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Abstract We prove that Lipschitz mappings are dense in the Newtonian–Sobolev
classes N 1,p(X, Y ) of mappings from spaces X supporting p-Poincaré inequalities
into a finite Lipschitz polyhedron Y if and only if Y is [p]-connected, π1(Y ) =
π2(Y ) = · · · = π[p](Y ) = 0, where [p] is the largest integer less than or equal to p.
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1 Introduction

Sobolev mappings between Riemannian manifolds W 1,p(M, N ) play an important
role in the study of geometric variational problems like the theory of harmonic or
p-harmonic mappings. Eells and Lemaire [16], raised a question about density of
smooth mappings C∞(M, N ) in W 1,p(M, N ). Schoen and Uhlenbeck [52,53], ans-
wered the question in the negative by proving that the radial projection mapping
x/|x | ∈ W 1,p(Bn, Sn−1), 1 ≤ p < n, cannot be approximated by C∞(Bn, Sn−1)

mappings when n − 1 ≤ p < n. In the same papers they proved that C∞(M, N ) is a
dense subset of W 1,p(M, N ) when p ≥ dim M . Here and in what follows we assume
that M and N are compact smooth Riemannian manifolds, ∂ N = ∅. For a long time it
was believed that Bethuel [3], discovered a necessary and sufficient condition for the
density of C∞(M, N ) in W 1,p(M, N ) when 1 ≤ p < dim M . Namely he claimed
that the density holds if and only if π[p](N ) = 0. This statement made people believe
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802 P. Hajłasz

that the topology of M plays no role in the problem of the density of Sobolev map-
pings between manifolds. This, however, turned out to be false: Hang and Lin [29],
provided a counterexample to Bethuel’s claim by demonstrating that despite the equa-
lity π3(CP

2) = 0, C∞(CP
3, CP

2) is not dense in W 1,3(CP
3, CP

2). Therefore when
searching for a necessary and sufficient condition for the density of smooth mappings
one has to take into account the topology of both manifolds M and N , or rather the
interplay between the topology of M and the topology of N . In a subsequent paper
Hang and Lin [30], discovered such a condition. They proved

Proposition 1 Assume that M and N are compact smooth Riemannian manifolds
without boundary. If 1 ≤ p < dim M, then smooth mappings C∞(M, N ) are dense
in W 1,p(M, N ) if and only if π[p](N ) = 0 and M satisfies the ([p] − 1)-extension
property with respect to N.

(Although this is an outstanding result we name it proposition as we keep the name
theorem solely for the new results proved in this paper.) We say that M satisfies the
([p] − 1)-extension property with respect to N if for some smooth triangulation of
M , every continuous mapping from the [p] dimensional skeleton f : M [p] → N has
the property that its restriction f |M [p]−1 admits an extension to a continuous mapping
from M to N .

In view of results of Hang and Lin the claim of Bethuel remains true in its local
form when the manifold M is replaced by the ball. Indeed, in this case it is not difficult
to prove the ([p] − 1)-extenion property, see Corollary 1.6 in [30]. Prior to the work
of Hang and Lin, Hajłasz [21] (cf. [20]) discovered a global sufficient condition for
the density of smooth mappings.

Proposition 2 If M and N are compact smooth Riemannian manifolds, ∂ N = ∅,
and π1(N ) = · · · = π[p](N ) = 0, then smooth mappings C∞(M, N ) are dense in
W 1,p(M, N ).

This result easily follows from the theorem of Hang and Lin (cf. Corollary 1.6 in
[30]) and is weaker than their result, but it has an additional feature that the condition
involved is independent of the topology of M .

Other papers related to the problem of approximation of Sobolev mappings bet-
ween manifolds include [2,4,5,8–10,13,14,17,25,27,28,31,35,36,47,48,55,57,58];
also references cited below.

The theory of Sobolev mappings between manifolds has been extended to the
case of Sobolev mappings with values into metric spaces. The first papers on this
subject include the work of Ambrosio [1], on limits of classical variational problems
and the work of Gromov and Schoen [19], on Sobolev mappings into the Bruhat–
Tits buildings, with applications to rigidity questions for discrete groups. Later the
theory of Sobolev mappings with values into metric spaces was developed in a more
elaborated form by Korevaar and Schoen [42], in their approach to the theory of
harmonic mappings into Alexandrov spaces of non-positive curvature. Other papers on
Sobolev mappings from a manifold into a metric space include [11,15,37–40,50,54].
Finally analysis on metric spaces, the theory of Carnot–Carathéodory spaces and
the theory of quasiconformal mappings between metric spaces led to the theory of

123



Density of Lipschitz mappings in the class of Sobolev mappings 803

Sobolev mappings between metric spaces [33,34,43,56], among which the theory of
Newtonian–Sobolev mappings N 1,p(X, Y ) is particularly important.

In the study of Sobolev mappings between metric spaces one often assumes that
(X, d, µ) is a doubling metric-measure space of finite measure µ(X) < ∞ suppor-
ting the p-Poincaré inequality and Y is another metric space. One can always assume
that Y is isometrically embedded into some Banach space V (as every metric space
Y admits an isometric embedding into �∞(Y )). Next one defines the Newtonian-
Sobolev space of V valued mappings N 1,p(X, V ) and identifies N 1,p(X, Y ) with a
subset of N 1,p(X, V ) consisting of those mappings f : X → V for which f (X) ⊂
Y . Since N 1,p(X, V ) is a Banach space, N 1,p(X, Y ) inherits the metric structure
from N 1,p(X, V ). One can prove that Lipschitz mappings are dense in N 1,p(X, V )

and therefore N 1,p(X, Y )-mappings can be approximated by Lipschitz mappings
taking values into V (for more details see Sect. 2). In this setting Heinonen, Koskela,
Shanumgalingam and Tyson [34, Remark 6.9], ask: It is an interesting problem to
determine when one can choose the Lipschitz approximation to have values in the
target Y . […] For instance, one can ask to what extent Bethuel’s results have analogs
for general spaces.

There are two immediate difficulties in dealing with the approximation of Sobolev
mappings between metric spaces. Firstly, the necessary and sufficient condition of
Hang and Lin depends on the homotopy properties of continuous mappings from the
skeletons of M into N . Therefore one should have possibility to investigate the detailed
topological structure of X . On the other hand very little is known about the topological
properties of spaces supporting Poincaré inequalities and the known examples show
that such spaces can be very bizarre see, e.g. [7,32,44]. Moreover the proof of Hang
and Lin employs the CW-structure of both manifolds and, in general, spaces supporting
Poincaré inequalities have no such structure.

Secondly, looking from the perspective of geometric analysis one would like to
regard metric spaces that are bi-Lipschitz homeomorphic as equivalent. However,
a recent example of Hajłasz [24], shows that changing the metric in the target space
Y to a bi-Lipschitz equivalent one may cause loss of the density of Lipschitz mappings.
More precisely, suppose that Y1 and Y2 are bi-Lipschitz homeomorphic metric
spaces that are isometrically embedded into Banach spaces Y1 ⊂ V1 , Y2 ⊂ V2.
Let � : Y1 → Y2 be a bi-Lipschitz homeomorphism. It is easy to see that the mapping

u
�∗	→ � ◦ u induces a one-to-one correspondence between the spaces Lip (X, Y1)

and Lip (X, Y2) and also a one-to-one correspondence between N 1,p(X, Y1) and
N 1,p(X, Y2) for any 1 ≤ p < ∞. However, the mapping �∗ : N 1,p(X, Y1) →
N 1,p(X, Y2) need not be continuous. This phenomenon can even be seen in the
very classical setting of Sobolev spaces [24, Theorem 1.2]. The lack of continuity of
�∗ allows to construct examples as in the following proposition which is the main
result of [24].

Proposition 3 Fix an integer n ≥ 2. There is a compact and connected set X ⊂ R
n+2

and a global bi-Lipschitz homeomorphism � : R
n+2 → R

n+2 with the property that
for any closed n-dimensional manifold M Lipschitz mappings Lip (M, X) are dense in
W 1,n(M, X), but Lipschitz mappings Lip (M, Y ) are not dense in W 1,n(M, Y ), where
Y = �(X).
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804 P. Hajłasz

The following theorem shows, however, that in some cases the answer to the density
problem does not depend on the particular choice of a metric in the target from the
class of bi-Lipschitz equivalent metrics.

Theorem 4 Suppose that (X, d, µ) is a doubling metric-measure space of finite mea-
sure µ(X) < ∞, and Y1, Y2 are two bi-Lipschitz homeomorphic metric spaces of
finite diameter isometrically embedded into Banach spaces V1 and V2 respectively.
Suppose that Lipschitz mappings Lip (X, Y1) are dense in N 1,p(X, Y1), 1 ≤ p < ∞,
in the following strong sense: for every f ∈ N 1,p(X, Y1) and every ε > 0 there is
fε ∈ Lip (X, Y1) such that µ({x : f (x) �= fε(x)}) < ε and ‖ f − fε‖1,p < ε. Then
the Lipschitz mappings Lip (X, Y2) are dense in N 1,p(X, Y2).

Let us emphasize that we do not assume here that X supports the p-Poincaré
inequality.

In view of Lemma 13 it is very natural to expect the strong approximation property
as described in Theorem 4 and indeed it is the reason for which the claim of the main
result of the paper, Theorem 6, does not depend on the particular bi-Lipschitz metric
in the target. On the other hand the strong approximation property cannot be taken
for granted as is shown by Proposition 3. In fact the proof of Proposition 3 involves a
construction of a Sobolev mapping that can be approximated by Lipschitz mappings,
but the approximating mappings must differ from the given Sobolev mapping at almost
every point.

We say that the measure µ satisfies the local lower mass bound with exponent
Q > 0 if there exist a constant C > 0 such that

µ(B(x, r))

µ(B(x0, r0))
≥ C

(
r

r0

)Q

(1)

whenever B(x, r) ⊂ B(x0, r0) are balls in X . Easy iteration of the doubling condition
implies that every doubling measure satisfies the local lower mass bound with the
exponent Q = log2 Cd , but it might happen that some doubling measure satisfies the
bound with the exponent Q smaller than the one coming from the doubling constant.

Theorem 4 plays an important role in the proof of the following result which gene-
ralizes the density result of Schoen and Uhlenbeck [52,53], Theorem 1.3 from [24]
and a result of White [57, Theorem 2].

Theorem 5 Let (X, d, µ) be a metric-measure space supporting the p-Poincaré
inequality. Assume also that the doubling measure µ is finite and satisfies the local
lower mass bound (1). If p ≥ Q and Y is a compact metric-doubling space which is
bi-Lipschitz homeomorphic to a Lipschitz neighborhood retract of a Banach space,
then for every isometric embedding of Y into a Banach space Lipschitz mappings
Lip (X, Y ) are dense in N 1,p(X, Y ). Moreover, for every f ∈ N 1,p(X, Y ), there is
ε > 0 such that if f1, f2 ∈ Lip (X, Y ) satisfy ‖ f − fi‖1,p < ε, i = 1, 2, then the
mappings f1 and f2 are homotopic.

Note that every finite Lipschitz polyhedron Y satisfies the condition from Theo-
rem 5. The theorem shows, in particular, that under the given assumptions there are
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Density of Lipschitz mappings in the class of Sobolev mappings 805

well defined homotopy classes in N 1,p(X, Y ). If p > Q, it is easy due to the Sobolev
embedding into Hölder continuous functions [26], but the case p = Q is far from
being obvious.

In the main result of the paper we overcome the two potential difficulties described
above and provide a definite answer to the question of Heinonen, Koskela, Shanmuga-
lingam and Tyson in the case of mappings into finite Lipschitz polyhedra by proving
the following

Theorem 6 Let Y be a finite Lipschitz polyhedron and 1 ≤ p < ∞. Then the class of
Lipschitz mappings Lip (X, Y ) is dense in N 1,p(X, Y ) for every metric-measure space
X of finite measure that supports the p-Poincaré inequality if and only if π1(Y ) =
π2(Y ) = · · · = π[p](Y ) = 0.

Theorem 6 is the main result of the paper. Other new results are Theorems 4 and 5.
The proof of Theorem 6 employs ideas from the proof of Proposition 2, but the two

proofs substantially differ in many aspects. Both proofs are based on a similar idea of
deformation of the target space, but the construction of the deformation is somewhat
different now: in the present construction the deformations are discontinuous—this
makes the construction easier (and it is important in our more complicated setting),
but the proof of the properties of this new construction requires a completely new
argument. Moreover we prove an ‘if and only if’ result which adds a proof of the
necessity. At last, but not least the setting of metric-measure spaces imposes additional
difficulties.

The paper is structured as follows. In Sect. 2 we collect basic definitions and results
about doubling spaces, spaces supporting Poincaré inequalities and the Newtonian–
Sobolev spaces N 1,p. Section 3 is devoted to Lipschitz polyhedra, so that eventually
the statement of Theorem 6 becomes clarified. The final Sects. 4–6 are devoted to the
proofs of the results of the paper.

Notation By C we will denote a general constant—it can change its value within
the same string of estimates. The average value of a function f over a set E of finite
measure will be denoted by

fE =
∫
E

f dµ = µ(E)−1
∫
E

f dµ.

The Hausdorff measure will be denoted by H�. B will denote a ball in a metric space
and σ B, where σ ≥ 1, the concentric ball with the radius σ times that of B. The
characteristic function of a set E will be denoted by χE .

2 Spaces supporting Poincaré inequalities and related topics

The theory of upper gradients and spaces supporting p-Poincaré inequalities, as briefly
described below, was introduced by Heinonen and Koskela [33], and the theory of
Newtonian-Sobolev spaces N 1,p by Shanmugalingam [51]. Finally in the approach to
N 1,p mappings between metric spaces we follow Heinonen et al. [34].
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806 P. Hajłasz

By a metric-measure space (X, d, µ) we mean a metric space (X, d) equipped with
a Borel-regular measure µ. We say that the measure µ is doubling if there is a constant
Cd ≥ 1 (called doubling constant) such that

µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for very ball B(x, r) ⊂ X . We assume also that 0 < µ(B(x, r)) < ∞ on every
ball. Till the end of the paper (X, d, µ) will always denote a metric-measure space
equipped with a finite doubling measure, i.e. µ(X) < ∞.

By a metric-doubling space we mean a metric space with the property that there is
a constant M > 0 such that every ball in the space can be covered by at most M balls
of half the radius. It is easily seen that existence of a doubling measure implies the
metric-doubling condition.

Following [51] we say that a Borel measurable function f : X → R belongs to
the Newtonian–Sobolev space N 1,p(X), 1 ≤ p < ∞, if f ∈ L p(X) and there exists
another Borel function 0 ≤ g ∈ L p(X) such that

| f (γ (a)) − f (γ (b))| ≤
∫
γ

g (2)

for all rectifiable curves γ : [a, b] → X . The function g is called upper gradient of
f (see [33]). A collection 	 of rectifiable curves is called p-exceptional if there is a
Borel function 0 ≤ 
 ∈ L p(X) such that

∫
γ


 = +∞ for all γ ∈ 	. We say that the
inequality (2) holds for p-almost every (p-a.e.) curve if the collection of rectifiable
curves for which the inequality does not hold is p-exceptional. In this case g is called
p-weak upper gradient of f . It is well known and easy to see that the existence of an
upper gradient in L p is equivalent with the existence of a p-weak upper gradient in L p

and therefore the two approaches can be equivalently used to define the space N 1,p.
This follows from the fact that every p-weak upper gradient can be approximated in
the L p norm by upper gradients that are pointwise greater than or equal to the given
p-weaker upper gradient.

If the functions f and g are defined on some open set � ⊂ X and the inequality
(2) is satisfied for curves γ : [a, b] → �, then we say that g is an upper (or p-weak
upper) gradient of f on �.

The space N 1,p(X) is equipped with the norm

‖ f ‖1,p = ‖ f ‖p + inf
g

‖g‖p ,

where the infimum is taken over all p-weak upper gradients (or equivalently over all
upper gradients) of f . Actually, to be more precise we need to identify functions that
differ on the set of p-capacity zero, as otherwise ‖·‖1,p is a seminorm only, see [6,51].
The following result was proved in [51] (see [23] for a different proof).

Proposition 7 N 1,p(X) is a Banach space.
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Density of Lipschitz mappings in the class of Sobolev mappings 807

In the case of a Riemannian manifold the N 1,p space is isometrically equivalent to
the classical Sobolev space.

Proposition 8 If X is a Riemannian manifold and 1 ≤ p < ∞, then N 1,p(X) =
W 1,p(X). Moreover for every f ∈ N 1,p(X) , |∇ f | is a p-weak upper gradient and it
is minimal in the sense that, if 0 ≤ g ∈ L p(X) is another p-weak upper gradient of
f , then g ≥ |∇ f | a.e. Therefore the spaces N 1,p(X) and W 1,p(X) are isometric.

For the proof see [51] and also [23].
In the case of metric-measure spaces there are several approaches to Sobolev spaces

([12,18,22,26]), but in a reasonable generality, for example in the case in which the
space X supports the p-Poincaré inequality (as defined below) most of the approaches
are equivalent to N 1,p(X). This was established through the work of many authors,
see the survey paper [23], and [41] for important recent results.

Let (X, d, µ) be a metric-measure space and (Y, dY ) another metric space. The
space L p(X, Y ) is defined as a class of all mappings F : X → Y that satisfy the
following three properties: (1) F is essentially separably valued, i.e. F(X\Z) is a
separable subset of Y for some Z ⊂ X with µ(Z) = 0; (2) x 	→ dY (F(x), y) is
measurable for every y ∈ Y ; (3) x 	→ dY (F(x), y0) ∈ L p(X) for some y0 ∈ Y (and
hence for all y0 ∈ Y because µ(X) < ∞).

Following [34] and also [50] we say that the mapping F ∈ L p(X, Y ) belongs to
the Newtonian–Sobolev class of mappings N 1,p(X, Y ) if there is a Borel function
0 ≤ g ∈ L p(X) such that

dY (F(γ (a)), F(γ (b))) ≤
∫
γ

g (3)

for every rectifiable curve γ : [a, b] → X .
This construction defines N 1,p(X, Y ) as a set but it does not provide any metric.

To obtain a metric structure we use an isometric embedding of Y into some Banach
space V . It is always possible as every metric space Y admits an isometric embedding
into �∞(Y ), the space of bounded functions on Y .

Since any Banach space V is a metric space, the above construction can be used to
define the Banach space valued Newtonian–Sobolev mappings N 1,p(X, V ). Namely
F ∈ N 1,p(X, V ) if F ∈ L p(X, V ) and there is a Borel measurable function 0 ≤ g ∈
L p(X) such that

‖F(γ (a)) − F(γ (b))‖ ≤
∫
γ

g

for every rectifiable γ : [a, b] → X . Such a g is called an upper gradient of F .
Equivalently we could require the existence of a p-weak upper gradient of F . One can
prove that the space N 1,p(X, V ) is a Banach space with respect to the norm

‖F‖1,p = ‖F‖p + inf
g

‖g‖p,

where the infimum is taken over the class of all (p-weak) upper gradients of F .
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808 P. Hajłasz

Now for Y ⊂ V we define1

N 1,p(X, Y ) = {F ∈ N 1,p(X, V ) : F(X) ⊂ Y }. (4)

Obviously as a set this is the same class as the one defined by (3). The advantage of
the approach based on (4) is that now we can use the linear structure in the target; this
approach proved to be very useful in the study of quasiconformal mappings between
metric spaces [34]. Moreover with this definition the space N 1,p(X, Y ) inherits the
metric structure from the Banach space N 1,p(X, V ).

The following elementary lemma shows that upper gradients of N 1,p functions
have a localization property; the proof is quite standard and left to the reader.

Lemma 9 If 0 ≤ g ∈ L p(X) is an upper gradient of F ∈ N 1,p(X, V ) and F is
constant on a closed set E ⊂ X, then the function h = gχX\E is an upper gradient of F.

For a Lipschitz function h on a metric space (Y, dY ) we define the lower Lipschitz
constant at x ∈ Y by

lip h(x) = lim inf
r→0

L(x, h, r)

r
,

where

L(x, h, r) = sup{|h(y) − h(x)| : dY (x, y) ≤ r}.

The following result is a version of the chain rule.

Lemma 10 Let (X, d, µ) be a metric-measure space and (Y, dY ) another metric
space. If f ∈ N 1,p(X, Y ), 1 ≤ p < ∞, 0 ≤ g ∈ L p(X) is an upper gradient
of f in the sense of (3) and h ∈ Lip(Y ), then the function (lip h) ◦ f · g, i.e. the
function

x 	→ g(x)(lip h)( f (x)),

is a p-weak upper gradient of h ◦ f .

Proof The proof is rather standard, so we sketch it only leaving details to the reader
(cf. Lemmas 6.7 and 7.6 in [23]). For a rectifiable curve γ in X , γ̃ and �(γ ) will denote
the arc-length parametrization and the length of the curve respectively. For a p-a.e.
rectifiable curve γ

∫
γ

g =
�(γ )∫
0

g(γ̃ (τ )) dτ < ∞.

1 The definition in [34] is slightly different as it allows for an exceptional set of capacity zero. Since we can
modify functions in N 1,p on sets of capacity zero by [51, Lemma 3.6], the two definitions are equivalent.
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For such γ , τ 	→ (h ◦ f ◦ γ̃ )(τ ) is absolutely continuous and thus

|(h ◦ f )(γ̃ (�(γ ))) − (h ◦ f )(γ̃ (0))| ≤
�(γ )∫
0

∣∣∣∣ d

dt
h( f (γ̃ (τ )))

∣∣∣∣ dτ.

Routine calculation involving the Lebesgue differentiation theorem yields

∣∣∣∣ d

dt
h( f (γ̃ (τ )))

∣∣∣∣ ≤ (lip h)( f (γ̃ (τ ))g(γ̃ (τ )).

for a.e. τ ∈ [0, �(γ )]. This completes the proof. ��
In order to have a rich theory of Sobolev spaces one needs to narrow the class of

metric-measure spaces X . Following [33] we say that the space (X, d, µ) supports the
p-Poincaré inequality for some 1 ≤ p < ∞ if µ is a doubling measure and there exist
constants CP > 0 and σ ≥ 1 such that for every ball B ⊂ X , for every integrable
function f ∈ L1(σ B) and for every 0 ≤ g ∈ L p(σ B) being a p-weak upper gradient
of f on σ B the inequality

∫
B

| f − fB | dµ ≤ CP (diam B)

⎛
⎝ ∫

σ B

g p dµ

⎞
⎠

1/p

(5)

is satisfied.
It follows from the Hölder inequality that, if the space X supports the p-Poincaré

inequality, then it supports the q-Poincaré inequality for every q ≥ p.
The following result was proved in [34].

Proposition 11 Suppose that the space (X, d, µ) supports the p-Poincaré inequality
for some 1 ≤ p < ∞, as described above. Then, for every Banach space V , the pair
(X, V ) supports the p-Poincaré inequality in the following sense: there is a constant
C > 0 such that, for every ball B ⊂ X, for every F ∈ L1(6σ B, V ) and for every
0 ≤ g ∈ L p(6σ B) being a p-weak upper gradient of F on 6σ B, the inequality

∫
B

‖F − FB‖ dµ ≤ C(diam B)

⎛
⎝ ∫

6σ B

g p dµ

⎞
⎠

1/p

.

is satisfied.

It follows from the proof that, if F ∈ N 1,p(X, V ) and 0 ≤ g ∈ L p(X) is a p-weak
upper gradient of F , then the following pointwise inequality is satisfied

‖F(x) − F(y)‖ ≤ Cd(x, y)
(
(Mg p(x))1/p + (Mg p(y))1/p

)
a.e.,
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810 P. Hajłasz

where Mh(x) = supr>0

∫
B(x,r)

|h| dµ is the Hardy–Littlewood maximal function.
Therefore F restricted to the set Et = {x : Mg p ≤ t p} is Lipschitz continuous with
the Lipschitz constant Ct .

We will need the following recent remarkable and unexpected result of Lee and
Naor [46, Theorem 1.6].

Proposition 12 Let X be a metric-doubling space, Y another metric space such that
X ⊂ Y and V a Banach space. Then every L-Lipschitz mapping f : X → V admits
an extension to a C(log M)L-Lipschitz mapping f̃ : Y → V , where C > 0 is a
universal constant that does not depend on X, Y and V and M is the constant from
the definition of the metric-doubling space.

The following result is a generalization of [34, Theorem 6.7] to a general Banach
space target.

Lemma 13 Suppose the space (X, d, µ) supports the p-Poincaré inequality for some
1 ≤ p < ∞ and V is a Banach space. If F ∈ N 1,p(X, V ), then for every ε > 0
there is a Lipschitz mapping G ∈ Lip (X, V ) such that µ{x : F(x) �= G(x)} < ε and
‖F − G‖1,p < ε.

Proof Elementary estimates based on the triangle inequality show that the retraction
πR : V → B(0, R) ⊂ V , defined by πR(x) = x if ‖x‖ ≤ R and πR(x) = Rx/‖x‖
if ‖x‖ > R is Lipschitz continuous with the Lipschitz constant 2. Hence for F ∈
N 1,p(X, V ), πR ◦ F → F is N 1,p as R → ∞ and therefore we can assume that F is
bounded, i.e. values of F belong to some ball B(0, R). Let Et be defined as before.
Then by Proposition 12 F |Et : Et → V admits an extension to a Lipschitz mapping
Ft : X → V with the Lipschitz constant bounded by C ′t . Of course we can assume
that each of the mappings Ft takes values into B(0, R) (as otherwise we compose it
with πR), i.e. the mappings Ft are uniformly bounded. Since the mapping Ft differs
from F on a set X\Et which is small in the sense that t pµ(X\Et ) → 0 as t → ∞, it
easily follows that ‖F − Ft‖1,p → 0 as t → ∞. ��
Remark Instead of using the difficult Proposition 12 we could employ a Whitney type
extension to define Ft . Proposition 12 will, however, be unavoidable in the proof of
Theorem 5.

3 Lipschitz polyhedra

In the first part of the section we collect standard definitions and results concerning
finite polyhedra. More details can be found, e.g. in Chapter 1 of [49]. Some of the
definitions given here are slightly different from what the reader would find in books.
This is because we wanted to make the definitions more adequate to our situation.
Then we prove some technical results needed in the proof of Theorem 6.

By a simplicial complex we mean a finite collection K of simplexes in some Eucli-
dean space R

ν such that:

1. If σ ∈ K and τ is a face of σ , then τ ∈ K ;
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Density of Lipschitz mappings in the class of Sobolev mappings 811

2. If σ, τ ∈ K , then either σ ∩ τ = ∅ or σ ∩ τ is a common face of σ and τ .

A subset of K which is itself a complex will be called a subcomplex.
The set |K | = ⋃

σ∈K σ will be called a rectilinear polyhedron and K will be called
a triangulation of |K |.

The dimension of K is the supremum of dimensions of simplexes in K . It coincides
with the Hausdorff dimension of |K |. We say that |K | is a k-homogeneous rectilinear
polyhedron if |K | is a union of k-dimensional simplexes.

By a Lipschitz polyhedron we mean any metric space which is bi-Lipschitz homeo-
morphic to a rectilinear polyhedron. Similarly we define k-homogeneous Lipschitz
polyhedron.

A class of examples of spaces supporting the p-Poincaré inequalities is provided
by the following result.

Lemma 14 Let X = |K | be an n-homogeneous Lipschitz polyhedron. Suppose that
k is the largest integer with the property that, for every x, y ∈ X, there is a sequence
of n-dimensional simplexes σ1, . . . , σ� ∈ K such that x ∈ σ1, y ∈ σ� and σi ∩ σi+1
is a simplex of dimension at least k. If k < n − 1, then the space X equipped with the
Hausdorff measure Hn supports the p-Poincaré inequality if and only if p > n − k.
If k = n − 1, then the space supports the 1-Poincaré inequality.

Proof The case k < n − 1, p > n − k follows easily from [33, Theorem 6.15]. The
case k = n − 1, p = 1 is proved in [57, Section 2]; White proves a weaker version of
the Poincaré inequality, but his argument works in our case as well. ��

If X ⊂ R
ν is a set and x0 ∈ R

ν+1\R
ν , then we define the cone over X with vertex

x0, denoted by C(X), as the union of all segments that join x0 with points in X . Clearly
C(X) is a rectilinear polyhedron if X is a rectilinear polyhedron. Triangulation of X
induces in a natural way a triangulation of C(X).

As a direct application of Lemma 14 we obtain

Lemma 15 Let Sk ⊂ R
k+1 be a sphere and Bn−k−1 ⊂ R

n−k−1 be a ball, where
1 ≤ k ≤ n −1. Then the space C(Sk × Bn−k−1) ⊂ R

n+1 equipped with the Euclidean
metric and the Hausdorff measure Hn supports the 1-Poincaré inequality.

If the dimension of the simplicial complex is n, then, for � ≤ n, K � will denote a
subcomplex of K that consists of all simplexes in K of dimension less than or equal
to �.

We say that a rectilinear polyhedron X is a subpolyhedron of a rectilinear polyhe-
dron Y if X ⊂ Y (cf. definition on page 6 and Theorem 1.4.4. in [49]).

For the following lemma, see Theorem 1.4.4. in [49].

Lemma 16 If X and Y are rectilinear polyhedra such that X ⊂ Y , then there is a
triangulation of X which is a subcomplex of a triangulation of Y .

The following result is a well known Relative Simplicial Approximation Theorem.
For a proof see [49, Theorem 1.6.11].
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Lemma 17 Let X, Y and Z be rectilinear polyhedra with X ⊂ Y and let f : Y → Z
be a continuous mapping such that f |X is piecewise linear. Then, given ε > 0, there
is a piecewise linear mapping g : Y → Z such that f |X = g|X and ‖ f − g‖∞ < ε.

The following result will be employed in the proof of the main result, Theorem 6.

Lemma 18 Let |K | ⊂ R
ν be a rectilinear polyhedron. Assume that π1(|K |) = π2

(|K |) = · · · = πk(|K |) = 0. Let Z be a polyhedral neighborhood of |K k | in |K | such
that |K k | is a deformation retract of Z. Then there is a Lipschitz mappingη : R

ν → |K |
such that η|Z = id Z .

Remark |K k | is a deformation retract of Z in the sense that there is a continuous
mapping H : Z × [0, 1] → Z such that H(·, 0) = id Z and H(·, 1) : Z → |K k | is a
retraction.

Proof Since Z ⊂ R
ν , the cone C(Z) is contained in R

ν+1. We can assume that the
distance of the vertex x0 of the cone to R

ν equals 2. Thus every point in C(Z) can
be denoted by [z, t], where z ∈ Z and t ∈ [0, 2]. Namely [z, t] is the point of the
segment that joints z to the vertex x0 whose distance from R

ν equals t . Observe that
[z, 2] = x0 for all z ∈ Z .

In the first step we construct a continuous retraction

ρ : R
ν ∪ C(Z) → C(Z).

Let Q be a large cube in R
ν such that |K | ⊂ Int Q. It follows from Lemma 16 that

there is a triangulation of Z which is a subcomplex of a triangulation L of Q, |L| = Q.
We define ρ to be the identity in C(Z), and we set ρ(Rν\Int Q) = {x0}.
We still have to define ρ in Int (Q\Z). In this step we use contractibility of C(Z)

which implies vanishing of all homotopy groups of C(Z). First we define ρ(x) = x0
whenever x is a vertex of L in Int (Q\Z). Next we extend ρ to one dimensional edges
in L that are contained in Int (Q\Z) employing arcwise connectedness of C(Z). Then
we extend ρ to interior of triangles in Int (Q\Z) from their boundaries using the
fact that π1(C(Z)) = 0. Similarly we can extend ρ to interiors of three dimensional
simplexes in Int Q\Z using π2(C(Z)) = 0, etc. This completes the construction of ρ.

Using the fact that |K | is k-connected and the fact that C(|K k |) consists of simplexes
whose dimension does not exceed k + 1, we construct a continuous retraction

γ : C(|K k |) ∪ |K | → |K |, γ ||K | = id |K |.

Namely we set γ ||K | = id |K |, we define γ (x0) arbitrarily and extend γ to higher
dimensional simplexes in C(|K k |) using the k-connectivity of |K |, similarly as in the
construction of ρ.

Now we define a continuous retraction

λ : C(Z) ∪ |K | → |K |
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Density of Lipschitz mappings in the class of Sobolev mappings 813

by the formula

λ([z, t]) =
{

H(z, t) if 0 ≤ t ≤ 1,

γ ([H(z, 1), 2(t − 1)]) if 1 ≤ t ≤ 2,

where H is defined as before. The mapping η̃ defined as a composition of mappings

R
ν

i1⊂ R
ν ∪ C(Z)

ρ→ C(Z)
i2⊂ C(Z) ∪ |K | λ→ |K |

i.e. η̃ = λ ◦ i2 ◦ ρ ◦ i1 : R
ν → |K | is a continuous mapping such that η̃|Z = id Z .

Observe that η̃|∂ Q∪Z is piecewise linear. Hence it follows from Lemma 17 that there
is a piecewise linear mapping η : Q → |K | which coincides with η̃ on ∂ Q ∪ Z . Now
it is clear that the mapping η extended to R

ν by η(Rν \ Q) = γ (x0) has all desired
properties. The proof is complete. ��

4 Proof of Theorem 4

Let � : Y1 → Y2 be a bi-Lipschitz homeomorphism and u ∈ N 1,p(X, Y2). Then
�−1 ◦ u ∈ N 1,p(X, Y1). By the assumptions of the theorem, for every ε > 0 there
exists fε ∈ Lip (X, Y1) such that ‖ fε − �−1 ◦ u‖1,p < ε and µ(�ε) < ε where
�ε = {x : fε(x) �= �−1(u(x))}. It suffices to prove that � ◦ fε → u in N 1,p(X, V2)

as ε → 0. Since the space Y2 has finite diameter, the mappings into Y2 are uniformly
bounded as mappings into V2 and hence � ◦ fε → u in L p(X, V2) as a consequence
of the a.e. convergence. Thus we need to take care of the upper gradient estimates
only. Let 0 ≤ g ∈ L p(X) and 0 ≤ gε ∈ L p(X) be upper gradients of �−1 ◦ u and
( fε − �−1 ◦ u) respectively such that ‖gε‖p < ε. Then g + gε is an upper gradient of
fε. If L is the Lipschitz constant of �, then Lg and L(g + gε) are upper gradients of
u and � ◦ fε respectively and hence L(2g + gε) is an upper gradient of u − � ◦ fε.
Now we choose a closed set Fε ⊂ X\�ε such that µ(X\Fε) < 2ε. Lemma 9 yields
that hε = L(2g + gε)χX\Fε is an upper gradient of u − � ◦ fε and, since ‖hε‖p → 0
as ε → 0, the claim follows. The proof is complete. ��

5 Proof of Theorem 5

Let � : Y → Y1 be a bi-Lipschitz homeomorphism, where Y1 ⊂ V1 is a Lipschitz
neighborhood retract of the Banach space V1, i.e. there is a Lipschitz retraction π1 :
V1 ⊃ U1 → Y1 of some neighborhood U1 of Y1 onto Y1. Let Y ⊂ V be an isometric
embedding into some Banach space V . Then Y is a Lipschitz neighborhood retract of
V . Indeed, according to Proposition 12, � admits an extension to a Lipschitz mapping
�̃ : V → V1 and hence π = �−1 ◦ π1 ◦ �̃ : U → Y , where U = (�̃)−1(U1) is a
Lipschitz retraction.

Now we prove the density. By Lemma 13 we can approximate F ∈ N 1,p(X, Y )

by Lipschitz mappings Ft ∈ Lip (X, V ) which coincide with F outside sets X\Et

of arbitrarily small measure. If we could prove that mappings Ft take values into the
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neighborhood U , then the same argument as in the proof of Theorem 4 would imply
that the composed map π ◦ Ft approximates F . If p > Q, this follows from the
Sobolev embedding into Hölder continuous functions [26], and if p = Q, we need to
follow the argument from the proof of [24, Theorem 1.3]. Although [24, Theorem 1.3]
concerns classical Sobolev spaces, the argument is pretty much the same and it is
a routine procedure to translate it to the setting of metric spaces. Therefore we will
sketch it only. The set X\Et is open. Since the space X is doubling there is a family
of Whitney balls in X\Et and associated Lipschitz partition of unity. Denote it by
{Bi }i∈I and {ϕi }i∈I respectively. Now we define

Ht =
{

F(x) for x ∈ Et ,∑
i∈I ϕi (x)FBi for x ∈ X\Et .

Estimates as in the proof of [24, Theorem 1.3] imply that dist (Ht (x), Y ) is bounded
from above by

(diam B)

⎛
⎝ ∫

σ B

gQ dµ

⎞
⎠

1/Q

, (6)

where B is a ball of small radius centered at x and 0 ≤ g ∈ L Q(X) is an upper gradient
of F . Now it follows from the lower mass bound that the right hand side of (6) goes
to zero with the radius of the ball.

The proof of the homotopy between f1 and f2 is similar to that of [57, Theorem 2]
and left to the reader. The proof is complete. ��

6 Proof of Theorem 6

First we show necessity of the vanishing of the homotopy groups. Assume thatπk(Y ) �=
0 for some 1 ≤ k ≤ [p]. We have to construct a space X supporting the p-Poincaré
inequality with the property that Lipschitz mappings are not dense in N 1,p(X, Y ). Let
n > p be an integer. According to Lemma 15 the space X = C(Sk × Bn−k−1) supports
the 1-Poincaré inequality and therefore the p-Poincaré inequality. Denote points of
the cone by

[s, b, t], where s ∈ Sk , b ∈ Bn−k−1, and t ∈ [0, 1].

This time the height of the cone is 1. For b ∈ Bn−k−1 and t ∈ [0, 1) by [Sk, b, t] we
will denote the corresponding section of the cone. Obviously the section is homothetic
to Sk .

Denote the vertex of the cone C(Sk × Bn−k−1) by x0. Then C(Sk × Bn−k−1)\{x0}
is a smooth (non-compact) submanifold of R

n+1 (with boundary) and hence the class
of N 1,p Sobolev functions coincides with the class of W 1,p functions on C(Sk ×
Bn−k−1)\{x0} (Proposition 8). It is easy to see that C p({x0}) = 0 for 1 ≤ p < n,
where C p is the capacity associated with N 1,p. Hence, according to Lemma 3.6 in
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[51], the p-modulus of the family of rectifiable curves in C(Sk × Bn−k−1) passing
through {x0} is zero and thus

N 1,p(C(Sk × Bn−k−1)) = N 1,p(C(Sk × Bn−k−1)\{x0}))
= W 1,p(C(Sk × Bn−k−1)\{x0})),

provided 1 ≤ p < n. A direct estimate shows that the mapping

P : C(Sk × Bn−k−1) → Sk, P([s, b, t]) = s.

belongs to W 1,p(C(Sk × Bn−k−1)\{x0}) for all 1 ≤ p < n. Hence

Lemma 19 P ∈ N 1,p(C(Sk × Bn−k−1), Sk) for 1 ≤ p < n.

Let ϕ : Sk → Y be a Lipschitz representative of a nontrivial element in the
homotopy group πk(Y ). We claim that the mapping f = ϕ◦P : C(Sk ×Bn−k−1) → Y
cannot be approximated by continuous (and hence Lipschitz) mappings. We argue by
contradiction. Assume that fi : C(Sk × Bn−k−1) → Y is a sequence of continuous
mappings converging to f in the norm of N 1,p. Applying Fubini’s theorem we obtain
that for some subsequence (still denoted by fi ) for a.e. t ∈ [0, 1) and a.e. b ∈ Bn−k−1

fi |[Sk ,b,t] → f |[Sk ,b,t]

in the norm of N 1,p(Sk). Now it follows from Theorem 5 that fi and f are homo-
topic for sufficiently large i . This however is not possible because all the mappings
fi |Sk×{b}×{t} are contractible to a point, while f |Sk×{b}×{t} is not. This completes the
proof of the necessity of the homotopy condition.

We are left with the proof of the density assuming the homotopy condition for Y .
Therefore we assume that the space X supports the p-Poincaré inequality.

In the proof of the theorem we will need the following technical lemma.

Lemma 20 Let X be a space that supports the p-Poincaré inequality, 1 ≤ p < ∞,
and let Y ⊂ V be a metric space of bounded diameter that is isometrically embedded
into a Banach space V . Assume that a compact subset Z ⊂ Y has the property that
there is a Lipschitz mapping η : V → Y such that η|Z = id Z . Then any Sobolev
mapping f ∈ N 1,p(X, Y ) such that f (X) ⊂ Z can be approximated by Lipschitz
mappings Lip (X, Y ) in the N 1,p norm.

Proof According to Lemma 13 there is a sequence of Lipschitz mappings fk : X → V
such that µ({ fk �= f }) → 0 and ‖ f − fk‖1,p → 0 as k → ∞. Then η ◦ fk → f in
the norm of N 1,p by the same argument as in the proof of Theorem 4. We leave the
details to the reader. ��

According to Theorem 4 it suffices to assume that Y is a rectilinear polyhedron
in the Euclidean space, Y ⊂ R

ν , because we will prove that in this case Lipschitz
mappings are dense in the strong sense described in Theorem 4.

Lemmas 18 and 20 show that in order to prove the density of Lipschitz mappings in
N 1,p(X, Y ) it suffices to prove that every mapping in N 1,p(X, Y ) can be approximated

123



816 P. Hajłasz

by mappings into a polyhedral neighborhood Z of Y [p] such that Y [p] is a deformation
retract of Z . This will be achieved by making “small holes” in the image around the
dual skeleton of Y [p]. This gives an idea of what we are going to do next.

Let σ� be an �-dimensional simplex. If y ∈ σ�, then every point x ∈ σ� can be
represented in the form x = y + t (z − y) for some z ∈ ∂σ � and t ∈ [0, 1]. Given
y ∈ σ� and t ∈ (0, 1] we define

σ�
y,t = {y + s(z − y) : z ∈ ∂σ � and 0 ≤ s ≤ t}.

This is a simplex obtained from σ� by dilation. In the case y is the barycenter of σ�,
we simply write σ�

t . For y ∈ σ�
1/2 and t ∈ (0, 1] we define the mapping

Py,t : σ� → σ�

by the formula

Py,t (y + s(z − y)) =
{

z if t ≤ s ≤ 1,

y + s
t (z − y) if 0 ≤ s ≤ t.

Geometrically speaking Py,t is the retraction of the neighborhood σ�\σ�
y,t of ∂σ � onto

∂σ � along the rays emerging from y and dilation of σ�
y,t onto σ�. The mappings Py,t are

Lipschitz continuous with the Lipschitz constant Ct−1, where the same constant C can
be chosen for all y ∈ σ�

1/2. The pointwise limit of Py,t as t → 0 is Py : σ�\{y} → ∂σ �,

Py(y + t (z − y)) = z for all z ∈ ∂σ � and t ∈ (0, 1]. Py considered as a mapping from
σ� is discontinuous at y.

For every y ∈ σ�
1/2 and t ∈ (0, 1) we have the estimate for the lower Lipschitz

constant of Py,t

lip Py,t (x) ≤
{

Cdiam σ�/|y − x | if x ∈ σ�\σ�
y,t ,

Ct−1 if x ∈ σ�
y,t .

If there are more simplexes and the above construction is applied to one of them,
we point out the simplex in question by writing Pσ�

y,t and Pσ�

y .
Let dim Y = �. If p ≥ �, then Y is a Lipschitz retract of R

ν (Lemma 18) and
hence the density of Lipschitz mappings follows from Lemma 20. Accordingly, we
can assume that p < �. Let σ� be an �-dimensional simplex in the triangulation of Y .
For y ∈ σ�

1/2 and ε, t ∈ (0, 1) we consider the mapping

Qy,ε,t := P
σ�

y,ε

y,t : σ�
y,ε → σ�

y,ε (7)

and extend it to the entire Y by the identity, i.e. Qy,ε,t (z) = z for z ∈ Y\σ�
y,ε. Clearly

Qy,ε,t ∈ Lip (Y, Y ). Pointwise limit of Qy,ε,t as t → 0 is the retraction

Qy,ε : Y\{y} → Y\σ�
y,ε
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along the rays in σ�
y,ε onto the boundary ∂σ �

y,ε and the identity in Y\σ�
y,ε. The estimate

of the lower Lipschitz constant of Py,ε readily gives

lip Qy,ε,t (z) ≤

⎧⎪⎪⎨
⎪⎪⎩

C εdiam σ�

|y−z| if z ∈ σ�
y,ε\σ�

y,εt

Ct−1 if z ∈ σ�
y,εt ,

1 if z ∈ Y\σ�
y,ε,

(8)

and hence

lip Qy,ε,t (z) ≤ Ry,ε(z) =
{

C εdiam σ�

|y−z| if z ∈ σ�
y,ε\{y},

1 if z ∈ Y\σ�
y,ε,

for all t ∈ (0, 1) with the same constant C for all simplexes σ� in the triangulation of
Y and all y ∈ σ�

1/2.

Let f ∈ N 1,p(X, Y ) and let 0 ≤ g ∈ L p(X) be an upper gradient of f . Fix σ� in
the triangulation of Y and ε, t ∈ (0, 1). Clearly Qy,ε,t ◦ f ∈ N 1,p(X, Y ) for every
y ∈ σ�

1/2.

The mapping Qy,ε,t ◦ f differs from f on the set f −1(σ �
y,ε). We want to find y ∈ σ�

1/2

such that the N 1,p norm of Qy,ε,t ◦ f on that set f −1(σ �
y,ε) is relatively small.

According to Lemma 10, G y,ε(x) = Ry,ε( f (x))g(x) is a common p-weak upper
gradient of the functions Qy,ε,t ◦ f for all t ∈ (0, 1). We have

∫

σ�
1/2

∫

f −1(σ �
y,ε)

G p
y,ε(x) dµ(x) dH�(y)

= (H�(σ �
1/2))

−1
∫
X

g p(x)

∫

{y∈σ�
1/2: f (x)∈σ�

y,ε}
R p

y,ε( f (x)) dH�(y) dµ(x)

≤ C(diam σ�)−�

∫
X

g p(x)

∫

{y∈σ�
1/2: f (x)∈σ�

y,ε}

(
εdiam σ�

|y − f (x)|
)p

dH�(y) dµ(x).

Let B�(0, r) be the ball in R
� whose volume equals

H�
({

y ∈ σ�
1/2 : f (x) ∈ σ�

y,ε

})
.

Then r ≤ Cεdiam σ� and hence

∫

{y∈σ�
1/2: f (x)∈σ�

y,ε}

(
εdiam σ�

|y − f (x)|
)p

dH�(y) ≤ (εdiam σ�)p
∫

B�(0,r)

dH�(y)

|y|p

≤ C(εdiam σ�)�.
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The above estimates yield

∫

σ�
1/2

∫

f −1(σ �
y,ε)

G p
y,ε(x) dµ(x) dH�(y) ≤ Cε�

∫
X

g p(x) dµ(x).

Thus there is a subset Aε ⊂ σ�
1/2 such that H�(Aε) ≥ H�(σ �

1/2)/2 and

∫

f −1(σ �
y,ε)

G p
y,ε(x) dµ(x) ≤ Cε�

∫
X

g p(x) dµ(x)

for all y ∈ Aε.
Fix y ∈ Aε such that µ( f −1(y)) = 0. Observe that for i ≤ j

{Qy,ε,1/ i ◦ f �= Qy,ε,1/j ◦ f } ⊂ f −1(σ �
y,ε/ i )

and { f −1(σ �
y,ε/ i )}i is a decreasing sequence of sets with the intersection of measure

zero

∞⋂
i=1

f −1(σ �
y,ε/ i ) = f −1(y).

Since all mappings {Qy,ε,1/ i ◦ f }i have common p-weak upper gradient G y,ε ∈ L p, it
easily follows from Lemma 9 that they form a Cauchy sequence in N 1,p. Accordingly,
the pointwise convergence

Qy,ε,1/ i ◦ f → Qy,ε ◦ f (in X\ f −1(y) and hence a.e.)

is also a convergence in the N 1,p norm and G y,ε is a p-weak upper gradient of Qy,ε◦ f
(cf. [23, Lemma 7.8], [51, Lemma 4.11]). Now since the measures of the sets

{Qy,ε ◦ f �= f } ⊂ f −1(σ �
y,ε)

and the functions G y,ε are monotonically decreasing to 0 when ε is decreasing to 0,
it follows that

‖ f − Qy,ε ◦ f ‖1,p → 0 as ε → 0.

Denote the k-dimensional simplexes in the triangulation of Y , 0 ≤ k ≤ �, by {σ k,i }rk
i=1.

We can repeat the above construction in every �-dimensional simplex σ�,i and find
corresponding points y�

i ∈ σ
�,i
1/2. Next we define

Qy�
1 ,...,y�

r�
;ε ◦ f := Qy�

1 ,ε ◦ · · · ◦ Qy�
r�

,ε ◦ f ∈ N 1,p.
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We have

Qy�
1 ,...,y�

r�
;ε ◦ f → f in N 1,p as ε → 0.

Roughly speaking Qy�
1 ,...,y�

r�
;ε ◦ f is a deformation of f obtained from f by making

small holes in every �-dimensional simplex in the target Y . Therefore

Qy�
1 ,...,y�

r�
;ε ◦ f : X → Z = Y\

r�⋃
i=1

σ
�,i
y�

i ,ε
.

Observe that Y �−1 is a deformation retract of Z . Indeed, in each set σ�,i\σ�,i
y�

i ,ε
the

deformation retraction is along rays emerging from y�
i . Thus, if p ≥ � − 1, the theo-

rem follows from Lemmas 18 and 20 as indicated earlier. Therefore we can assume
that p < � − 1.

Assume that the points y�
i ∈ σ�,i , i = 1, 2, . . . , r�, are chosen as above and fixed.

We will prove that for every ε′ ∈ (0, 1) the mapping f ′ = Qy�
1 ,...,y�

r�
;ε′ ◦ f can be

approximated by mappings taking values into a polyhedral neighborhood Z ′ of Y �−2

such that Y �−2 is a deformation retract of Z ′. (As before, Lemmas 18 and 20 will prove
the theorem in the case in which p ≥ � − 2; if p < � − 2, we will have to continue
the construction). To obtain a deformation of f ′ to a mapping with values into Z ′ we
need to repeat the previous construction by making holes corresponding to isolated
points in the (� − 1)-dimensional simplexes. This is, however, more involved. Indeed,
each point chosen in the (� − 1)-dimensional simplex being part of the boundary of
σ�,i will form a singularity in σ�,i\σ�,i

y�
i ,ε

being the segment on the ray emerging from

y�
i and passing through the given point on the boundary.

More precisely, let σ�−1 be a simplex in the (� − 1)-dimensional skeleton of Y .
There are two cases. The easy one is when σ�−1 is not a face of any �-dimensional
simplex in the triangulation of Y . In this case, exactly as before, we find y ∈ σ�−1

1/2
such that the retraction along rays

Qy,ε : σ�−1
y,ε \{y} → ∂σ �−1

y,ε

extended to Y\{y} as the identity in Y\σ�−1
y,ε has the property that

Qy,ε ◦ f ′ → f ′ in N 1,p as ε → 0.

Now assume that σ�−1 is a face of at least one �-dimensional simplex, say σ�−1 ⊂
∂σ �,i . With each y ∈ σ�−1

1/2 we associate a segment

Iy,i = {y�
i + s(y − y�i ) : ε′ ≤ s ≤ 1} ⊂ σ�,i\σ�,i

y�
i ,ε′ .
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Given y ∈ σ�−1
1/2 and ε, t ∈ (0, 1) we define the mapping

Qy,ε,t : σ�−1
y,ε → σ�−1

y,ε

as an (� − 1)-dimensional analog of the mapping (7). We extend it to ∂σ �,i as the
identity in ∂σ �,i\σ�−1

y,ε . Note that every point in σ�,i\σ�,i
y�

i ,ε′ is of the form

y�
i + s(z − y�

i ) for some z ∈ ∂σ �,i and ε′ ≤ s ≤ 1.

Now we extend Qy,ε,t from the boundary of σ�,i to σ�,i\σ�,i
y�

i ,ε′ by the formula

Q̃y,ε,t (y�
i + s(z − y�

i )) = y�
i + s(Qy,ε,t (z) − y�

i ).

If we fix y and ε and let t → 0, the above mapping will converge to

Q̃y,ε : (σ �,i\σ�,i
y�

i ,ε′)\Iy,i → σ�,i\σ�,i
y�

i ,ε′

with the segment Iy,i as the singularity set. Given y ∈ σ�−1
1/2 , we define the map-

ping Q̃y,ε,t in each simplex σ�,i that has σ�−1 as a face and then we extend it to the
remaining part of Y as identity. The resulting mapping Q̃y,ε,t : Y → Y is Lipschitz
continuous with the estimate

lip Q̃y,ε,t (y�
i + s(z − y�

i )) ≤

⎧⎪⎪⎨
⎪⎪⎩

C εdiam σ�−1

|y−z| if z ∈ σ�−1
y,ε \σ�−1

y,εt ,

Ct−1 if z ∈ σ�−1
y,εt ,

1 if z ∈ ∂σ �,i\σ�−1
y,ε .

Therefore Q̃y,ε,t ◦ f ′ ∈ N 1,p(X, Y ) and similarly as before we can use the Fubini
theorem to select y ∈ σ�−1

1/2 such that

Q̃y,ε,t ◦ f ′ → Q̃y,ε ◦ f ′ in N 1,p as t → 0

and

Q̃y,ε ◦ f ′ → f ′ in N 1,p as ε → 0.

Applying the above construction to every (� − 1)-dimensional simplex in the triangu-
lation of Y we find y�−1

i ∈ σ�−1,i , i = 1, 2, . . . r�−1 such that

Qy�−1
1 ,...,y�−1

r�−1 ;ε ◦ f ′ = Q̃y�−1
1 ,ε

◦ · · · ◦ Q̃y�−1
r�−1,ε

◦ f ′ → f ′ as ε → 0.

It is easily seen that each of the above mappings map X into a polyhedral neighbo-
rhood Z ′ of Y �−2 such that Y �−2 is a deformation retract od Z ′. As already explained,
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it proves the theorem in the case in which p ≥ �−2. If p < �−2, we have to continue
the above procedure (as long as needed) by making “holes” corresponding to points in
the lower dimensional simplexes. We leave details to the reader. The proof is complete.

��
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