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1. Introduction. In the previous papers concerning the change of vari- 
ables formula (in the form involving the Banach indicatrix) various assurnp- 
tions were made about the corresponding transformation (see e.g ;BI]. [GR]; 
[F]. [RR]). The full treatment of the case of continuous transformation is 
given in [RRj. In [BI] the transformation was assumed to be continuous, 
a.e. differentiable and with locaily integrable Jacobian. In this paper we 
show that none of these assumptio~s is necessary (Theorem 2) .  We only 
need the a.e. existence of approximate partial derivative.. 

In Section 3 we consider the general form of the change of variables 
formula for Soboiev mappings. 

The author wishes to thank Professor Bogdan Bojarski for many stimu- 
iating conversat;ions and suggestions. 

2. Assumptions and result. T;liTe start with recalling the classical res- 
ult of W-hitney ['tt'] on equivalent conditions for a.e. approximate differen- 
tiability of a function, 

Let u be a real-valued fi~nction defined on a subset E of X". we say that 
L = (L : ,  . . . , L, j is an ~ p r o z i m a t e  total diflerentzal of u at xo if for every 
E > 0 the set 

'l U ~ Z )  - u ( z o )  - Lix  - zo)j  a, = { z :  
lx - xGi 

has xo as s densir;:"- poiilt. If this is the case .uhe:i zo is a density point of E 
and L is 1m;queiy determined. If zo is a polnt of density in the direction or' 
each ax;s then the L, are the approxzmate partzal ierzvatzves o i  f at zo. 

THEOREM 1 ('T&-', . . Th. 1:. Let f : E -+ X be measurable, E $2". Then 
the followzng c o n ~ i t z o n s  are equzvalent : 

- 
aj  j i s  approzamately totally dzjferentiabie a.2. In 2. 
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[b) f i s  appr~x imate ly  derivable with respect to  each variable a.e. in E.  
(cj For each 2 > 0 there exists a closed set F 5 E and a function 

g E C1 (Rn) such that E \, FI < E ,  f i F  = g i ~  ( b y  1 . / we denote the Lebesgue 
measure).  

If f maps E  to Rn and each component of f satisfies the conditions of 
T:~eorem 1 (for simplicit;?, we will say that f itself satisfies them) then we 
can derine the Jacobian if in the usual manner. 

EXAMPLE. Ir' f : R - R, where f2 C Cn is open. has partial derivatives 
a.o. then (c) holds. For example. this is the case for f E w:: (0). 

In the sequel f2 denotes an arbitrary open subset of Rn. 
Let f : I2 -+ Xn . We say that f satisfies the conditzon N (Lusin's  condi- 

tzon) if 

,520, lEi = O  * i f ( E ) l = O .  

Let f : 0 - Rn,  and E C 0. The function i2 i f ( . ,  E) : Wn -+ 8 U (m) 
defined by 

iVf (y; E )  = card( f -' (y) 17 E) 
is called the 3a.nach zndzcatrzz of f .  

Yow we can state cur main result. 

THEOREM 2. Let f : I2 - Xn be any mapping,  where l2 (2 Cn i s  a n  
arbitrary open subset. 

I,' f satisfies one o j  th,e conditions (a): (b), (cj; then we can ,redefine 
i t  o n  u subset of  ,measure zero zn such a way that the new f satisfies the 
condition -V. 

I f f  satisfies one of  the conditions (a), [b), (c) and the condition ~"i the?, 
for every measurable f tnct ion u : X n  + W and every measurable subset E 
~f L? the following statements are true: 

1) The  functaonj ju o f j I Jf and ujyj,Vf ( y. E )  are measurable. 
2 I If moreover u 2 O then 

(u o fllJii dz = U(')P?~(~, El dy . 
E R" 

.3) i'f one of  the funct.uons (,u o f ) J f  i and ,u("jlVf j y)  E )  is integrable then 
so is the other (2ntegrabiEity o f  (3cjZ) / J f  I concerns the set E) and the formuZa 
of 2 )  holds. 

R e  rn a r 4 s. 1) X priori it is not ev~denr; that ( u  o f: I J; I is well defined, 
because the compos~t;on of two mappings. w ~ t h  the left mapplng being de- 
fined a.e., may be unclefined on a set of positive measure. But d we put 
(u c f '~ jx l I J~[x : /  = 0 whenever 'J,-i,r)l = (1 (even if ju o f \ ( x :  is not defined' 
it foilows from the proof that the function (LL o j ) i J f :  is well defined a.e. 
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2) It may happen (see Section 3) that f is continuous and the condition 
N does not hold. so when redefining f to make it satisfy this condition we 
may change it to a discontinuous mapping. 

P :- o o f o f T h e o r e m 2. In the proof we need a classical result. 

THEORE~I  3. Special case oj' Theorem 2 when f is a locally Lipschitz 
.napping (in this case the condition iV holds) .  

A short and nice proof of a slightly different version of Theorem 3 can 
be found in [BI]. For the sake cf completeness we sketch the proof of the 
above version in the Appendix. 

Xow we can prove our theorem 
Suppose that f satisfies one of the co~dit ions (a), (b), (c). By The- 

orem l ( c )  there exists a sequence of closed sets -Xx, C_ Q and functions 
g k  s C1(R") such that Xi, X k + l ,  f2 \, Uk Xk/ = 0 and g i , .~ ,  = f x, . Now 
we redefine f on the set Z = I1 \ U k  -Yk by sending this set to a point. The 
new f satisfies the condition N. 

Now we prove the second part of the theorem. It is easy to see that it 
suEces to consider any representative satisfying the condition N ;  we take 
the one defined above. 

-Assume first that u 2 0 is an arbitrary measurable hnction and E C f2 
is an arbitrary measurable sec. 

It follow-s from Theorem 3 that for k = 1 , 2 .  . . . 

[ (u 0 gk), Jgk 1 d s  = u( j i -Ygk !y .  E r SLj d y  . 
E P X k  R '* 

Since j = yk in XI , ,  it is easy to prove that  Jj = J,, a.e. in Xk.  Hence 

(.I) J (. 0 j) J;;  dx = J u(y)A7;(y. E 17 -Xi) dy  
E,n:Xk 2 

Clearly, 

lYence passing to  the limit on ;he left Sand side of (1) we obtain 

(we have used the fact that NZi = 0'). Consider the right hand side oi (1 J. It 
is clear that  



Since f (Z)l = 0, we have -N;.(y: Z) = 0 for a.e. y E W n ,  and hence 
', 

q ( y ,  E 17 Sr )  /" ?Jf y .  E c U xi/ .V,(y, E n  2) = ,?Yj(y, El 
r 

for a.e. y E Rn as k - a. NGW passing to the limit in the right hand side 
of ( I )  we get 

( 3  J r u ( ~ I - Q - ~ ( Y .  E P -Xi) d y  -+ 1 u ( y ) . V j  (2, Ej d y  as k -- cc . 
2" 2" 

Putting together (1)-(3) we obtain the theorem for u 2 0. The general case 
follows by the decomposition u = ?L- - u-. 

R e  m a r k. The above theorem admits some generalizations. For example 
one can generalize the "co-drea'' formula (see [HI). 

3. Change of variables formula for Sobolev mappings. As noticed 
1 1  above. each f E 14/-1,, ( Q , R n j  satisfies condition (b) in Theorem I, and 

so Theorem 2 holds for such S. This theorem generalizes the ckange of 
variables formula for Sobolev mappings (see e.g. [BI], Th. 8.4, [GR], Th. 
1.3, Ch. 5) where the attention was restricted to continuous l/t".n mappings 
satisfying the condition _V. The latter f~ rmu la  plays an important role in the 
quaslregular mappings theory, and so it seetns that its extension to arbitrary 
LC;:: mappings can also play a role. especially in connection with the recent 
resn1:s exrending the quasiconforma: rheory to i,~;," mappings where p < n 
(see e g. [ILlI!). 

In this section we obtain another  roof of Theorem 2 (avoiding Theo- 
rerr. 1'1 for f 5 (0. gQ). In fact. we obtain a stronger ~esu l t .  Namely. we 
prove that it suffices to redefine f E R;>;(LI. Xn) on the set {lJIlT f I = cc} 
for the condition ,V to 3e satisfied, 1% here iUh denotes the Hardy-Littlewood 
maximal func;ion and the mapolng f coincides everywhere -with its canoni- 
c ~ i  re~resentatn-e. 

L ~ h r a l . 4 .  Lei j t 4 J .  T h e n  t h e m  szzsts a sequence o j  compact 
,-- 7 -  -Y;. , ,ik,: .'? and Lipsc.i i~z ~ ~ n e t i o n ~  ~ 1 ,  E Lip(i2) such, t ha t  = 

gi;;;{.ci,, i;! \, Llk XE = {J f j 'G j l  = ,XI- cind h e n c e  iR \, Idlc Xki = 0. 

Then we can cxnwiete ocr proof as !n Section 1. 
The proof of this lemma presented below is due to Professor Bojarski. 

P r o o f .  It is enough t c  consider R = Xn. We nepd two well kncwn 
inequalities: 



For almost all y E Q! 

If g 2s measurable then f ~ r  all z E Q: 

Here Q denotes a cube and hq = Q)-' JQ h. The proof of the first 
inecuality can be found in [GT], Lemma 7.16, for the second see [He]. 

Integratirg both sides of the first inequality over a ball (more precisely. 
taking i B ( t ,  r i - '  k(r i, . . . dgj  and appiying the inequality 

we see that the right hand side is estimated by C4 JQ i V j :  Ix - z '-" d z .  Now 
letting r - 0 we obtain 

for all z (where ,f (z:i is defined by (4)). 
For any 2 :  y E Rnl we can find a cube Q containing x, y with diam Q 5 

C5jz - yl. Then 

Hence if .Ar, = {x : _JIiGf' i  .2;.r 5 kF then we have f ~ ,  E Lip,,c7 (A,) 
and lidn \, 1 J k  .Ac' = 0. Now the lemma foilows by the Kirszbraun's theorem 
I I !  K;, 'Fi, . Th. 2.10.43. [S;, Th. 3.: J stating :hat each Lipschitz function de- 
Rneci on a snbset sf a :netrlc space can 3e extended to a Lipschitz func~ion 
defined on the whoie space ~ i r h  ;he same Lipschit2 constant. 

Now, as noted ascve. tile change of ~rariaoles formuia fgr Sobolev map- 
yngs  follows bv the same c'ticu:aticns its :n Section I. 

Xote that since the ;nec;iiaiity 5) nolas ior ail J: and 3 such that either 
?/ifizi or A 4 j ( y ~  is finite I to avoid the case 'cc - =I In the left :land side of 
'3 i J .  .ve obtain the kllow~ng weii known result as itn immediate consequence: 
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it is well known that if p > n then every N;::(Q, Rn) mapping is contin- 
ucus and satisfies the condition N (see e.g. [BI], Lemma 8.1). An important 
question arises: 

Does Theorem 2 hold uithou.t redej5ning f o n  any  set provided that  j E 
PV;: (0, Rn j i s  continuous'! 

The answer is negative. Indeed, in [PI], [P2] Ponomarev constructed an 
example of a homeomorphism f : i0,1In -+ 10. lIn of class bV1 p for ail p < n 
for which the condition Y faiis. In [R2] Reshesnyak constructed an example 
or' a continilous mapplng of class jXn) without the property i7i when 
n = 2. in  [V] Vaisala extended this result to all z 2 2. 

Assume that 1)-3) of Theorem 2 hold for a mapping f for which the 
condition JV fails. Then there exists a set E with jEi = 0 and f (E)i  > 0. 
We have 

O =  J ' J f d s =  J ! \ ( y . E j d y > f ( E ) i > O .  
E X" 

This contradiction compietes the proof. 
On the other hand. Reshetnyak proved ix [Rl]. [R2] that if -0 2 Xn and 

f E W1 T ( Q )  is a homeomorphism then f satisfies the condition LV. 
Other results and references concerning the condition iV can be found 

in ilI].  

4. Appendix. In this a~>per_ciix we sketch the proof of Theorem 3. 

THEORE~I.  L z t  f : j;! - Rn. w h e w  r? Rn ,IS a n  open subset ,  be a locally 
Lzpschztr mappzng. Let u : Rn -- R be a n~easurable function and E Q a 
meas7~ra6le set. T h e n  

1) T h e  f ~ n c i z o n s  ( u  c j) 1 Jf i and u('),Vf (y. E )  are measurable. 
2) IS moreover ?L 2 0 then, 

[ ju 3 f d i  = J u ( y ) i ~ - ~ ( y _  E )  d y  . 
V 

. " 

I7 - 2 

3) one o f  the function:; (?L t2 j ' j  1 JS  I and u(')iVf (', 3) is integrable then  
so is the other (integrabiEity , 3 j j  .LS ! J ;  ' i concerzs the  set E )  and tlZe form,uia 
of 2 )  holds. 

R e rn a r !i s. 1) If f :s 3 10ca!lv Lipschit2 mapping then by Rademacher's 
theorem J;  exists almoss everywhere and it :s locaily beunded because the 
ciern-atives $]I' f are bounciea bv tne Llpschisz cmstant .  

3: The first remarx made after Theorern 2 also applies here. upon using 
Lemma 3 belcw. 



S k e t c h  of p r o o f .  

L~brx1.A 1. Under the assumptions of the theorem, 

r ,Jf(x)ds = f ~ ~ ( y , Q ) d y .  
J 
n R- 

P r o o f. This fact is well knowc. The reader can find its elegant proof in 
[SI', Th. 5.3. 

LEMMA 2. Let f satzsfy the above assumptzons. Let E = {x : J p ( x )  = 0).  
Then 

-4 c an, 1-l-i = o + i f - l ( i i )  ', E' = 0. 

P r o o f. If 9' G fi then by Lemma 1, the function Nf(., 0') is integrable. 
Taking a sequence Rk G QkT1 with U k  Qk = fl we get the generai case, so 
we can restrict our attention to the case when N f ( . ,  Q) is integrable. 

Let A c Rn, l i l l  = 0. Then for each E > 0 there exists an open set 
L- 2" such that A U, /Ui < E .  Then f T 1 ( A )  f - ' ( U ) ,  hence 

= 1 f - ' ( i Y ) )  d y  = l V f ( y .  fl) d y  
C' CT 

The P lnc t i~n  !Yf(., J2) is intzgrable and U is arbitrarily small, hence 
&-. ( , , 1 J: 1 = 0 by absolute co~t inui ty  of the integral; but now ; Jf 1 > 0 
on f--(-4) \ E. hence jf-'-(A) \ El = 0. 

Now we can divide the proof of the theorem into six steps in a standard 
manaer. Except for Steps 1 and 3 we omit the simple proofs. 

S t e p 1: E = -72. 71, a simple function ccnstant on open sew. Let V- Wn 
5e an open set. We have 

Now it su5ces to take a linear combinatio~l of characterisric functions. 
S t e p 2: E a compact subset of E. u, a simple function constant on open 

sets. 
S :: e p ,3: E a compact subset of f2. 2 dn arbitrary simple _Cuac:ion. I t  

su5ces to assume that z is a characteristic function of an arbitrary mea- 
surable set. Xow there exists B non~ncreasing sequence uk of characteristic 



functions of open sets tending t o  u a.e. Then: 

( 6 )  u k ( y ) ~ ~ ~ ~ ( ~ ,  Ej -+ u(y )%(y .  E )  for almost all y E Rn , 
(7) ( u ~ o ~ ) / J ~ ( x ) / + ( u o ~ ) ( x ) ~ J ~ ( x ) ~  f r3ra l rnosta l lxz:E.  

The cclnvergence (6) is obvious. To prove (7) noiice that we have equaiity 
of both sides of (71 on zhe set (x : Jf(x) = 01, and the convergence on the 
complement, of that set is a direct consequence of Lemma 2. Sow Step 3 
follows by passing to the limits (6,) and ( 7 )  under the integral sign. 

S t e p 5: E a compact subset of R.  u > 0 an arbitrary measurable func- 
tion. 

S t e p  3: E an arbitrary measurable subset of f2, u > 0 an arbitrary 
measurable function. 

S t e p 6: The general case. 
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