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POINTWISE HARDY INEQUALITIES
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Abstract. If Ω ⊂ Rn is an open set with the sufficiently regular boundary,
then the Hardy inequality

∫
Ω
|u|p%−p ≤ C

∫
Ω
|∇u|p holds for u ∈ C∞0 (Ω) and

1 < p < ∞, where %(x) = dist(x, ∂Ω). The main result of the paper is a
pointwise inequality |u| ≤ %M2%|∇u|, where on the right hand side there is a
kind of maximal function. The pointwise inequality combined with the Hardy–
Littlewood maximal theorem implies the Hardy inequality. This generalizes
some recent results of Lewis and Wannebo.

1. Introduction

The classical Hardy inequality reads as follows∫ ∞

0

|u(x)|px−p+a dx ≤
(

p

p− 1− a

)p ∫ ∞

0

|u′(x)|pxa dx,

where 1 < p < ∞, a < p − 1, u is absolutely continuous on [0,∞), and u(0) = 0.
It seems that the first to generalize this inequality to domains in Rn was Nečas
[14] (cf. [10, 8.8]), who proved that if Ω is a bounded domain with the Lipschitz
boundary, 1 < p < ∞ and a < p− 1, then for u ∈ C∞

0 (Ω) the inequality∫
Ω

|u(x)|p%(x)−p+a dx ≤ C

∫
Ω

|∇u(x)|p%(x)a dx(1)

holds, with %(x) = dist(x, ∂Ω). This inequality was generalized later by Kufner,
[10, Theorem 8.4], to domains with Hölder boundary, and then by Wannebo [18],
to domains with generalized Hölder condition.

There is a rich literature concerning one dimensional variants of the Hardy in-
equality as well as the multidimensional variants, where one assumes a kind of
regularity for the boundary like Lipschitz or Hölder type condition. We refer the
reader to books by Opic and Kufner [15], Maz’ya [12], the paper by Wannebo [18],
and references therein.

However, it is possible to obtain a far reaching generalization of some of these
results by assuming a much weaker condition about the boundary. Instead of a
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regularity condition (like, e.g., Hölder continuity), it suffices to assume that the
complement Ωc = Rn \ Ω is “fat” enough in the sense of capacity.

We need to recall the definition of capacity. Let 1 < p < ∞ and let Ω ⊂ Rn be
an open set. For a compact set K ⊂ Ω the capacity is defined as

C1,p(K, Ω) = inf
{∫

Ω

|∇u(x)|p dx : u ∈ C∞
0 (Ω), u ≥ 1 on K

}
.

The definition of the capacity can be extended to an arbitrary set, but, we will
need the capacity only for compact sets. For basic properties of the capacity; see
[6, Chapter 2].

We say that a closed set E ⊂ Rn is locally uniformly p-thick, 1 < p < ∞, if there
exist b > 0 and 0 < r0 ≤ ∞ such that

C1,p(B(x, r) ∩ E, B(x, 2r)) ≥ b C1,p(B(x, r), B(x, 2r)),(2)

for x ∈ E and 0 < r < r0. If r0 = ∞, then we call E uniformly p-thick. Our
definition slightly differs from that formulated in [6, p. 127], [8]; their definition of
uniformly p-thick set coincides with our definition of locally uniformly p-thick set.

Note that by a scaling argument we obtain

C1,p(B(x, r), B(x, 2r)) = C(n, p)rn−p.

Independently Lewis [11] and Wannebo [17], proved that the Hardy inequality
(1) holds in a proper open subset of Rn provided its complement is uniformly p-
thick (Lewis: a = 0; Wannebo: a ≥ 0, small). For a more precise statement, see
[11], [17] and also Section 3. Their results extend earlier works of Ancona [2], [3].
The result is pretty sharp: Ancona [3], for n = p = 2, and, in the general case,
Lewis [11, Theorem 3], proved that for p = n, the condition (2) is also necessary
for the validity of the Hardy inequality. However, in the case p < n, the condition
(2) fails to be necessary; see the remark following Theorem 2 in [11].

The class of open sets whose complement is uniformly p-thick is quite large. Here
are some examples.

If p > n, then each nonempty closed set is locally uniformly p-thick.
Any closed, arc-wise connected set (containing at least two points) is locally

uniformly p-thick for p > n−1. In particular the complement of any proper simply
connected subdomain of R2 is uniformly p-thick for any p > 1.

If a closed set E ⊂ Rn satisfies the condition |B(x, r) ∩ E| ≥ C|B(x, r)| for all
x ∈ E and all r > 0, then E is uniformly p-thick for any p > 1.

We want to point out the importance of the p-thickness condition in the theory
of boundary regularity of A-harmonic functions (i.e., solutions to the A-harmonic
equation div A(x,∇u) = 0; see [6]). Condition (2) is stronger than Wiener’s crite-
rion for the continuity up to the boundary of A-harmonic functions (see [6, 6.16],
[9]). This condition leads not only to the continuity up to the boundary (like the
Wiener criterion does), but to the Hölder continuity; see [6, 6.41].

We also want to point out that under condition (2), Kilpeläinen and Koskela [8]
proved global higher integrability of the gradients of A-harmonic functions.

Uniform thickness condition appeared recently in many other papers in the area
of mathematical analysis; see e.g. [7], [16].

Now we give a rough statement of the main result of the paper (Theorem 2,
Theorem 1). We prove that given an open and proper subset Ω ⊂ Rn with the
uniformly p-thick complement, there exists q with 1 < q < p such that the following
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pointwise inequality holds:

|u(x)|%(x)−1 ≤ CM2%(x),q|∇u|(x),(3)

for u ∈ C∞
0 (Ω), where

MR,qg(x) = sup
r≤R

(
1

|B(x, r)|
∫

B(x,r)

|g(z)|q dz

)1/q

is a maximal operator.
Now taking the Lp norm on both sides of this inequality and applying the Hardy–

Littlewood maximal theorem, we deduce immediately the Hardy inequality (1) for
a = 0 and then that for small a > 0. As we mentioned before, under the same
assumptions, Hardy inequality (1) was obtained by Lewis and Wannebo. We will
manage, however, to obtain a “local version near the boundary” of the Hardy
inequality (8) that does not follow from the results of Lewis and Wannebo.

It is reasonable to call (3) pointwise Hardy inequality.

Notation. The Lebesgue measure of the set E will be denoted by |E|, and the
average value of a function u over a set E by uE =

∫
Eu(x) dx = |E|−1

∫
E u(x) dx.

We will also use the symbols %(x) and MR,qg in the sense defined above. If R = ∞,
then we simply write Mqg; if q = 1, then we write MRg. By Ω we will always denote
an open subset of Rn and by Ωc = Rn \ Ω its complement. Symbols B, B(x, r),
B(r) etc. will be reserved to denote a ball. By 2B we will denote the ball concentric
with B and with radius twice that of B. By χE we will denote the characteristic
function of the set E. Finally, by C we denote a general positive constant; it can
change its value even in a single line. Writing C = C(n, p) we indicate that the
constant C depends on n and p only.

2. Elementary case

The main result of this paper (Theorem 2) involves in the statement the notion
of capacity, so, first, for the sake of simplicity, we will prove a particular case of this
theorem (Proposition 1), which is much easier to formulate and to prove. It does
not make use of the notion of capacity, neither in the statement nor in the proof.

Proposition 1. Let Ω be an arbitrary open and proper subset of Rn. For every
x ∈ Ω, choose x ∈ ∂Ω satisfying |x − x| = %(x). Then for any q > n, u ∈ C∞

0 (Ω)
and any x ∈ Ω,

|u(x)| ≤ C(n, q)%(x)M2%(x),q

(|∇u|χB(x,%(x))

)
(x).(4)

If we assume, in addition, that there exist constants b > 0 and r0 ∈ (0,∞] such
that for every z ∈ ∂Ω and 0 < r < r0,

|B(z, r) ∩Ωc| ≥ b|B(z, r)|,(5)

then we can prove a stronger inequality,

|u(x)| ≤ C(n, b)%(x)M2%(x)

(|∇u|χB(x,%(x))

)
(x)(6)

for all x ∈ Ω with %(x) < r0.

In particular, inequalities (4) and (6) imply the inequality of the form (3).
The “pointwise Hardy inequalities” stated in the above proposition, together

with the Hardy–Littlewood maximal theorem lead to the generalization of the in-
tegral Hardy inequality (1).
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Theorem 1. Let r0 ∈ (0,∞], 1 ≤ q < ∞ and let Ω be an open and proper subset
of Rn. For every x ∈ Ω choose x ∈ ∂Ω satisfying |x− x| = %(x). If the inequality

|u(x)| ≤ C1%(x)M2%(x),q

(|∇u|χB(x,%(x))

)
(x)(7)

holds for any u ∈ C∞
0 (Ω) and any x ∈ Ω with %(x) < r0, then for every p > q there

exists a0 = a0(C1, n, p, q) > 0 such that for 0 < t ≤ r0 and 0 ≤ a < a0,∫
Ωt

|u(x)|p%(x)−p+a dx ≤ C(C1, p, q, n, a0)
∫

Ωt

|∇u(x)|p%(x)a dx,(8)

where Ωt = {x ∈ Ω : %(x) < t}. In particular if r0 = ∞, the inequality (8) holds
with Ωt replaced by Ω.

I do not know if it is possible to obtain inequality (8) directly from the Hardy
inequality (1).

Note that in particular, Proposition 1 and Theorem 1 imply that for p > n,
inequality (8) holds in any domain with 0 < t ≤ ∞. The case Ωt = Ω is due to
Ancona [2].

Proof of Proposition 1. Let Ω ⊂ Rn be an arbitrary open subset and u ∈ C∞
0 (Ω).

Fix x ∈ Ω and denote B = B(x, %(x)). Then for any y ∈ B ∩ Ωc we have (see [4,
Lemma 7.16])

|u(x)| = |u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ C(n)

(∫
B

|∇u(z)|
|x− z|n−1

dz +
∫

B

|∇u(z)|
|y − z|n−1

dz

)
= ♦.

Assuming q > n and applying Hölder’s inequality we obtain

♦ ≤ C(n, q)%(x)1−n/q

(∫
B

|∇u(z)|q dz

)1/q

,

and hence (4) follows. (In fact we repeated an argument from the proof of the
Sobolev imbedding W 1,q(B) ⊂ C0,1−n/q(B).)

Now assume the condition (5). If we prove the inequality

inf
y∈Ωc∩B

∫
B

|∇u(z)|
|y − z|n−1

dz ≤ C(n, b)
∫

B

|∇u(z)|
|x− z|n−1

dz,(9)

then an application of the following well known inequality (see [19, Lemma 2.8.3]),∫
B(r)

|g(z)|
|x− z|n−1

dz ≤ C(n)rM2rg(x),(10)

where B(r) is any ball containing x, will complete the proof.
Thus it remains to prove (9). To this end it suffices to show that∫

Ωc∩B

∫
B

|∇u(z)|
|y − z|n−1

dz dy ≤ C(n, b)
∫

B

|∇u(z)|
|x− z|n−1

dz.

This, however, follows immediately by changing the order of integration on the LHS
and by employing condition (5) together with the elementary inequality (see [19,
Lemma 3.11.3]), ∫

B(x,r)

|y − z|1−n dy ≤ C(n)|x − z|1−n,

which holds for all x, z ∈ Rn and all r > 0. The proof is complete.
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Proof of Theorem 1. Fix u ∈ C∞
0 (Ω) and 0 < t ≤ r0. Set g = |∇u|χΩt . Then

according to (7) the inequality

|u(x)| ≤ C1%(x)Mqg(x)

holds for all x ∈ Ωt. Since q < p, the Hardy–Littlewood maximal theorem implies

‖Mqg‖Lp(Rn) ≤ C(n, p/q)‖g‖Lp(Rn),

and hence the inequality (8) follows with a = 0.
Now we employ one trick previously used in [17, p. 93] and [5, Lemma 6] to

deduce the inequality (8) with a small, positive a from the case a = 0.
Fix ε > 0 and set v = |u|%ε. Using the fact that the Lipschitz constant of % is

equal to 1 we obtain
|∇v| ≤ |∇u|%ε + ε%ε−1|u|.

Applying the inequality (8) with a = 0 to v we obtain∫
Ωt

|u(x)|p%(x)−p+pε dx ≤ C

(∫
Ωt

|∇u|p%pε + εp

∫
Ωt

|u|p%p(ε−1)

)
.

If Cεp < 1, then ∫
Ωt

|u|p%−p+pε dx ≤ C

1− Cεp

∫
Ωt

|∇u|p%pε dx.

This completes the proof.

3. General case

The main result of the paper reads as follows

Theorem 2. Let Ω ⊂ Rn be an open and proper subset. For every x ∈ Ω choose
x ∈ ∂Ω satisfying |x−x| = %(x). If the complement Ωc is locally uniformly p-thick,
r0 ∈ (0,∞], b > 0 are as in (2) and 1 < p < ∞, then there exists 1 < q < p such
that the inequality

|u(x)| ≤ C(n, p, q, b)%(x)M2%(x),q

(|∇u|χB(x,%(x))

)
(x)

holds for all u ∈ C∞
0 (Ω) and all x ∈ Ω with %(x) < r0.

This theorem combined with Theorem 1, leads to the Hardy inequality (8), that
in the case Ωt = Ω has previously been obtained by Lewis [11] and Wannebo [17].
Note, however, that if we assume local thickness only, then, in general, we cannot
prove the inequality (8) with Ωt = Ω.

Proof of Theorem 2. We need the following result due to Lewis [11, Theorem 1]
(cf. [8, Proposition 2.3]). Another proof of Lewis’ result was recently obtained by
Mikkonen [13, Theorem 8.2].

Proposition 2. Let 1 < p ≤ n. If a closed set E ⊂ Rn is locally uniformly p-thick
(r0 ∈ (0,∞], b are as in (2)), then there exists 1 < q < p (depending on n, p and b
only) such that E is locally uniformly q-thick (with the same r0).

It is well known that a Sobolev function vanishing on a subset of a positive
capacity has almost the same properties as a function which vanishes on a set of
positive Lebesgue measure (cf. [1, Theorem 8.2.1], [19, 4.5], [8, Lemma 3.1]). The
following proposition is a special case of the theorem of Hedberg [1, Theorem 8.2.1].
For the sake of completness we give a proof.
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Proposition 3. Let K ⊂ B be a compact set with C1,q(K, 2B) > 0. Then for
every u ∈ C∞(B) with u|K = 0 and every x ∈ B,

|u(x)| ≤ C(n)
∫

B

|∇u(z)|
|x− z|n−1

dz + C(n, q)
(

1
C1,q(K, 2B)

∫
B

|∇u(z)|q dz

)1/q

.

Proof. We can assume that ‖∇u‖Lq(B) < ∞, otherwise the inequality is trivial.
If uB = 0, then (see [4, Lemma 7.16])

|u(x)| = |u(x)− uB| ≤ C(n)
∫

B

|∇u(z)|
|x− z|n−1

dz,

and the proposition follows.
Assume now that uB 6= 0. By the homogeneity we can assume uB = 1. Reflecting

the function uB−u across the boundary and then multiplying by a cutoff function,
we obtain v ∈ W 1,q

0 (2B) such that v = 1 on K and∫
2B

|∇v|q dx ≤ C(n, q)
∫

B

|∇u|q dx.(11)

Since v is a “test function” for the capacity, we readily get the inequality

1 ≤
(

1
C1,q(K, 2B)

∫
2B

|∇v|q dx

)1/q

.

Now for any x ∈ B we have

|u(x)| ≤ |u(x)− uB|+ |uB| = |u(x)− uB|+ 1

≤ C(n)
∫

B

|∇u(z)|
|x− z|n−1

+
(

1
C1,q(K, 2B)

∫
2B

|∇v|q dx

)1/q

.

The proposition follows directly by an application of the inequality (11).
Now we can finish the proof of the theorem. Fix x ∈ Ω with %(x) < r0, set

B = B(x, %(x)) and K = Ωc ∩ B. By the assumption and Proposition 2, there
exists 1 < q < p such that

C1,q(K, 2B) ≥ b C%(x)n−q,

and hence a direct application of Proposition 3, inequality (10) and Hölder’s in-
equality completes the proof.
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