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Abstract. We define Sobolev space J V ' , ~  for 1 < p < (x, on an arbitrary metric space with finite 
diameter and equipped with finite, positive Bore1 measure. In the Euclidean case it coincides with 
standard Sobolev space. Several classical imbedding theorems are special cases of general results 
which hold in the metric case. We apply our results to weighted Sobolev space with Muckenhoupt 
weight. 
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1. Introduction 

It is well known that [li1?" consists of Lipschitz functions and hence we can 
naturally define LV '~"  on an arbitrary metric space. In the case 1 < p 6 m we 
find a Lipschitz type characterization of W'J' (Theorem 1) which can be used as a 
definition of T / I ~ ' > P  in the case of metric space as a domain. Since the space 1V13" 
has an integral nature, we have to equip the metric space with a measure. 

The imbedding theorems depend on the dimension; so if we want to get imbed- 
ding theorems in this general, metric context, we have to introduce a condition 
describing the dimension. This condition is very simple. It suffices to assume 
that p(B(x, r ) )  2 CIrS (see the definition of s-regularity in Section 5) .  If we are 
concerned with fractal (self-similar) sets then they are s-regular with respect to 
Hausdorff's measure. It is surprising, but the imbedding theorems hold in this 
general metric context (Theorem 6). As corollaries we obtain classical imbedding 
theorems and the weighted imbedding theorem of Fabes-Kenig-Serapioni. 

The average value o f f  will be denoted by f A  = p(il)- '  [A f dp = fA f dp. 
By C '  we will denote a general constant. It can change its value even in the same 
proof. 

+ This work is supported by KBN grant no. 2 1057 91 01 
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2. Lipschitz Type Characterization 

In this section we give a Lipschitz type characterization of Sobolev space in the 
Euclidean case (Theorem 1). This will be used in the next section in the definition 
of Sobolev space on metric space. 

We start with recalling some standard definitions: 

where R C X n  is an open set and 1 6 p 6 m. 
T/I"~"(R) is a Banach space when endowed with the norm 1 1  f l ( W ~ , p  = 1 1  f l l L P  + 

IlC f 1 1  L p .  ~'sp(S1) is endowed with a seminorm 1 1  f l l L ~ , p  = IlO f l l L p  (it is not a 
norm, because it annihilates constant functions). 

It is known (see [15, Lemma 7.161) that for f E L'J'(Q) (Q-cube in Rn) the 
following inequality holds a.e. 

(hence LIJ'(Q) = W 1 > ~ ( Q ) ) .  
For any z. y E Q we can find a subcubeg with x ,  E g, diam FZ lx - yI. 

Hence, by (1) and the following inequality of Hedberg ([22], [39, Lemma2.8.31) 

This inequality is taken from [4] (see also [16], [20], [5], and [6] for generaliza- 
tions). 

We say that the domain R C Rn has the extension property if there exists 
a bounded linear operator E:  ~ ' > ~ ( ( 2 )  - w'>P(R"), such that for every u E 
1 l 7 ' . p ( ~ ) ,  Euln = u a.e. An example of such a domain is any bounded domain 
with Lipschitz boundary. If R is a bounded domain with the extension property 
then L'J'(SZ) = wlJ'(R). 

Since the maximal operator is bounded in LP for p > 1, we have that if 
f E L l.P(R) where R = Rn or f2 is a bounded domain with the extension property, 
then there exists a nonnegative function g E LP(R) such that 
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Many properties of the Sobolev function can be recovered from the inequality 
(2) and its generalizations to higher order derivatives (see [4], [5], [6], [16], [20], 
[ I  81). Hence an important question arises now. Is there a function f which satisfies 
(2) and which does not belong to T/I''>V The following theorem gives a negative 
answer. 

THEOREM 1 .  Let f be n mensurable function on R, where R  = R7' or R is a 
houncled domain with the extension property. Then f E Li 'P(R) .  1 < 11 < PC if 
ancl only ifthere exists a nonnegative function y E L P ( R )  such that the inequality 
( 2 )  17olds a.e. 

Remark. The above theorem can be stated in much more general form. For 
example, i t  follows from our proof that the implication -+ holds for any domain 
12. 

Proqf. It remains to prove the implication +. We follow the ideas of Calder6n 
17, Th. 41. 

It suffices to show (due to Riesz's representation and Radon-Nikodym's theo- 
rems) that there exists a nonnegative function 11 E L" JR such that 

for all ,- E ('07;'(52). Integrating (2) twice over a ball B = R ( x ,  E )  C R, we obtain 
the inequality 

Let L' E C; ( R( 1 ) ) ,  1 = 1 ,  +)E = E - ~  (.(.TIE). We have 

0 V^ 8p /- = lim / - ( v E *  f )  = lim - / p ( " * i )  i d l . ,  C-ii,  a x ,  E-4o , 8.r 

Slnce 1 5 = 0, we have 

Hence 
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COROLLARY 1. I fS1  is as above, then L ' , " (Q)  = Lip ( 0 ) .  

Since the above characterization does not involve the notion of derivative it can be 
used in the definition of Sobolev space on an arbitrary metric space as we do in the 
next section. 

3. Sobolev Spaces on Metric Spaces 

DEFINITION. Let (X, d ,  p )  be a metric space ( X ,  d )  with finite diameter diam X = 
sup d ( s ,  y )  < cx and a finite positive Borel measure p. Let 1 < p 6 cx. 

.I .YE 
The Sobolev spaces L ' , ~ ( x ,  d ,  11) and lil"J'(S. d ,  p )  are defined as follows 

L , ' > ~ ( - X - .  (1. p )  = { f :  X -+ R I f  is measurable and 3 E  c p ( E )  = 0 and 

3g E L P ( p )  such that I f ( . ? . )  - f ( y ) l  6 $ ( - ~ , y ) ( g ( . c ) + g ( y ) )  
for all x. y E X \ E )  

The space L'J'(x, d ,  ,u ) is equipped with the seminorm 1 1  f  I I L 1  , = inf, I l g l l ~ ~ .  The 
space 11 ' ' J ' (S , r I ,p )  isequipped withthenonn 1 f I l l v ~ , p  = 1 1  f l l ~ ~  + 1 1  f l l L l p .  

THEOREM 2. If 1 < p < .x then to eve9  f  E L ' . ~ ( S ,  d .  p )  there exists the 
ltrziqlie q E L" p )  which minimizes LP norm among the fiinctions which can be 
used in the definition of 1 1  f  1 1  L~ , . 

Proof. Standard application of Mazur's lemma (see, e.g. [lo]) or Banach-Saks' 
theorem (see [ 2 ] )  gives the existence of a minimizer. The uniquess follows from 
uniform convexity of L p .  

Although the above theorem can be used to get a more elegant form of the definition 
of the norm / /  1 1 1 1 7 ~  ,, we will not use it in the sequel. 

LEMMA 1.  L 1 . ~ ( l 7 i ,  d ,  p )  = Pt-'J'(,k7, (i. 11) as a set. 
Proof. Fix y E ,y \ E with g ( y  ) < rx. We have 

(with respect to x). 

THEOREM 3. Ilr'~"(_7i, d .  / 1 )  is a Bannch space. 
Proof. Let { f,,) be a Cauchy sequence in IV'J'. Let f ,  - f in LP. We prove 

that f  E 11-l.p and that convergence holds in JV'.".  Let { f,,) be a subsequence 
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such that 1 1  fn ,+ - fnt 1 1  i v l , ~  < 2-" Hence f n l  -- f a.e. and there exists g, E LP 
such that 

and IlsLll LP < 2-'. If we set h = C r  g z  then l(h(l L~ < 1 .  It follows directly from 
(3) that for j > i 

Passing to the limit with j -- rn we get that f  E L'J' = W'>P and f n ,  -+ f  in 
L '+ .  It readily follows now that fn - f  in w'J'. 

Now we can generalize this result in the spirit of [29, Th. 1.1.151. 

THEOREM 4. The norm 1 1  1 1  W ~ , p  is equivalent with 

I l f  t i : . ,  = l l f  l l '  + I l f  1 1 ~ 1 ' ~  

where I I / / * is any norm, continuous on LV I.P. 

Remurk. In fact it suffices to assume that ( 1  1 1 '  is a continuous seminorm which 
does not vanish on constant functions. The proof remains the same. 
In the proof we need the following PoincarC type inequality 

LEMMA 2. I f . f  E IY ' ,~ ( s .  d. { L )  then 1 1  f  - fx I ILP < 2(diam X ) l l  f  l l L ~ , p .  
Proof. Let g be such a function from the definition of 1 1  f  i l L ~ , p  that l lgliLp 6 

( 1  + : ) l l f  l l L 1  p .  We have 

hence 

Proof of Theorem 4. It suffices to prove that PI''." is complete with respect to 
the norm / /  / I ; , , .  The rest will follow from Banach's theorem. 
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Let { f , , )  be a Cauchy sequence for 1 1  I;,,. Hence it is aCauchy sequence in L ' . p  
and as follows from Lemma 2, { f ,  - ( f , ,  is a Cauchy sequence in 117'4'. Denote 
its limit by f .  Now since / I  1 1 "  is continuous on 1 l i l . p  we get that { f,, - ( f , , ) , y )  
(as well as { f , ) )  is a Cauchy sequence in ( 1  I I * .  Hence the sequence { (  f , , j x )  is 
convergent to a certain constant C .  Now it is evident that f,, - f  + (' E II".'' in 

I 1  l l T , T l .  
We know that I /  / ( L l , p  is only a seminorm, but evidently it induces the norm on 

a factorspace k ' +  = ~'J'/{constant funct.). The following result is in the spirit 
of [29, Th.1.1.131. 

COROLLARY 2. L ' . P  with (1 norm induced from L '  " is a Banuch space. 
Proof. Let { [  f , ,]}  be a Cauchy sequence in L'J',  where f ,  E L'%%S a represen- 

tative of the class [ f , , ]  E k's7' such that ly f ,  d p  = 0. Now the corollary follows, 
because according to Lemma 2, { f , , )  is Cauchy sequence in  II"~". 

4. Approximation 

In this section we prove a theorem in the spirit of [27] about the density of Lipschitz 
functions in Il-'l"(.ri, d .  p ) .  

THEOREM 5. I f f  E IT~ ' .~( IY,  d , p )  where 1 < p < rn then to e v e n  : > 0 there 
exists (1 Lipschitz function h such that 

Remarks. This type of approximation of Sobolev functions, both in norm and in 
the 'Lusin's sense' (by an analogy with Lusin's theorem) has already been obtained 
by Liu 1271 (compare with [8, Th.131, [37]). 

In fact, Liu has proved a stronger result, generalizing a theorem of Calderdn 
and Zygmund 18, Th. 131. He got an approximation in I l ' 7 y 1 ~ p  by ('In functions. 
However, the above result (Theorem 5) is relevant for many applications in P.D.E. 
and Variational Calculus (see, e.g. [ l ] ,  [14], [17], [I 81, 1261, [4], [28]). 

The theorem of Liu has been extended in [30], [38], [39], [5], [6]. 

Proof. Let kC,\ = {:z: 1 I f ( s ) l  6 X and g ( . c )  6 A)  where is taken from the 
A - - x  

definition of 1 1  f l l l , l , , .  Since f :  g E LQhen X P p ( l Y  \ E,\) - 0. Function f l E ,  is 
Lipschitz with the constant 2X. We can extend f l E ,  to the Lipschitz function 7 on 

with the same constant (see, e.g. [33, Th. 5.11, [12, Sec. 2.10.41). Now we can 
slightly modify this extension by putting 
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Evidently, f \ is Lipschitz with the same constant 2X, f,\ l E ,  = f l E ,  and I f A  fxl 6 A. 
Moreover. 

x --+ r x ,  

It suffices to prove that f x  --- f in I.l7'J'. We have 

Now the 'gradient' estimations. Let 

for .r E E x ,  
.(I\ = {:(:1+3X f o r r  t S\E,\. 

One can directly check that 

A-00 Now the theorem follows since evidently I l y x l l L p  -+ 0. 

5. Imbedding Theorems 

In this section we denote by C (C', C, C1, C2, . . . ) a general constant which 
depends only on p,  s and b (.s and b are introduced below) and hence is independent 
of .Y, d and / I .  The constant C can change even in the same proof. 

The classical imbedding theorems depend on the dimension, so we have to 
introduce the condition describing the 'dimension' in the general metric context. 

DEFINITION. We say that the space (X, d ,  p )  is s-regular (s > 0)  with respect t o p  
if p(S) < x, diam Ay < oc and there exists a constant b such that for all z E X 
and all r < diam -Y 

p(R(.c.  r ) )  b . r S .  

We say that the metric space is s-regular if it is s-regular with respect to Hausdorff's 
measure HS. 

The very important case is when we deal with X being a subset of Rn. We say that 
a bounded set X C 2" is strictly s-regular if there exists a positive Borel measure 
/ L  such that 



for all z E X and all r < diam X. (This is a minor modification of the definition of 
s-sets given in [25]). It is not difficult to prove (see [25]) that in the case of strictly 
s-regular sets we can take as a canonical measure p the Hausdorff measure I f s .  

Many natural fractal sets are s-regular. For example, the standard ternary Cantor 
set is log3 2 -regular. It is also possible to construct fractal sets which are s-regular 
for some integer s ,  and purely unrectifiable (see [33], [31] or [12] for definition); an 
example of planar Cantor set (Sierpinski's type gasket) which is strictly I-regular, 
but purely unrectifiable, can be found in [31, p. 341. 

Many important domains and their boundaries which are used in the theory of 
Sobolev spaces are strictly regular (see [25] for details). 

The structure of strictly s-regular sets is very rich and it inherits many properties 
from the Euclidean space, therefore it was possible to define Hardy and Besov type 
spaces on such sets, as was done in [25] and in the anterior papers of the same 
authors. However, we want to emphasize that our approach is independent, of a 
different nature and much more general. 

THEOREM 6. Let f E w'>"x, d ,  p )  where (S, d, p )  is s-regular: 

1. Ifp < s then f E 12'' (p)  where p* = $. Moreover 

llf IILP* < c( (d iamx) - l l l f  llLP + Ilf llLl>P) 

and hence 

Ilf - ~ x I I L P *  < c ' l l f 1 1 ~ 1 , P .  

2. Ifp = s then there exist constants C1 and C2 such that 

dp < C2. 
diam X 1 1  f l l L ~ , s ( p )  

3. Ifp > s then 

and hence 

Remarks. ( 1 )  generalizes the classical Sobolev imbedding theorem. In the 
Euclidean case (2) is just the inequality of John and Nirenberg (see [24], [34]) 
applied to W ' l n ( Q n )  C BMO. (3) In the Euclidean case this inequality leads to 
Holder continuity. It is not difficult to add some conditions on (X, d ,  p )  which will 
lead to continuity or even Holder continuity o f f  in the metric case. 

Proof. Let g 2 0 be a function as in the definition of I I f  1 l L l j p ,  such that I lg 1 1  Lp E 

1 1  f l l L l  (writting u % v we mean that C-'v < u < Cv for some general constant 
C) .  
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Let Ek = {.c / g(x) < 2"). k E 2. We have 

Let (1,: = SUPEk I f  1 .  We will estimate ak in terms of uk- 1. Let x E E k .  If we take 

the ball U(x, r )  with the radius r = ~- ' / " /L ( .Y  \ Ek-l) 'IS then, by the s-regularity 
property, p(B(x, r ) )  3 p(X \ Ek-  0, hence there exists T E B(x, r )  n Ek-  I .  Now, 
bearing in mind that f l E ,  is Lipschitz with constant 2k+1, we get 

Hence Chebyschev's inequality 

leads to 

It follows easily from this inequality that f  is respectively p*, exponentially, or 1,"' 
integrable, but we want to obtain precise estimates, so more work is required. 

We can assume that g > 0 everywhere (for if not it suffices to replace g by 
g  + 1 1 g 1 1 ~ ~ ~ ;  after this substitution the condition IlgllLp = 1 1  f  1 1  L l , p  still holds). 

Let bk = infg, ( f  1 .  Evidently bk < 1 1  f  l l L p p ( ~ k ) - l / ~ .  Since y > 0 everywhere, 
then there exists ko such that p(Ek l I - l )  < p ( X ) / 2  and p (Ek0 )  2 p ( X ) / 2 ,  SO 

/'(-Ti \ Ek-o - I )  > p ( S ) / 2 .  By Chebyschev's inequality we have 

hence 

Since f  l E ,  is Lipschitz with the constant 2"' then ak < bk + 2"+' diam,X-. 
Hence 

Case p < s: It follows from (5) and monotonicity of nk that 



Hence 

Since by s-regularity P ( - ~ )  >, b(diam,X)", then it follows easily from (S), (7) and 
(4) that 

The inequality for 1 1  f - fxIILP* follows easily from that for 1 1  f \ I L p +  and from 
Lemma 2. 

Case 11 = s:  By the rescaling argument we can assume that p(-Y) = 1 and 
diam .Y = 1.  Now it suffices to prove that Jx exp(C1 If 1) d p  < C2, where f  E l/t7'>' 
1s such that Jx f d p  = 0, 1 1  f l l L 1  . = 1 .  It follows from (5) that ai, 6 ?k + (10 for 
k >, 0 (because IIgIILs z 1).  Let C1 be a constant such that e x p ( C I C )  = 2". We 
have 

Hence it suffices to prove that a0 is bounded by an universal constant (which 
depends on s and b only). 

If ko 3 0 then as it follows from (7) and Lemma 2 

(10 < (Lk,, < C'. 

If ko < 0 then i t  follows from the definition of ko that p (EO)  2 p(Eko )  >, 
11 j -Y ) /2  = 112, hence 

Case P > s: We can assume that Jly f dp  = 0. It follows from (5) and (6) 
that 
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for all k E Z .  Now by (7), Lemma 2 and s-regularity we have 

This implies the first inequality. The second inequality follows from the first one 
and from the observation that 

Evidently the classisal Sobolev imbedding theorem is a direct consequence of 
Theorem 6. Now we apply this theorem to the case of weighted Sobolev spaces 
(with Muckenhoupt weights) and obtain the imbedding theorom of Fabes-Kenig- 
Serapioni [ l  l ]  (see also [9], [23]). 

COROLLARY 3. Ifw E A, (1 < 11 < m) then there exists 6 > 0 such that for 
1 < k < n / ( n  - 1 j + 6 the following inequality 

I holds for all 11 E Cm(BR),  where u ( E )  = lE w dx and u , , ~  = JBR 11w dx. 

Moreover; if 1~ E C r ( R R  ) then the above inequality holds with I  ~ ( x )  - u , , ~ ~ I  kTJ  

replaced by I v (  x )  1  k p .  The constant C' depends on w, n, p and 5. 

Remark. See [34, Chapter 91 or [13, Chapter 41 for definition and basic properties 
of the Muckenhoupt weights A,. 

Proof. Since by the Muckenhoupt theorem the maximal operator is bounded in 
Lp(wj (see 134, Th. 4.1, p. 2331 or [13, Th. 2.8, p. 400]), the weighted Sobolev 
space I V ' J ' O ~  a ball BR with respect to the weight iu. is just the Sobolev space 
in the sense of Section 3. It follows from the open end property (see [13, Th. 
2.6, p. 3991 or [34]) that there exists E > 0 such that iu. E A,-,. Now the strong 
doubling condition (see [34, Th. 2.4(iv), p. 2261 or [13, Th. 2.9, p. 4001) implies 
that if RR = B ( 0 , l )  and w(B(0 , l ) )  = 1 ,  then the ball with measure w(xjdx is 
~ z ( p  - E)-regular, with constant 'b '  depending on A,-, constant of w only. Hence 
the inequality (9) follows in this special case from Theorem 6. Note that inequality 
(9) is invariant under multiplying w by a constant, hence it holds in BR = B(0, 1 )  
without assumption that w ( B ( 0 , l ) )  = 1. The inequality for an arbitrary R follows 
from the rescaling argument (since wR(x) = u(x /  R )  is also a A,-, weight with 
the same A,-, constant). Finally, the inequality for u E C r  follows from Theorem 
6, because such 71 satisfies the PoincarC type inequality. 
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Note also that we can apply the other cases of Theorem 6 and extend Corollary 3. 
Since it is evident how to state the result we will not go into derails. 

6. Final Remarks 

One can extend the above theory to the case of an unbounded metric space. Since 
the constant in the Sobolev inequality (Theorem 6.1) does not depend on diam X 
and p i x ) ,  then this inequality extends to the case of an unbounded metric space. 

Many domains R c IPsTL can be regarded as metric spaces, with the geodesic 
or related metric. Hence one can use the above method to obtain the (global) 
imbedding theorems in domains. 

Recently many papers deal with the Sobolev mappings from a domain fl C IRn 
into a compact manifold or with the Sobolev mappings between two compact 
manifolds (see, e.g. [3], [4], [14], [17], [IS], [19], [21], [32], [36] and references 
in these papers; that list is very far from being complete). The definition which is 
usually employed depends on the imbedding of the image-manifold. However, it 
is possible to define the space of Sobolev mappings between two metric spaces. 
Namely, let ( X ,  d ,  p )  be as in the definition of IV'J'(X, d, p )  and let (I.', p )  be a 
metric space. We say that f 6 w'J'((x. Y )  if and only if p o f 6 T / ~ ~ ' ~ P ( x ,  d ,  p )  
for all p E Lip ( Y ) .  If .Ti and Y are two compact manifolds then it is not difficult 
to prove that the space w'J'(x, I/) coincides with that from the cited papers (see 
[17] or [ 181 for details). 
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