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We prove that functions with bounded deformation v :  — IR", @ Cc R",
i.e., such mappings that the symmetric part of the gradient 1(Vu + (Vu)T) is a
measure, are approximately differentiable a.e. Then we generalize the result to
a more general class of functions.
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1. Introduction

In the paper we deal with the space BD(§) of functions with bounded de-
formation. Let us recall the definition.

To a vector function u = (uq,...,u,) : @ — IR™, where  C IR" is an open
set, we associate the deformation tensor ¢ defined as a symmetric part of the
gradient of u, i.e., & = }(Vu + (Vu)T), or in terms of components,

1 (Ju;  Ou
&y = 3 a— + —].
Z Z; 01?,‘
BD(Q) is the space of all vector functions u € L1()" such that ¢;; (defined in
the distributional sense) are measures with finite total variation. By a measure
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we will always mean a signed Borel measure g on an open set @ C IR" i.e,,
= piy — pi—, where py and pu_ are positive Borel measures on 2, supported
on disjoint sets. As usual, |u| = py + - denotes the measure of variation and
llpell = 11l(Q) the total variation of . We also use notation X ()™ for the space
of vector functions u = (uy,...,uar), v; € X(Q), where X(Q) is a given function
space.

For the basic properties of BD(Q), see [24]. Note that if v € BD(Q) and
@ € C§°(), then up € BD(IR™).

The class of functions with bounded deformation BD(§2) was introduced
by Matthies, Strang and Christiansen [16] in connection with the variational
problems of perfect plasticity, and investigated by Temam and Strang, [24].

For the recent development of the theory of BD() functions and its appli-
cations to the calculus of variations see, e.g. [24], [25], [15], [3], (1], [4], [2].

It is well known that the class BD(f) is larger than the class of vector
functions with bounded variation BV(Q), see [16], [15]. This fact follows from
the result of Ornstein, [20].

Kohn, [15], was first to prove that many fine properties (related to geometric
measure theory) of BD() functions are similar to those of BV(Q) functions.

Since the space BD(Q) is strictly larger than BV(Q)", there are functions
u € BD(Q) such for certain i, j, the distributional derivative du;/dz; is not a
measure. However, it was conjectured few years ago that functions with bounded
deformation are approximately differentiable almost everywhere (see Section 3
for the definition of approximate differentiability). The only known result in
this direction was the one due to Bellettini, Coscia and Dal Maso, [4, Theorem
8.2] stating that the function with the bounded deformation has approximate
symmetric differential a.e. This result was, however, easy, since by the defi-
nition we know “a lot” about symmetric part of the gradient 3(Vu + (Vu)T).
The problem is to investigate the properties of remaining, skew-symmetric part

L(Vu— (Vu)T).

In the paper we give the affirmative answer to the above conjecture. While the
paper was in preparation, Ambrosio, Coscia and Dal Maso, [2], obtained another
proof of this conjecture. In fact. we prove a more general result. Namely, instead
of assuming that Vu+(Vu)T is a mcasure, we assume that { P; u}™, are measures,
where P; are certain partial differential operators with constant coeflicients, sce
Theorem 5 and Corollary 1.

Notation. Symbol W™?(Q) will denote the usual Sobolev space of functions
whose distributional derivatives of order less then or equal to m, belong to LP(Q2).

If ' C Qis a Borel set then the measure u| F'is defined by (| F')(A) =
#(ANF). The Lebesgue measure of A will be simply denoted by |A].

If ug,uw € L1 (IR™) then we say that u; converges to u in the sense of distri-
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butions if for every ¢ € C§°(IR™)

/ ur(2)¥(z) dz — / u(z)y(z) dz.
R™ R"
We denote such a convergence by writing uy — u in D'.

By mollifier we mean a function ¢, defined as ¢.(z) = e "p(z/e), where
@ € C(IR™), is a fixed function with ¢ > 0 and fg» ¢(z)dz = 1. The symbol
e will always stand for a mollifier. By (A, B) we will denote the scalar product
of vectors in IR™. In the paper C will denote a general constant which may
change even in a single string of estimates. We will write u = v to express that
there are two positive constants C and Cy such that Ciu < v < Cou .

Acknowledgements. The author wishes to thank Giovanni Alberti for
bringing the problem considered here to his attention.

2. Integral representation

In this section we recall Smith integral representation formula, [22], for Cg°(IR™)
functions and we show that this formula holds also for BD(IR™) functions with
compact support. First, we start with an elementary case of Smith’s formula,
which is, however, sufficient for the applications to BD functions.

Let u = (ug,ug,...,uy) € C&(IR*)™. For k = 1,2,...,n, we have the well
known integral formula, see {17, Theorem 1.1.10/2],

2 Ozuk

NWn 1 ¢{Tien Ox;0z;

Uy =

* Nij, (1)

where N;;(2) = x;x;/|z|" and w, denotes volume of the unit ball. Note that

ac‘jk asi]' 05;;,’ i)?uk

dx;  Oxx a—r] -~ Qx0x;°

Placing this identity in (1) and integrating by parts we obtain

2 0[\',' 01\’,’ ((‘)1\',‘ j
Uk = Z <5Jk*7ﬂ%_5ij*ﬁ+fkg* ]>. (

nWn i Ten Jx;

V)
—

Thus we obtained an explicit integral formula to represent u in terms of
{ei;}. Note that the assumption about the compactness of the supprot of u was
essential, since (2) does not hold for a general u € C'™ as ¢;; vanishes on a certain
class of polynomials of order 1. Now we show that (2) holds also for BD(IR™)
functions with compact support.

THEOREM 1 Ifu € BD(IR™) has compact support, then formula (2) holds a.e.

Proof. Since |0K;;/0xk| < Cla|'~", the theorem follows immediately from
Lemma 1 and Lemma 2 below.
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LEMMA 1 Let K € LL (IR"). If u is a signed Borel measure on IR™ with compact
support and finite total variation, then N x p € L} (IR™).
LEMMA 2 Assume that |K(z)| < C|z|*™™ with certain constants C > 0 and
a > 0. Let i be a signed Borel measure on IR™ with compact support and finite

total variation. If pe = pu* @, then K * . — KN *p in D'.

Lemma 1 follows from Fubini’s theorem. According to Lemma 1, both K %y,
and Ny are locally integrable functions, so we can ask about the convergence in
the sense of distributions. The proof of Lemma 2 follows from the Fubini theorem
and from the Dominated Convergence Theorem. The growth condition for the
kernel I in Lemma 2 leads to the uniform estimate, independent of 0 < ¢ <1,

(KT *@e)(2) S Oz + 1),

see [6, Lemma 2], which allows us to apply Dominated Convergence Theorem.
We leave the details to the reader. The proof of Theorem 1 is complete.

Formula (2) is strictly related to the so called Korn’s inequality, see [11], [22],
[19], [5], [21, Theorem 12.20], [14] and references therein.

Now we state a more general version of Smith’s representation formula. For
the simplicity sake we do not pursue to state the result in its most general form.

Let P; = (Pj1,...,Pjar), 7 = 1,..., N be linear homogeneous partial dif-
ferential operators of order m > 1, with constant coefficients, acting on vector

functions
M

u=(uy...,up) and Pju= Z Pjruy.

k=1
Homogeneity of order m means Pj, = 3 jaj=m ¢ D*. By p;r(€) we will denote
the characteristic polynomial of Pji. The following result is due to Smith, [22].

THEOREM 2 If for every € € C"\ {0}, the matriz {p;x(€)} has rank M, then
there exist K;; € C(IR™\ {0}), Kij(z) = |2|" " Kij(x/|2|) when z # 0, such
that for w = (uy,...,uar) € CF(IRMM, we have

N
U; = Z I\’,'J' * PJ‘U ((})
j=1

Formula (2) is a particular case of formula (3). Indeed

n
ei; = D Pjiaus.
k=1

where

1 7} )
Pijk =5 (%W + 5k-;$> :
= ) L

Thus M =n, N =n? and m = 1. Here ¢;; plays a role of P;. It is also easy to
check, that the rank of suitable matrix equals n.

Now the counterpart of Theorem 1 reads as follows.
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THEOREM 3 Assume that Pj, K;;, M, N and m are as in Theorem 2. Ifu €
LY(IR™)M has compact support and Pju, j = 1,..., N are measures with bounded
total variation, then formula (3) holds a.e.

Proof is that same as that for Theorem 1.

In many applications it is important to have integral representations in do-
mains, rather than those for compactly supported functions. For the extension of
Smith’s theorem to domains, see the paper of Kalamajska [13]. It is also possible
to extend Theorem 3 to domains, but we will not go into details.

3. Approximate differentiability

Let u be a real valued function defined on a measurable subset £ C IR*. We
say that L = (Ly,..., Ly) is an approzrimate total differential (in short a.t.d. ) of
u at xo if for every € > 0 the set

A= {.T € E\ {0} : |u(2) = u(2o) = Lz — 20)| < 5}

|z — ol

has ¢ as a density point. If this is the case then z; is a density point of E and
L is uniquely determined.

We recall that * € IR" is a density point of a measurable set A C IR™ if
lim,—o|AN B(z,r)|/|B(x,r)| = 1.

When we say that u is differentiable in a point 29 we will mean the classical
definition.

If a function w : I — IR has the following “Lusin type” property: for every
¢ > 0 there exists a locally Lipschitz function & : IR”® — IR such that |{z €
E : u(z) # h(z)}| < ¢, then u has a.t.d. almost everywhere in E. This is an
elementary consequence of the a.e. differentiability of Lipschitz functions (u has
a.t.d. in z if @ is a density point of the set {u = h} and & is differentiable at z).

Since every Lipschitz function can be extended from any subset of IR™ to R”
as a Lipschitz function, [10, 2.10.4], the above remark leads to the following

LEMMA 3 Let F C IR™ be a measurable subset and u,I : E — IR measurable

functions. If lu(z) — w(y)| < |e — y|({(z) + I(y)) a.e. in E, than u has a.t.d.
almost everywhere in E.

Remark. The inequality in the lemma holds a.e. in the following sense: there
is a set F' C E, |F| = 0 such that the inequality holds for all z,y € E'\ F.

The above mentioned Lusin type property is not only sufficient but also nec-
essary for a.e. existence of a.t.d. The necessity is a difficult part. This is due to

Whitney, [26].

THEOREM 4 Let I C IR™ be a measurable set and v : E — IR a measurable
function. Then the following two conditions are equivalent.
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1. w is approzimately totally differentiable a.e. in E.

2. For each € > 0 there exists a locally Lipschilz function h : IR”® — IR such
that |{z € E: u(z) # h(z)}]| <e.

We will not use this theorem in the sequel. For more striking result, see the
original paper of Whitney [26].

Now we can formulate the main result.

THEOREM 5 Assume that P; are operators of orderm > 1, as in Theorem 2 and
Q C IR™ is an open set. If u € WV Q)M has the property that distributional
derivatives Pju, j = 1,..., N are measures with bounded total variation, then all
the functions D*u for |a| = m — | have a.t.d. almost everywhere in 2.

Remark. The assumption v € WY (Q)M is superfluous. Indeed, if we
assume only that u € T'(IR*)M, then representation formula (3) which holds for
Cg° allows us to apply a version of Deny and Lions’ argument (cf. {13, Corollary
2], (24, Theorem 2.1], [9], {17, Theorem 1.1.2]). This implies that u which is a
priori a distribution, already belongs to W' (Q). We skip details because it
is standard and we will not use it in the sequel.

COROLLARY 1 u € BD(R) has a.t.d. almost everywhere.

Since Pj(pu) are measures for ¢ € C§°(2), Theorem 5 follows immediately
from Theorem 3, Lemma 7 and Theorem 6. Note that the fact u € W "1 (Q)V
is employed in the proof that Pj(xu) are measures.

4. Calderén, Marcinkiewicz and Zygmund

In this section we recall some definitions and results related to Calderén and
Zygmund’s theory of singular integrals.

Let u be a signed Borel measure on IR™ with finite total variation. We define
the maximal function of x as

_ o (B )
J\I/t(x)—rt;g B

The following lemma is well known.

LEMMA 4 If the measure p is as above then for everyt > 0
{z € R : Mpu(z) > ¢} < Ct7Y |l

The constant C' depends on n only.
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The proof when  is an absolutely continuous measure is given in [23, p. 5],
however, the same argument works in the general case (cf. [23, p. 77]).

LEMMA 5 If pt is as above then for everyt > 0, the measure p| {Mp < t} is
absolutely continuous.

Proof. We need to prove that for £ C {Mu < ¢} with |E| = 0 there is
[|(E) = 0. Fore > 0let £ C U2, B(ai,r;), where a; € E and ©2, | B(zi, )| <
¢. Then

l(E) <3 |ul(Blai,ri)) < D tB(ai )| < te.
i=1 i=1

The lemma follows by letting ¢ — 0.
For every t > 0 we define a Calderén-Zygmund decomposition of u as follows.

Let B, = {Mu < t}. The set Q, = IR*\ £, is open. Let Q, = U2, Q:
be a decomposition into Whitney cubes (i.e., @Q; are closed cubes with pairwise
disjoint interiors and such that diam@Q; is comparable to dist (Q;, E:), see [23,
p. 16] for more details). By Calderén-Zygmund decomposition of u we mean
i =g+ pb, where

g=nlE+3 <“(Q,')) Xooi K =Dou
i=1 lQll i=1

and pf = (0 — p(Q)/1QDLQi, iey pi(A) = (AN Qi) — |AN Qilp(Qi)/Qil-

By lemma 5, u| E, and hence ¢ are identified with integrable functions. The

Calderén-Zygmund decomposition depends on ¢, but for the simplicity of no-

tation we do not put ¢t as a subscript. The letters “g” and “b” correspond to

“good” and “bad” part of y. It is well known that

L) < Gt

2. u(Q)/1Qil £ Ct.

The constants C depend on n only. Inequality 1. is a reformulation of
Lemma 4. Inequality 2. follows from the fact that diam@; is comparable to
dist (Q:, £;) and from the definition of E,, sce [23, p. 19] for details. It follows
from “differentiation theorem”, [27, 1.3.9], that |p| F.| <'t, (u|_E¢ is a function)
and hence |g| < Ct. Thusg € L' N L.

If F C IR™ is a closed set then we define Marcinkiewicz’s integral associated
to F as

6(z
I.(l‘)=/”#dlﬂ

where 6(z) = dist (z, F'). Obviously I.(z) = co for # € IR* \ F. The following
result is well known, see [23. pp. 14-15].
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LEMMA 6 Let F C IR be a closed set such that |R™\ F| < co. Then I.(z) < o0
for almost everyx € F. Moreover

/FI.(I)d:c < C|R"\ F).
The constant C depends on n only.

This lemma follows easily from Fubini’s theorem.

5. Differentiability properties of convolution

LEMMA 7 Let N € C>(IR™\ {0}), N(a) = |a|" K (a/|z|), m > 1 and let p be
a signed Borel measure on IR™ with compact support and finite total variation.
Then K * p € W VH(IR™) and

loc
D*(KN x p) = (DK) * p,

for ol £m—1.

This is a classical formula for differentiation of distributions, combined with
Lemma 1. If m = 1, then Lemma T states only that K *pu € L} .

It is natural to ask what we can say about derivatives D*(K #* p) when
|a] = m. Assume for a moment that instead of i we have a function g € LP(IR"),
1 < p < oo (with compact support as well). The case of general measure y will
be treated later (Theorem 6).

If we try to compute the derivative in question, formally, using the formula
“D*(N*g) = (D*K)*g”, then we arrive into troubles: kernel D* K, |a| = m has
a nonintegrable singularity (of order n), so the formula makes no sense. Mikhlin
proved, however, that if we interpret the convolution with D*K as a singular
integral, then D*(N x ¢g) = (D*K) % g + cg with surprising appearance of the
term cg, where c is a constant (depending on A'). Roughly speaking, the reason
why cg appears is the following: in the definition of singular integral we cut the
kernel D* " near origin, this causes the appearance of § distribution and hence
that of the term cg.

Now the direct application of celebrated theorem of Calderén and Zygmund
on boundedness of singular integrals in L? readily establishes the following result

of Mikhlin, [18, Theorem 1.29].

< p < oo has compact

LEMMA 8 If K is as in Lemma 7 and g € LP(IR"), 1
€ LP(IR™) for |a| = m.

support, then K x g € W oP(IR™) and D*(K * g) € LP(

If we replace, however, g in Lemma 8 by g € L! or by a measure g, then
the distributional derivative D*(I\ * ut), |a| = m does not need to be a measure
(otherwise Theorem 1 would imply BD = BV'). We can only prove the existence
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of derivatives in the approximate sense. More precisely for every |a| = m—1, the
function D*( K * i) has a.t.d. almost everywhere. This is the main technical tool
in the proof of Theorem 5. Since, according to Lemma 7, D* (N xpu) = (D*K)*p,
DK (z) = |2|'"™"D>K(z/|x|), when |a| = m — 1, the problem reduces to the
case m = 1.

THEOREM 6 Let K € C°(IR*\{0}), K'(x) = |2|'"""K (z/|z|) when = # 0 and let
w be a signed Borel measure on IR™ with finite total variation. Then the function
K * pu has approzimate total differential almost everywhere.

Remark. We do not assume that the support of u is compact, however, for
our applications it would suffice to assume it.

This theorem is essentially due to Calderén and Zygmund, [8, Remark, p.
129]. Namely Calderén and Zygmund sketched the proof in the particular case
K(z) = |z|'~". The general case goes along the same line. There are, however,
two reasons for which we include all the details here. The first reason is that the
paper of Calderén and Zygmund contains a very short sketch only; the second
reason is that we realized that this result can be used to solve some questions
which arose in fields of calculus of variations where singular integrals did not
appear so far.

Proof of Theorem 6. Givent > 0, let u = g + p® be a Calderén-Zygmund
decomposition of x. We will use the notation from the Section 4. Note that
[IR*\ Ei| — 0 as t — oo, so it suffices to prove that I\ x u has a.t.d. almost
everywhere in [y, for every t > 0. We have K + u = K g + K * p*. Since
g€ L'NL>®, then g € L? for every 1 < p < oo, and hence K * g is differentiable
a.e. in IR™ as every WL? function for p > n is differentiable a.e., [7]. Thus it
remains to prove that the function K * u’ has a.t.d. almost everywhere in E;.
Let I. be the integral of Marcinkiewicz associated to F;. Since [. < co a.e.in F,
(Lemma 6), the desired property of I * y® follows immediately from Lemma 3
and the lemma below.

LEMMA 9 The inequality | K * pb(y) — K * p(2)] < Cly — x|(1.(2) + L.(y)) holds
for almost all z,y € I, with C depending on n only.

Remarks. 1) See the remark following Lemma 3. 2) Lemma 9 can be inter-
preted in terms of generalized Sobolev spaces introduced by the author in [12].
Namely the incquality of Lemma 9 implies K * p* € WUY(E,, |- |. ™). We will
not use this interpretation in the sequel.

Proof of Lemma 9. Note that
K% (y) = K % g (2)] € YOIK 5 pbly) = K x (a)]
1=1

a.e., so it remains to prove that

IK * p(y) — K % pb(2)] 6(z) ()
<C ———dz ————dz
s¢ /Q |z — z|n+1 de Q ly — zn+ d

ly — 2|
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fort:=1,2,... Fixz € IN.

By z' we will denote the center of the cube Q;. In what follows z and y
will always belong to E;. The heart of the matter is to estimate the expression
Q = K * p2(y) — K * i(z) which [ dedicate to my sweetheart Joanna. We need
to consider three cases.

Case 1: |z — y| < diamQ;; For z € Q;, there is a variable point w(z) € Ty
such that

0 = /(1\'(y~:)—1\'(.1-—2))@?(2)

/;gi(VI\'(w(z) —z),y—1x) dﬂ?(Z)
/.(VI\'(w(:) —2) = VK(z — %),y — 2) dpb(z)

1

In the last step we employed the fact [, dp® = 0. Now using the property
11(Q1) < CHIQM] we get

9] < Cly — «]|Qi| sup |VK (w(z) — z) = VI (x — 2%)].
<€Q,

(C depends on t.) For a certain point v(z) belonging to the segment joining «
with w(z) + 2' — =z

VK (w(z) = 2) = VK(x = 2)| < |V2RK(v(2) = ') Jw(z) + 2' — z — 2|
< Clr =27 Vdiam Q;.

Thus
diam Q;

- e < Cle =l [, ——;F;¢

The last inequality follows from the observation that §(z) = diam Q; for =z € Q;
and |z — | = |z — z| for z € Q,.

9] < Cla -y

Case 2: |x —y| > 107\ dist ({x,4).Q0);
|@|</ |K(y —z) — K(y — 2)| d|id|( +/ |K(z = z) — K(2a — 2)| d|pb| ().

We employed here the fact [, dp® = 0. Now for certain s(z) € zz%

|K(x—2) - Kz — =) SIVAI—<)M~ s
< Cla = s(z)]™"diam Q; < Clz — 2| *diam Q,.

We obtain a similar estimate with z replaced by y. Thus

diam Q;

, . d ;
9] < C(Iat~:’| Zz|n+1lQ|+ly ‘|| TTSHIQ |>

6() )

Now the estimates |v — =i, |y — z'| < C|z — y| lead to the desired inequality.

|a —

IN
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Case 3:_diain < Jz =yl < 107Udist ({,y},Q:); There exist points
Wz 2, Wy,; € zz* such that

9] = ’/ (K (y — K(y = 2))dub(z) - / (K(z —z) = K(x — 2%)) dub(2)
i Q:
= ‘/ (VEK(y —wy.),z — 2*) dpl(2) —/ (VR(z —w,.),z — 2*) dub(2)
Q‘ Ql
= l/ (VR (y — wy.) = VK (z — ws.), z — 2*) dul(2)
< Clo =270z — y|(diam Q)|Qi].
Hence
diam Q;
(915 Cle — yl 10 < Cle =yl | ~—7I,,+—1dz
The proof for Lemma 9 and hence that for Theorem 6 is complete.
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