolev
function with some properties we will mean a particular function from the
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equivalence class. Choosing correct representative of a Sobolev function will
be crucial for our arguments.

2. Some Geometric Measure Theory

For material related to that in the section see [11], [13], [14], [18], [46],
[58].
Area and Co-area formulas. The classical change of variables formula
states that if f: R® — R" is a diffeomorphism and ¢g: R* — R a measurable
function, then

(1) | s@lis@ids= [ g(r @),

where |Jf(z)| = |det Df(z)].

Area and co-area formulas provide generalizations of the above theorem
to the most general case in which the transformation f is neither one-to-
one nor between the spaces of the same dimension. The statement of these
generalizations is quite complicated so we need some preparations first.

Let f: R* — R™ be a Lipschitz mapping. We need define the Jacobian
of f.

If n =m and f is differentiable at a point z, then |J f(x)| has a simple
geometric interpretation. Take any ball centered at z. Then D f(x)(B) is
an ellipsoid and |Jf(x)| equals to the ratio of the volume of the ellipsoid to
the volume of the ball

& Ifa)] = IOE)

H™(B)

Observe that by the Rademacher theorem f is differentiable a.e. and hence
|Jf| is defined a.e., (see e.g. [13], [64] for the Rademacher theorem).

We will use the above geometric interpretation to define the absolute

value of the Jacobian in the case in which f is a mapping between spaces
of different dimensions.
Casen < m. If Bis aball centered at z, then D f(z)(B) is an n-dimensional
ellipsoid lying in the m-dimensional space. In this case we still define |J f|
by the same formula (2). Employing the polar decomposition of the linear
mapping D f(z), one can easily prove that (see [13, Section 3.2])

3) [Jf] = /det(Df)T(Df),

and actually it is more convenient to regard (3) as a definition and (2) as a
geometric interpretation.

We said that Df(z)(B) is an n-dimensional ellipsoid. However it can
be an ellipsoid of a lower dimension (when rank D f(z) < n). If this is the
case we obviously have |J f(z)| = 0.
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Observe that (3) is exactly what one does when writing the volume form
on an n-dimensional submanifold M™ of R™ in local coordinates f: R* —
M™ C R™.

Note that we do not define the Jacobian but its absolute value. If
m > n, then there is no reasonable way to define Jf for a general Lipschitz
mapping f: R® — R™ because there is no continuous orientation of all
n-dimensional affine planes in the m-dimensional space.

Case n > m. If B is a ball centered at z, then Df(z)(B) is the m-
dimensional ellipsoid. If m < n, then definition (2) would give always
zero, and this is not exactly what we would like to have.

Assume that the rank of Df(z) is maximal i.e. it equals m. Then
Df(x)(B) is a nondegenerate m-dimensional ellipsoid. The kernel ker D f ()
is an (n — m)-dimensional linear subspace and the mapping Df(z) is a
composition of two mappings. First we take the orthogonal projection of R™
onto the m-dimensional space (ker Df(x))* and then we compose it with
a nondegenerate linear mapping from (ker D f(z))* to R™. Now we define
|J f| as the absolute value of the determinant of this mapping between m-
dimensional spaces. In other words the ellipsoid D f(z)(B) is the image of
the m-dimensional ball B N (ker Df(x))* and

_ H™Df(x)(B))
[T f ()] = Hm(BN (ker Df(z))L)

If rank Df(xz) < m, then we set |Jf(z)] = 0. Although this geometric
picture is quite complicated there is a simple formula for |.J f| which follows
from the polar decomposition of the linear mapping D f,

(4) [Tl =/ det(DF)(DF)T .

Again it is more convenient to regard (4) as a definition and what was before
as a geometric interpretation. Note that the right hand sides of (3) and (4)
are slightly different.

In the same way we can define |.J f| in the case in which f is a Lipschitz
mapping between Riemannian manifolds f: M™ — N™. Indeed, the differ-
ential Df(x): T,M"™ — Ty,)N™ is a linear mapping between linear spaces
equipped with a scalar product.

Now we can formulate both the area and co-area formulas.

THEOREM 1 (Area and Co-area formulas). Let M™ and N™ be two
Riemannian manifolds of dimensions n and m respectively. Let f: M™ —
N™ be a Lipschitz mapping and g: M™ — R an integrable or a nonnegative
measurable function.

(1) If n < m, then the area formula holds

& [, ses@iore=[ ([ s@oem) oo,
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where |J f| is defined by (3).
(2) If n > m, then the co-area formula holds

6 )| Jf(x)| dH™ (z) = ) dH" ™ (x) ) dH™(y),
© [ sw@iaee=[ ([ o) e
where |J f| is defined by formula (4).

REMARKS. 1) In most of the cases we will be interested in the situation
when f is a Lipschitz mapping between Euclidean spaces f: R* — R™.
The only exceptions from this rule will appear in proofs of Theorem 7 and
Theorem 26.

2) If m = n, then both area and co-area formulas coincide. If in addition
f is a diffeomorphism, then they coincide with the change of variables for-
mula (1).

3) The Hausdorff measure H° is simply the counting measure, so we can
rewrite (5) equivalently as follows

| se@i@iare = [ (X s@)are.

zef~1(y)

Taking g = X we obtain the formula

(7) /EIJf( o) dH" & / Ny (y, E) dH"(y),

where N¢(y, E) is the Banach indicatriz defined as a number of points in
the set f~1(y) N E.

4) The theorem generalizes to the case in which the mapping f is defined
on an open subset of M™ as such a subset is a Riemannian manifold as well.
5) There are various generalizations of the area and co-area formulas, see
e.g. [3], [34], for a far reaching generalization to the case of mappings be-
tween metric spaces.

6) Area and co-area formulas as stated in Theorem 1 are due to Federer.
Area formula was proved in [15] and [16, Theorem 5.9] and the co-area
n [17]. Earlier versions are due to Banach [4] when n = m = 1, and Kro-
nrod [36] when n = 2, m = 1. For the proofs of Theorem 1 we refer the
reader to books [11], [13], [18].

To have a better understanding of the co-area formula let us have a look
at the following standard examples which show that the co-area formula
is a common generalization of the change of variables formula, the Fubini
theorem and the formula for the integration in the polar coordinates system!

If n >m and f: R — R™ is the orthogonal projection, then |Jf| =1
and hence (6) reduces to the Fubini theorem.
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If f: R* > R, f(z) = |z|, then |Jf| = |[Vf| = 1 whenever z # 0 and
hence (6) gives the integration in the polar coordinates system

/ gdm:/ </ gd’H”1> dr.
n 0 oB(0,r)

Let us also note the following important case. If f: R® — R is an arbitrary
Lipschitz function, then |Jf| = |V f| a.e. and hence

[owa= [ wts=ma

Countably rectifiable sets. Given integers k < n we say that a Borel
set E C R is countably H*-rectifiable if there exists a sequence of Lipschitz
mappings fi: E; C R¥ — R” such that H¥(E\ U2, fi(E:)) = 0.

To get another characterization of countably rectifiable sets we need

the following lemma which is a special case of much more general results of
Whitney [62], see also [13], [18], [58].

LEMMA 2. If f: E C RF — R" is Lipschitz, then to every e > 0 there
ezists a C* mapping f-: R¥ — R" such that H*({x € E: f(x)#f.(z)})<e.

Now we can prove the following well known characterization of count-
ably rectifiable sets.

THEOREM 3. Let E C R® be a Borel set with H*(E) < oo, where k < n
is an integer. Then E is countably H*-rectifiable if and only if there exists a
sequence of C* smooth, k-dimensional submanifolds MF, MY, ... of R such
that HF(E\ U2, MF) = 0.

PROOF. The condition is obviously sufficient. Now we prove neces-
sity. Observe that if f: A ¢ R¥ — R" is Lipschitz and H*(4) = 0,
then H*(f(A)) = 0. Hence it follows from Lemma 2 that f;: E; — R
can be assumed to be the restriction of a C' mapping fi: R* — R” to
E;. If rank Df;(z) = k, then f; maps a neighborhood of z into a k-
dimensional submanifold of R™. Hence the theorem will follow if we prove
that H*(f;({rank Df; < k})) = 0. This however follows directly from the
area formula applied to f = f;, g = X(rank Df;<k}* Indeed, |Jf| = 0 when-
ever rank D f; < k. O

The following well known result can be regarded as a kind of Sard’s
theorem.

THEOREM 4. If f: R* — R™, is Lipschitz, then for almost every point
y € R™, f=(y) is countably H"~™-rectifiable.

REMARK. If m > n, then the theorem simply says that f~'(y) = 0 for
a.e. y € R™. Actually the Hausdorff dimension of the image f(R") does
not, exceed n, so in this case the claim is obvious.
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PROOF. Due to the remark we can assume that m < n. Assume first
that f € C'. Then f~!(y) N {rankDf = m} is a C' submanifold. More-
over it follows from the co-area formula that for almost every y € R™,
H™(f~Y(y) N {rank Df < m}) = 0. Hence f~1(y) is countably (n —m)-
rectifiable for a.e. y € R™. The case of a general Lipschitz mapping easily
follows from the case of a C'! mapping and from Lemma 2. O

The following lemma of McShane, [47], is frequently used in the setting
of Lipschitz functions.

LEMMA 5. A Lipschitz function defined on a subset of R" can be ex-
tended to a Lipschitz function defined on entire R" without increasing the
Lipschitz constant.

PRrROOF. If f: E C R® — R is Lipschitz, then the function f: R* — R
defined by

flz) = [nf 1/ (y) +Lip (]l —yl}
has desired properties i.e., f|E = f, and Lip (f) = Lip (f). O

COROLLARY 6. If f: E C R® — R™ is Lipschitz, then f~'(y) N E is
countably H™ ™™ -rectifiable for a.e. y € R™.

A general countably H*-rectifiable set consists of a nice part that can be
covered by countably many k-dimensional manifolds and a small “irregular”
part of vanishing H*-measure. Irregular means that it cannot be covered by
countably many k-dimensional submanifolds. In particular this description
applies to preimages of almost all points of a Lipschitz mapping. In general
one cannot avoid the irregular part in the description of f~1(y), see [35].
Integral-geometric measure. In this section we recall definition and
basic properties of the integral-geometric measure ™ (called sometimes
Favard’s measure). This is one of the m-dimensional measures in R*. On
regular sets it coincides with Hausdorff’s measure H™, but it has different
properties on some “fractal” sets.

Let E C R" be a Borel set and 1 < m < n be an integer. Set

1

8 ITE) = —— Ny(y, E)dH™(y) d¥;
© =g | ] MR @), ),
where O*(n, m) denotes the space of orthogonal projections p from R™ onto
m-dimensional linear subspaces, Im p is the image of the projection p and
¥}, is the Haar measure on O*(n,m) invariant under the action of O(n),
normalized to have total mass 1. By N,(y,E) we denote as before the
Banach indicatrix.

For m = n, we define 7™ = H™.

Thus roughly speaking Z™(E) is defined as follows. Fix an m-dimensio-
nal linear subspace of R and denote by p the orthogonal projection from R™
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onto that subspace. Next we compute the measure of the image of the
projection of the set E taking into account the multiplicity function N,
and then we average the resulting integral over all m-dimensional linear
subspaces of R™.

We still have to define the coefficient S(n,m). If E = Q™ is the m-
dimensional cube in R™, then the double integral, which stands on the right
hand side of (8) is finite and positive. The coefficient 5(n,m) is defined in
such a way that Z™(Q™) = H™(Q™).

We extend the definition of Z™ to all sets A C R™ by the formula

I™(A) =inf{Z™(E)| A C E,E — Borel set} .
and then one can prove that Z™ is a Borel regular measure, see [18].

It follows easily from the definition that Z™ coincides with H™ on poly-
hedral sets. Then it is not surprising that both measures coincide on count-
ably H™-rectifiable sets. This is a theorem of Federer [16, Theorem 5.14]
known sometimes as Crofton’s theorem.

THEOREM 7. If A C R™ is countably H™-rectifiable, m < n, then
Im(A) = H™(A).

PROOF. Assume first that A is a subset of an m-dimensional C! sub-
manifold M™ C R". Denoting by p the restriction of p € O*(n,m) to M™
area formula (7) yields

Aummwwmw: N, (y, A) dH™ (3)

Imp
In this case theorem follows from the observation that

[ @) d ) = Sm),
peEO*(n,m)

after averaging over p € O*(n,m). The case of general countably ™-
rectifiable set follows from Theorem 3 and the elementary observation that
H™(E) =0 implies Z™(E) = 0. O

Although we will not need it in the sequel let us close the section by
recalling some known results which say how to relate Z™ to H™ on general
subsets of R™.

If AcC R, H™(A) < oo, then there is a unique decomposition up to
sets of ‘H™-measure zero

9) A=BUC,

where B is countably H™-rectifiable and C' is purely H™-nonrectifiable in a
sense that

H™(CNW)=0
for every countably H™-rectifiable set W. To prove the existence of the
decomposition (9) we take as B a countably H™-rectifiable subset of A of
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maximal measure. It is easy to see that such a set exists. The uniqueness
is also easy.

The following theorem is a celebrated structure theorem of Besicovitch
and Federer.

THEOREM 8. If C C R", H™(C) < o0, m < n, is purely H™-nonrectifi-
able, then 7™ (C) = 0.

REMARKS. 1) Besicovitch, [5], proved the theorem for case n = 2 and
m = 1 and Federer, [16], proved it in the general case. Proof can be also
found in books [18, Theorem 3.3.13], [46]. Recently a simplified proof of a
general case has been obtained in [61] and of the case m = n — 1 in [32].
2) It is easily seen that if B is countably H™-rectifiable and H™(B)>0, then
almost all projections of B onto m-dimensional linear subspaces of R™ have
positive measure. Hence the structure theorem together with the decompo-
sition (9) results in a fact that every subset of R” of finite H™-measure, can
be decomposed into two parts. The first part has the property that pro-
jections onto almost all m-dimensional linear subspaces of R™ have positive
measure and for the second part almost all projections have measure zero.

It follows from above results that for an arbitrary set A C R"

H™(A) > T™(A).

There exists plenty of (even compact) sets with H™(A) > 0 and Z™(A) = 0.
However then the Hausdorff dimension of the set A cannot exceed m. This
is a result of Mattila [44], [46].

THEOREM 9. If dimy A > m, then T™(A) = co. Hence I™(A) < o0
implies that dimy A < m.

3. Sobolev mappings

In this section we will generalize both area and co-area formulas to the
case in which the transformation f: R™ — R™ belongs to the Sobolev space
whe,

The Sobolev space W1P(R?), 1 < p < oo is defined as a set of all
functions f € LP(R"™) with the distributional gradient in LP(R"™). The
space is equipped with the norm ||f|l1, = ||fllp + ||V fllp- The notation
T/Vlif is self-explanatory.

By Sobolev mappings W!P(R", R™) we will mean mappings from R"
to R™ with the property that coordinate functions belong to W1?(R?).

There are many advanced monographs on Sobolev spaces, but for an
introduction to a basic stuff needed in our paper we especially recommend
[13], [21], [22], [43], [64]-

One can prove that W1>°(R") coincides with the space of bounded
Lipschitz functions. Since we have treated the Lipschitz case separately we
will assume in what follows that 1 < p < oo.
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All the theory discussed below can be easily extended to the case of
Sobolev functions defined on domains 2 C R™ or even on Riemannian man-
ifolds. However we decided to deal with the case = R™ just for the sake
of simplicity.

In order to generalize area and co-area formulas to the case in which
f € WHP(R*,R™) we need the following well known lemma, [1], [7] [13],
126], [38], [43], [48], [64].

LEMMA 10. If f € WYP(R?), 1 < p < oo, then to every € > 0 there
exists a Lipschitz function g € Lip (R™) such that

(1) [{f #gH <&
@) If —gllip <e

PRrROOF. Given f € W1P(R") the following pointwise inequality holds
a.e.

|f(z) = f(W)] < Clz = y|MIVf|(z) + MIVFI(y)),
where Mg(z) = sup,~ |B(z,r)| ! fB(zm) lg| is the Hardy—Littlewood max-

imal function, see [6], [7], [26]. Let By = {z : |f(z)| < tand M|V f|(z) < t}.
Then f|g, is a bounded Lipschitz function with the Lipschitz constant

bounded by 2Ct. Let f; be the extension of f |E, given by Lemma 5. Next
we define f; as a truncation of f;

t it fi(z) >t,

file) = { file) if |fi(@) <t,
-t if fi(z) < -t

Observe that f; has the same Lipschitz constant as f; (which is bounded by
2C't). Moreover f; is a bounded function with || ft||co < t and fi|g, = fl&,-
We will prove that f; gives the desired Lipschitz approximation as ¢t goes to
infinity. First note that {f # fi} C {|f| > t} U{M|Vf| >t} := F,. Thus

/ |f—ft|p+|Vf—Vft|pda:=/ = FlP 4 IV = VAP de
Rn Fy

<C [ (PP +IVFP) do + CtP|F] .
Fy

Now we will conclude that both terms on the right hand side converge to
zero as t — oo as soon as we show that t|F;| — 0 as t — oco. This will be
the consequence of

(10) tPI{|fl > t}H + tPUM|Vf| >t} =0 ast — oo.

The convergence of the first term in (10) follows from the fact that f € L?
(Chebyschev’s inequality), while the convergence of the second term from
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the fact that M|V f| € L?, when p > 1, [59, Theorem 1, page 5], and from
the following weak type estimate, when p = 1, [59, (5) on page 7],

C
Mvs > o< G [ Vfldo.

{IvrI>t/2}
The proof is complete. O

Now we can formulate and prove a version of Theorem 1 valid for
Sobolev mappings. This seems to be a folklore result.

THEOREM 11. Let f € WLP(R?,R™), 1 < p < 0o, and let g: R* — R
be either nonnegative measurable or measurable and such that g(z)|J f(z)| €
L'(R™). Then there exists a representative of f such that both area (5) and
co-area (6) formulas hold.

REMARK. The theorem can be easily generalized to the case of Sobolev
mappings between manifolds.

The theorem is a consequence of the following more detailed result.

THEOREM 12. Let f € le’f(]R”,]Rm), 1 <p < oo, be an arbitrary rep-
resentative. Then there exists a sequence of closed sets Fy C F» C ... C R”
such that A = R* \ |J, F; has the Lebesque measure zero and f|p, is Lips-
chitz continuous for every i = 1,2,... Hence f~(y) N (R™\ A) is countably
H™ ™ -rectifiable for a.e. y € R™. Moreover if g: R" — R is either nonneg-
ative measurable or measurable and such that g(z)|Jf(z)| € L*(R"™), then
the following area when n <m

[swiwiare=[ (¥ g@)arw.

" e Hy)N®\A)

and co-area when n > m

[ @@l ar e

N / m </f1(?/)ﬁ(R"\A) oo dHn_m(w)> v

formulas hold.

ProoF. We will prove the co-area formula as the proof for the area
formula follows exactly the same argument.

Let fr: R® — R™ be a sequence of Lipschitz mappings and F; C F» C
... C R” be a sequence of closed sets such that f|p, = fi|p, and H"(R" \
Ui Fr) = 0. The existence of such a sequence follows from Lemma 10.
Denote A = R" \ J,, Fi.

The co-area formula applied to each of the mappings fr and g = 9Xp,
yields
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(12) /F 9@ ()| dH" ()

- / ) ( /f - g(x) d’H”_m(x)> dH™(y) -

The equality fx = f in F} implies Jfy = Jf a.e. in F}. Hence passing to
the limit in (12) as k — oo yields

[ o@@aee=[ ([ @) oeo),

which readily implies (11).
The fact that the set f~!(y) N (R™ \ 4) = f~'(y) N U, Fi is countably
H™ ™-rectifiable for a.e. y € R™ follows from Corollary 6. O

PrOOF oF THEOREM 11. Given an arbitrary representative f it suf-
fices to choose another representative which sends the set A from Theo-
rem 12 to a single point and remains unchanged in R” \ A. O

Observe that we did not use the whole strength of Lemma 10 as the
only property of the Sobolev function that we employed was the fact that
the Sobolev function coincides with a Lipschitz function outside a set of an
arbitrary small measure. This property is true for a much larger class of
functions which are approximately differentiable a.e. [62], and so one can
generalize both the area and the co-area formulas to that class of mappings.
We will not go however that far with our generalizations, as we are interested
mainly in the case of Sobolev mappings; see [15], [18], [20], [23] for some
related results in the case of the a.e. approximately differentiable mappings.

There is something very delicate in Theorem 11. We will explain it on
an example.

If f € WHP(R™, R") is a homeomorphism and g = Xy is a characteristic
function of a measurable set, then both the area and co-area formulas seem
to yield the identity

(13) /E Tl dH" = HP(f(E)).

However Ponomarev, [51], [52], provided an example of a homeomorphism f
which belongs to all the Sobolev spaces WP (R, R"), for 1 < p < n, and
has the property that for some set E C R"™ of the measure zero, H"(f(E)) >
0. Then applying (13) to that particular set E yields a contradiction. This
means some of our arguments were not correct. Indeed, we were not very
careful when applying Theorem 11. The theorem says that there exists
a representative of f for which (13) is true and it does not say that the
representative has to be the homeomorphism. Actually the above example
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shows that the representative has to be different from the homeomorphic
one and thus discontinuous.

Examples of Maly and Martio, [42], Reshetnyak, [56], and Vaisila, [60],
show that the situation is not much better even when f is a continuous
mapping in WH?(R", R?).

Thus how can one characterize those representatives for which the area
and the co-area formulas hold?

We will discuss the case of the area formula. We say that the mapping
f:R* = R™, m > n, has the Lusin property if the following implication
holds

(14) HYE)=0 = H"(f(E))=0.

It follows easily from the proof of Theorem 11 that given representative of
feWbHp(R* R™), m > n, verifies the area formula (5) if and only if it has
the Lusin property. It follows also that each Sobolev mapping for m > n
admits a representative with the Lusin property.

We assumed that m > n as in the case m < n condition (14) is always
satisfied and thus trivial.

In the examples discussed above the assumption was p < n and this is
the limiting case. Indeed, it is well known, [8], [63], that if p > n, and m > n
then the continuous representative of a Sobolev map f € W1 P(R",R™) has
the Lusin property, see Lemma 21.

Moreover if f € WbHm(R",R") is a homeomorphism, a theorem of
Reshetnyak, [53], [56] says that f has the Lusin property.

For more details concerning the Lusin condition and its applications to
the area formula we recommend the paper of Jan Maly, [41], that appears
in the same volume.

We close this section with an application of Lemma 10 and the area
formula to a problem of a different nature. Namely following [27] we will
prove a generalization of the classical Brouwer fixed point theorem. We will
need this result in the last section.

THEOREM 13. If B™ C R™ is a ball, then for f € WH™(B™, B"), with
flopr = id, we have |B™\ f(B™)| =0.

Of course f € WH™(B", B") means f = (f1,...,fn), fi € WHn(B")
fori=1,2,...,nand ), f? <1 a.e. The restriction of f to the boundary
is understood as a trace of a Sobolev function.

PRrROOF. By Lemma 10, there exists a sequence f; € Lip (B"™, B"), such
that fr — f in W5 and |[{fr # f}| = 0 as k — oo. It is not difficult
to see that we can assume in addition that fi|op» = id (restriction in the
classical sense). According to the classical Brouwer theorem fi,(B™) = B",
and hence there exists Ey C B™ such that fi(Er) = B™\ f(B™). Obviously
E, C {fx # [}, and hence |E| — 0, as k — oo. Now the area formula
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implies
B SE = 1Bl < [ 1A =0
k
since Jfr, — Jf in L' (by the Holder inequality), and |Eg| — 0. d

4. Quasicontinuous representatives

A generic measurable function f: R™” — R has some continuity proper-
ties that are described by the Lusin theorem. Namely to every € > 0 there
exists an open set U C R"™ of the Lebesgue measure less than € and such
that f restricted to R* \ U is continuous.

If p < n, then a generic function from W!P(IR") is essentially discon-
tinuous everywhere. However if p > n, then all the functions in W1?(R")
are Holder continuous.

Thus we may expect that for 1 < p < n there is a result which would be
a kind of an interpolation between the Lusin theorem and the everywhere
continuity. This leads to notions of capacity and quasicontinuity that we
next describe.

Let 1 <p < n. If K CR"is a compact set, then we define its p-capacity
as

Cap, (K) = inf{/ Vul? : we O (R, ulx 21}
R’n
For an open set U C R™ we put

Cap,(U) = sup Cap,(K),
KCU
K —compact

and finally for an arbitrary set £ C R™ we define
Cap,(E) = Ulng Cap,(U).
U—open

The reader can find more information about the p-capacity in [13], [30], [43],
[64].

It is also possible to define the p-capacity for p > n, but it requires
some changes in the definitions and we will not go into details here.

We say that the function f: R® — R is p-quasicontinuous if it is Borel
measurable and to every € > 0 there exists an open set U C R™ with
Cap,(U) < ¢ and such that f|g»\y is continuous. The following result was
proved by Reshetnyak, [54].

THEOREM 14. If 1 < p < n, then any function f € WYP(R") has a
p-quasicontinuous representative.

The theorem generalizes to the case p > n as the capacity can be defined
there. If p > n, then the p-capacity of a point is positive and hence an open
set U of a sufficiently small capacity is empty. Thus the continuity of f



SOBOLEV MAPPINGS, CO-AREA FORMULA AND RELATED TOPICS 241

in the set R® \ U means simply continuity in the entire R™, which is the
Sobolev embedding.

Theorem 14 is a desired interpolation between everywhere continuity
and the Lusin theorem. Sets of small p-capacity are “smaller” than generic
sets of small Lebesgue measure as it is well known that the Hausdorff
dimension of sets of vanishing p-capacity is less than or equal to n — p.
Roughly speaking this implies that if p > k, where k is an integer, then
a p-quasicontinuous function is continuous when restricted to almost every
k-dimensional affine subspace of R"™. This is because almost all such planes
does not meet the set of the Hausdorff dimension n — p.

For those who do not know the capacity theory we will provide a di-
rect and elementary proof of the last statement i.e. we will prove that
f € WHP(R") has a representative which is continuous on almost all k-
dimensional affine subspaces of R", for k£ < p. This is the only consequence
of Theorem 14 that will be needed in the sequel. Since we will show an
elementary proof of this fact, from now on, the reader may forget what we
said about the capacity and p-quasicontinuous representatives.

When saying that some property holds on almost all k-dimensional
affine subspaces we mean that for almost every k-dimensional linear sub-
space of R™ the property holds for almost all affine k-dimensional subspaces
parallel to the given linear subspace. More precisely the space of all k-
dimensional affine subspaces form a vector bundle which is equipped with a
measure that provides the notion of a.e. Given integer 1 < k < n, by G(n, k)
we will denote the Grassmannian of all k-dimensional linear subspaces of R™.
This is a manifold on which the orthogonal group O(n) acts transitively. Let
Yn,k be the unique Haar measure on G(n, k) normalized to have total mass 1,
invariant under the action of O(n). The space of all k-dimensional affine
subspaces in R™ can be identified with the (n—k)-dimensional vector bundle
over G(n, k) with orthogonal complements of elements of G(n, k) as fibers.
Denote this vector bundle by E(n, k). The identification of E(n, k) with all
affine k-dimensional subspaces is the natural one. Elements of G(n, k) indi-
cate directions of subspaces and each fiber parameterizes all k-dimensional
affine subspaces parallel to the given element of G(n, k). The vector bundle
is equipped with a measure which is 7, on the base-manifold and H" ¥
in each fiber. We will denote such a measure by H" % % Tn.k- “Hat” means
that this is not the Cartesian product, but a “twisted” product of measures
since this is not a trivial vector bundle.

The following lemma is a version of the Fubini theorem adopted to the
setting of Sobolev spaces.

LEMMA 15. Let f € WHP(RY). If 1 < k < n is an integer, then f|pr €
WLP(P*) for almost all P* € E(n,k). Moreover if f;, f € WHP(R™), fi —
[ in WHP(R™), then there exists a subsequence f;; such that fi|pr — f|px
in WHP(P*) for almost all P* € E(n, k).
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PrOOF. Fix I' € G(n, k). The fact that f|px € WHP(PF) for almost all
k-dimensional affine subspaces P* parallel to I is an easy consequence of the
Fubini theorem applied to a sequence of smooth functions approximating f
in WHP(R™). We leave details to the reader.

Now let f; — f in WHP(R"). Fix T € G(n,k) and denote by Er =
It the fiber of E(n,k) over I'. Then given y € Er denote by I', the k-
dimensional affine subspace parallel to I' and intersecting Ep at a point y.
The Fubini theorem yields

If = £l = /E / f = filP 4 [V f — VAP dH* (@) dH™ () = 0.

Now averaging over G(n, k) gives

T
- / / / = FiP 4|V f =V fol? dH* (2) dHP* (y) dy i (D) — 0.
G(n,k) /Er JTy

Let
FZ:/ f = fiP + IV f = VAP dH (a).
Fy

Then F; — 0 in L' (E(n, k)) and hence F}, — 0 a.e. on E(n, k) for a suitable
subsequence. The proof is complete. a

THEOREM 16. Let f € WHP(R"), 1 <p < oo, and let 1 < k < n be an
integer such that k < p or k = p = 1. Then there exists a representative
of f such that f|pr € WEP(PK) N CO(P*) for almost all P* € E(n, k).

Proor. It follows directly from the previous lemma applied to a se-
quence of smooth functions approximating f and from the Sobolev em-
bedding theorem which implies that a sequence of smooth functions which
converges in the W1? norm on a k-dimensional space converges uniformly
on that space. a

The above theorem provides us with the desired representative of a
Sobolev function. As we have already mentioned a p-quasicontinuous repre-
sentative also verifies the property from the above theorem. In what follows
we will still use the name p-quasicontinuous representative, but the only
property we will actually need is the property from Theorem 16.

Let us also mention that Theorem 16 directly follows from results of
Reshetnyak, [54], [55].
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5. Studying preimage

A Sard type theorem for Sobolev mappings. The following theorem
will play a crucial role in the description of the set f~!(y) where f is a
quasicontinuous representative of a Sobolev mapping. For related results
see [24], [25, Lemma 3].

THEOREM 17. Let A C R™ be a Borel measurable set and f: A — R™ qa
Borel measurable mapping. Let 1 < k < n be an integer. Then the following
two conditions are equivalent.

(1) For almost all k-dimensional affine subspaces P* of R"
H™(f(P¥NA)) =0.
(2) For H™ almost all y € R™
" *(fHy) N 4) = 0.

Very roughly speaking the theorem says that images of small sets are
small if and only if preimages of points are small.

To explain the idea of the proof let us consider a simple example. Given
a measurable set & C R2, the following two conditions are equivalent: (a)
for almost all lines ¢ parallel to the z-axis, H'(& N ¢) = 0; (b) for almost
all lines ¢ parallel to the y-axis H'(& N ¥¢) = 0. Indeed, by the Fubini
theorem both conditions are equivalent to H2(&) = 0. Now the idea of the
proof of the theorem is the following: find a set & C X x Y and measures
px and py on X and Y such that both conditions from the theorem can
be interpreted as vanishing of the measure of X-slices and Y-slices of &
respectively. Then it will follow directly from the Fubini theorem that both
of the conditions from the theorem are equivalent to (ux x uy)(G) = 0.

The set © will be defined as a kind of projection of a set constructed
from the graph of f. To ensure measurability of the set we have to invoke
the following well known results.

LEMMA 18. Let f: X — Y be a mapping between separable metric
spaces X and Y. If f is Borel measurable, then the graph Gy = {(z, f(z)) |
x € X} C X xY is Borel measurable as well.

PRrOOF. Let {Agn)}‘iﬁl be a disjointed family of Borel subsets of Y such
that [J;°, Az(n) =Y and diam AZ(»n) < 1/n. Then sets

o0

B,= (1 AM) x AM) c X x Y
i=1
are Borel and hence Gy = (),—, By, is also a Borel set. O

We also need the following celebrated and deep result of Lusin and
Sierpinski [39], [40], [18, Theorem 2.2.13].



244 PIOTR HAJLASZ

LEMMA 19. If h: M™ — N™ is a continuous mapping between Rie-
mannian manifolds and A C M™ is a Borel measurable set, then h(A) is
H™ -measurable.

REMARKS. 1) Observe that this lemma is no longer true if we assume
that A is H™-measurable instead of being Borel. Indeed, taking a projection
from R? to R as h and a 1-dimensional non-measurable set A as a subset
of R? we see that H?(A) = 0 and thus A is H?-measurable, but h(A) = A
is not H'-measurable.

2) For a general Borel measurable set A, the set h(A) need not be Borel.
3) Lemma 19 is a particular case of a much more general result about
continuous mappings between metric spaces equipped with measures, see
[18, Theorem 2.2.13].

Theorem 17 is a direct consequence of a more general result that we
will prove now.

THEOREM 20. Let A C R™ be a Borel measurable set and f: A — R™
a Borel measurable mapping. Let 1 < k < n and 1 < £ < m be integers.
Then the following two conditions are equivalent

(1) For almost all k-dimensional affine subspaces P* of R?
THf(P* n A)) = 0.
(2) For almost all (m — {)-dimensional affine subspaces P ¢ of R™
"R P N A) = 0.

PRrOOF. Denote by V*(m,¥) the (-dimensional vector bundle over the
manifold O*(m, ¢) (considered in (8)) with images of projections p€O*(m, ¢)
as fibers. This vector bundle is equipped with the measure which s H¢ in
each fiber and ¥}, , on the base-manifold. Denote this measure by #* x 9}, ;.

Observe that (O*(m,{),3}, ;) can be identified with the Grassmannian
(G(m,m — £),Ym,m—t¢), as the orthogonal projection onto an ¢-dimensional
linear subspace of R™ can be identified with its (m — £)-dimensional kernel.
Denote this identification by ker: O*(m,f) — G(m,m — £). This induce
the identification of vector bundles V*(m,¢) and E(m,m — £) (considered
in Section 4), together with the identification of measures.

Consider two mappings

Tm, ¢ - R™ x O*(mag) — V* (myg)) 7Tm7l(y)q) = (q(y)>q) )
and
Fanon: B X O"(n,n — k) = B(n, k), Frni(,p) = (p(@), kerp),
and their product
T =Tpn_k X Tm,e : R* X O*(n,n —k) x R™ x O*(m, {)
— E(n, k) x V*(m,{).
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The space E(n, k) x V*(m,¢) is equipped with the measure
HF X g x HEX O,
Let Gy C A xR™ C R* x R™ be the graph of the mapping f. We have a
natural inclusion
i:GpxO0*(n,n—k)xO0"(m,l) = R* xO*(n,n — k) x R™ x O*(m,?).
By Lemma 18, Gy is a Borel subset of R* x R™. Hence Lemma 19 implies
that
G = (7 0i)(Gy x O*(n,n — k) x O*(m, 1))
is a measurable subset of E(n, k) x V*(m, £). Now it follows from the Fubini
theorem that both conditions of the theorem are equivalent to
(M Xy x HEX 05, ) (©) =0.
Indeed, since
S = {(p(z), kerp, q(f(2)),q) : z € A, p€ O"(n,n — k), ¢ € O*(m, ()}
it easily follows that the section of & corresponding to P* € E(n,k) is
given by
Spr = {(4(f(2)),q) : x € PPN A, g€ 0" (m,0)}.
Hence R
(H X 95,) (Bpr) =0

if and only if Z¢(f(P* N A)) = 0.

Now fix an element of V*(m,?). As we already noticed this element
can be identified with an affine subspace P~¢ € E(m,m — £). Denote

m—L
corresponding section of the set & by &° . It is easy to see that
m—£
6" ={()kerp): x € fHPTYNA peO*(n,n—k)}.

Hence L,
(H"* X yp) (BT ) =0
if and only if Z"F(f~1(P™~%) N A) = 0. The proof is complete. ad

In order to apply above results to Sobolev mappings we need the fol-
lowing folklore result.

LEMMA 21. Let feWbLP(R™*,R™), where m>n and p>n or p=n=1, be
a continuous representative. If A C R", H"(A) =0, then H"(f(A4)) =0.

See [8], [63] for the case p > n. In the case p = n = 1 this is a well
known property of absolutely continuous functions, [57, Theorem 7.18], since
WHL(R) functions are absolutely continuous [13, 4.9.1]. The quoted proofs
are in the case n = m however the same arguments work for when m > n.

Now we can prove a theorem about the structure of a generic preimage
for a p-quasicontinuous representative of a Sobolev mapping.
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THEOREM 22. If f € WEP(R™, R™) is p-quasicontinuous and p > k or
p =k =1, where 1 < k < min{n,m} is an integer, then for almost all
(m — k)-dimensional affine subspaces P~ % of R™, f~Y(P™ %) =W UV,
where W is countably H"~*-rectifiable and I~ (V') = 0.

REMARKS. 1) If we replace the condition 1 < k < min{n,m} by n <
k < m, then f~1(P™ %) = for a.e. P" % € E(m,m — k).
2) The only property of the p-quasicontinuity representative that will be
employed in the proof is the property from Theorem 16. Thus the theorem
holds for any representative that verifies the claim of Theorem 16.

ProoF. By Lemma 10 there is a sequence of closed sets Fy C Fy C
... C R® such that |R* \ |J; Fi| = 0 and f|r, are Lipschitz continuous.
Denote A = R" \ |J, F; and define

W= fterhnlJE,  v=fi(emthnA.

Now it remains to prove that W is countably H" *-rectifiable and
I k(V)=0 for a.e. P™~ %  Rectifiability of the set W is an easy con-
sequence of Corollary 6. Indeed, if we compose f with a projection p €
O*(m, k) onto a k-dimensional subspace we obtain the Lipschitz mappings
po f: F; — Imp ~ RF. And hence it follows from Corollary 6 that
(po /) ') NU, Fi = f(p ' (y)) N, F; is countably H" F-rectifiable
for all p and a.e. y € Imp. Observe however that p~!(y) is a generic
(m — k)-dimensional affine subspace of R™. The equality Z"~*(V) = 0
follows directly from Theorem 20 and from Lemma 21. O

As we have seen in Section 3, co-area formula, Theorem 11, holds for a
carefully chosen representative of a Sobolev mapping. Examples mentioned
in the section show that it may happen that the Sobolev mapping is contin-
uous, but the representative we choose has to be discontinuous. This means,
Theorem 11 does not hold, in general, for quasicontinuous representatives.
It would be, however, convenient to know whether there is a counterpart
of the co-area formula valid for quasicontinuous representatives. The next
theorem provides such a result. This is a generalization of a theorem of
Ziemer [63]. Ziemer proved the theorem, by a different method, in the case
m =n — 1. Then he employed it in a very elegant way to study the inverse
of a homeomorphism from the Sobolev space.

THEOREM 23. Let f € WHYP(R*,R™), where n > m and p > m or
p=m =1, be a p-quasicontinuous representative. If g: R — R is nonneg-
ative measurable or measurable and such that g(z)|Jf| € L*(R™), then the
following version of the co-area formula holds

/Rn g(@)|J f ()| dH" (x) = /m (/f_l(y) g(z) dZ”m(x)> dH™(y) .
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REMARK. The second remark to Theorem 22 applies here as well.

PROOF. Let A be a set defined as in Theorem 12. We have

[ s@s@iare = [ ([ ey 9 () ()

By Theorem 12 the set f=1(y) N (R™ \ A) is countably H"~™-rectifiable for
a.e. y € R™. Since by Theorem 7, H" ™" coincides with Z"~"™ on countably
H™ ™-rectifiable sets we conclude that

Ang(x)lJf(x)ldHn(w) = /m</fl(y)n(Rn\A)g(x) dIn_m(a:)> dH™ (y) .

Now it suffices to show that Z"~™(f~!(y) N A) = 0 for a.e. y € R™. This
is however a direct consequence of Theorem 17 and Lemma 21. a

The classical co-area formula is formulated for mappings between man-
ifolds. However in Theorem 23 we consider mappings between Euclidean
spaces only. One could expect that it is easy to generalize the theorem to
the case of mappings between manifolds. It is however not the case. The
problem is that it is not possible to define the measure Z* on manifolds. One
of the reasons is that, by results of Mattila [45], sets of integral geometric
measure zero are not invariant under diffeomorphisms.

Minor modifications of the proof of Theorem 22 give

THEOREM 24. Under the assumptions of Theorem 22 for a.e. y € R™,
Y (y) = WUV, where W is countably H"~ ™ -rectifiable and T"*(V) = 0.
Hence if in addition k < m, then " *(f~'(y)) = 0 for a.e. y € R™.

COROLLARY 25. If the representative of f € WHH R, R™), n,m > 2
is absolutely continuous on almost all 1-dimensional lines in R™, then for
a.e. y € R™, I Y(f~1(y)) = 0 i.e., almost all lines in R* do not intersect
).

REMARKS. 1) The second remark to Theorem 22 applies to Theorem 24
and hence the only property of a 1-quasicontinuous representative needed
in the proof of Corollary 25 is the absolute continuity on almost all lines.
2) Even if k < m, the decomposition f~'(y) = W UV to a countably
H"~™-rectifiable part and a part of vanishing 7" *-measure provides more
information than the condition Z"~*(f~!(y)) = 0. This is because we know
from the proof that the part V' is a subset of some fixed set A C R" with
H"™(A) = 0.

3) Results like Corollary 25 have applications that we shortly describe next.
Let f € WLP(R*,R™) and let g, € C®°(R™ \ {z}). Assume that g, is
discontinuous at z. According to the characterization of the Sobolev space
WP by the absolute continuity on lines, [13, 4.9.2], in order to show that
g- o f € WP we have to verify two conditions: a) the function g, o f is
absolutely continuous on almost all lines parallel to coordinate axes; b) the
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partial derivatives of g, o f that we can formally compute belong to LP.
Of course g, o f need not be absolutely continuous on lines. However if
we can push the singularity 2 a little bit, then the set f~1(z) is disjoint
with almost all lines. This means g, o f is absolutely continuous on almost
all lines. Such an argument was employed in [25]. Actually one needs a
slightly weaker version of Corollary 25 since we need to worry about the
lines parallel to coordinate axes only.

The assumptions in Theorem 24 are exactly the same as assumptions
in Theorem 22. However now we take the preimage of a much smaller
set, namely the preimage of a point instead of the preimage of an affine
subspace. Thus the preimage should be smaller. And indeed, we obtain
a smaller dimension for the countably rectifiable part W. Unfortunately
estimates for the “bad” part V are in both theorems the same. One could
expect that this is because the argument in the proof was not sharp enough.
However, surprisingly, the estimate Z"~*(V') = 0 from Theorem 24 cannot
be improved.

The example we provide below shows sharpness of Theorems 22—24.

Let f € WbHP([0,1]",R™) be p-quasicontinuous. Assume that 1 < k <
min{n,m —1}andp>korp=k=1.

Then it follows from Theorem 24 that Z"*(f~!(y)) = 0 for a.e. y €
R™. The estimate is sharp since the example discussed below shows that if
p =k > 1, then, in general, one cannot obtain the estimate Z"*(f~1(y)) =
0 (actually one cannot obtain Z"*(V') = 0).

Given k,m > 2 there exists a continuous mapping u: [0,1]F — R™ of
the class W1k([0,1]¥, R™) and such that for some 1-dimensional interval
I C [0,1]* we have u(I) = [0,1]™. Moreover Ju = 0 a.e.

Such example in the case k = m > 2 was provided by Maly and Mar-
tio [42]. However obvious modifications of their construction lead to the
general case k,m > 2. For details see [42, pp. 24-25].

Assume now that 2 < k < min{n,m — 1} and define a mapping f :
[0,1]* — R™ by the formula f(z1,...,z,) = u(z1,...,zr). Obviously
f € WbHk(0,1]",R™) is continuous and Jf = 0 a.e. Since images of k-
dimensional slices of [0,1]™ fill the cube [0,1]™ we conclude that for any
y € [0,1]™, f~(y) contain an (n — k)-dimensional slice of [0,1]". Hence
Ik (f(y)) > 0 for all y € [0, 1]™.

Moreover since Jf = 0 a.e. the example can be used to show sharpness

of Theorem 23.
Co-area and harmonic mappings. We close the paper with one appli-
cation of the co-area formula to harmonic mappings. We will not prove
anything new, but we will modify known arguments. We will carefully ex-
plain in which sense our arguments are different.

Let B® be the unit ball in R* and S? = 9B%. Let W,;*(B?, S?) denote
the class of those mappings f = (fi,f2, f3): B> — R® such that f; €



SOBOLEV MAPPINGS, CO-AREA FORMULA AND RELATED TOPICS 249

WL2(B?), f} + f2+ f2 =1 ae. and f|gps = id as a trace in the Sobolev
space.

Observe that by the Brouwer theorem there are no continuous mappings
from the closed ball onto its boundary which are identity on the boundary.
However Sobolev mappings need not be continuous and indeed the class
W% (B?,S?) is not empty since it contains the radial projection z/|z| €
W2 (B?,5?) (cf. Theorem 13).

Next, consider the following energy functional

af: \?
()= [ |Vf|2dx=[932(6§j) dr.
4,

defined on the space W,;*(B?, §?).

A mapping which minimizes the energy Fs over the class T/Vii2 (B3, 5?)
is called minimizing harmonic map. This is a particular case of a much
more general definition. However, we need this particular case only and we
will not provide general definition here.

It seems that the first who considered Sobolev mappings between man-
ifolds and minimizing harmonic mappings was Morrey, [50]. There is a
vast literature on the subject. The reader may find a general introduc-
tion in books [31], [33]. For harmonic mappings with singularities see the
papers [28] and [29].

The following result was proved by Brezis, Coron and Lieb [10].

THEOREM 26. The radial projection z/|x| minimizes the energy Es in
the class Wy*(B?,S?).

There are several proofs of the theorem [10], [2], [9], [12], [37], see also
references in [28].

The proofs given in [2], [9], [12] are based on the co-area formula. The
rough idea of these proofs is the following. If f € Wih’Q(B?’, S?) is smooth
except for a finite number of points where f is discontinuous, then applying
the co-area in a clever way one can prove that Ex>(f) > Es(x/|z|). Now the
theorem follows by showing that smooth mappings with a finite number of
discontinuity points are dense in the space W,;*(B?, S?).

The last approximation result is rather technical especially its general-
ization needed for Theorem 28.

Our aim is to show that one can apply the co-area formula for Sobolev
mappings directly, thus avoiding the approximation procedure. Our proof
is not simpler, but in a sense more direct and perhaps the method of our
proof can be used for other related problems. Moreover it shows some deep
geometric properties of Sobolev mappings which are not seen in the proof
with the approximation method.
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PROOF OF THEOREM 26. Let f € W,;*(B?,5%). We want to show
that E2(f) > Eqx(x/|z|).
If f is a correctly chosen representative then Theorem 11 implies that

/ T ae@) = [ 1 W) dH ).
B3 S2

Elementary inequality 2|.J f|(z) < |V f(x)|* yields
_ 2 LOE=1(0)) d2
B = [ IVI@P 22 [ W) )

= [, T @O ) d ).
Observe that in the case fo(z) = z/|z|, there is 2|Jfol(z) = |V fo(z)|?
and hence we have equality in the above formula. Moreover H!(f; " (y) U
fo ' (=y)) = 2 for every y € S? and thus it remains to prove the following
lemma which is of independent interest.

LeEMMA 27. If f € W,°(B?,5?), then H'(f~*(y) U f'(~y)) > 2 for
a.e. y €S2

If f is smooth in B3\ {a,...,a}, for some finite set {ai,...,ar} C B?
and flpp» = id, then the proof of the lemma can be considerably simplified
and then Theorem 26 follows from the approximation argument mentioned
earlier. Our aim is to provide a proof of Lemma 27 for a general case of a
Sobolev mapping thus avoiding the approximation argument in the proof of
the theorem. The proof of the lemma is in the spirit of Theorem 20.

PROOF OF LEMMA 27. Let P: S? — RP?, P(y) = {y,—y}. Fix an
arbitrary y € S2 and ¢ > 0. It suffices to show that for a.e. w from a
neighborhood of y, the length of the projection of the set f~(w)U f ! (—w)
onto the segment (—y)y is at least 2 —¢.

Given z € (—y)y denote by D, the disc obtained as the intersection
of B® with the plane perpendicular to (—y)y passing through z. By the
Fubini theorem (Lemma 15), f|p. € Wiy*(D.,S?) for a.e. z € (—y)y.

Let I. C (—y)y be the interval of the length 2 — e centered at the origin.
Denote the ends of I. by z; and z;. Discs D, and D,, cut two small caps
from the sphere S2. Those caps induce an open set U C RPZ.

Any disc D, cuts the sphere S? into two parts. It follows from The-
orem 13 (a tricky exercise for the reader) that for a.e. z € (—y)y, f(D:)
covers almost all points of at least one of the two parts of S? cut by D..
Hence for a.e. z € I,

(15) H U\ (Po f)(D2)) =0.
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We can assume that f is a Borel representative and thus the graph
Gpos C B® x RP? is a Borel set by Lemma 18.

Let 7: B®> — (—y)y be the orthogonal projection. Define
m: B® x RP? — (—y)y x RP?
by the formula 7(z, v)=(7(z),v). According to Lemma 19 the set 7(Gpos) C

(—y)y x RP? is H' x H?-measurable. Hence the Fubini theorem and (15)
imply

(H' x H*)(w(Gpop) N (I x U)) = H'(L) - H*(U)
i.e. 1(Gpof)N(I- xU) is a subset of I. x U of the full measure. Applying the

Fubini theorem for the second time we obtain that for a.e. {—w,w} =v € U
corresponding slices of the set have the full length i.e. for a.e. z € I,

(Pof)™(0)n D £10.
This means the length of the projection of the set f~!(w) U f~1(—w) =

(Po f)71(v) on (—y)y is at least 2 — e. This completes the proof of the
lemma and hence the proof of the theorem. O

One can generalize the above arguments to cover the general case proved
in [12].

THEOREM 28. Let 2<p<n<m-—1, be integers. Let fo € WHP(B™,KS"),
be defined by the formula fo(y,z) = y/|y|, wherey € R**! and 2 € R "L,
If f e Wl’p(Bm,Sn) and flopm = folopm then

[ vz [ var.

The proof given in [12] employs (among other things) the co-area for-
mula for smooth mappings with singularities and then the approximation
theorem. Again, it is possible to modify the argument and apply the co-area
formula directly to general Sobolev mappings.
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