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1. INTRODUCTION AND STATEMENT OF RESULT 

IN THIS PAPER we assume that Mm and N” are two smooth, compact, Riemannian manifolds, 
aNn = 0, and additionally we assume that N” is embedded in V’. For two such manifolds 
we define 

WISp(Mm, N”) = {f~ WISp(Mm, F?‘) :f(x) E N” a.e. x E Mm) 

where 1 sp < co. 

This definition is far from being intrinsic. For an intrinsic definition of WrTp(Mm, N”) see [ 11. 
In this space, beside the standard topology induced by the norm (1. ]ll,p, we also have weak 

topology and weak convergence. 
Let fk, f E W’~p(Mm), where 1 < p < co. We say that fk converges to f in weak topology 

iff fk + f in Lp and the set (lIVfk[lp)k is bounded. Weak convergence is denoted by fk - f. 
It is not difficult to prove that our definition is equivalent to the standard definition of weak 
convergence in Banach space. We aim to prove the following theorem. 

THEOREM 1. If n,(N”) = . . . = n,(N”) = 0 (k-positive integer) and: 
(a) 1 I p < k + 1, then C”(Mm, N”) is dense in WISp(Mm, N”) (i.e. in the norm topology); 
(b) p = k + 1, then C”(Mm, N”) is sequentially dense for the weak topology in 

WITp(Mm, N”) (i.e. every WISp(Mm, N”) mapping is a weak limit of a sequence of smooth 
mappings). 

Remarks. (1) Note that usually, weak sequential density and density in the weak topology are 
two distinct notions. It is not contradictory as weak topology is not metrizable (compare with 
the remark made at the end of this section). 

(2) Note that k < n. For if not, the manifold N” would be contractible, but it is not. 
(3) We should recall the theorem of Schoen and Uhlenbeck which, together with the theorem 

of Bethuel (theorem 3) gives the complete characterization when smooth mappings are dense in 
WITp(Mm, N”) (in the norm topology). 

THEOREM 2 [2,3]. If p L m then C”(M”‘, N”) is dense in W1~p(Mm, N”). 

(4) Point (a) in theorem 1 is a special case of a very difficult theorem of Bethuel, but our 
approach is different from that of Bethuel. 
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THEOREM 3 [4, theorem 11. If 1 I p < m, then C”(Mm, N”) is dense in W1,p(Mm, N”) if and 
only if n&V”) = 0. 

The following corollary follows from point (b) of theorem 1. 

COROLLARY 1. If k L 2 is an integer then C”(Mm, Sk) is sequentially dense for the weak 
topology in W1*k(Mm, Sk). n 

This special case of theorem 1 has already been proved by Bethuel[4]. As far as I know it was 
the only theorem about the weak sequential density so far. 

We should note one more theorem proved by Bethuel in [4]. He proved that if m > p > 1 is 
an integer and n&V”) # 0, then smooth mappings are dense in WiVp(Mm, N”) for the weak 
topology, but he was not able to prove the weak sequential density except the case N” = Sp 
(compare with remark 1 made after theorem 1). 

2. TRIANGULATIONS, SKELETONS AND RETRACTIONS 

We introduce some basic notions concerning triangulations, skeletons and discontinuous 
retractions corresponding to them. We say slightly more than we use in the rest of the paper. 
In fact the ideas of this paragraph are due to Bojarski [5]. 

By a’ we denote the standard I-dimensional simplex. Let y E int cr’ and P’: d\(y] -+ da’ 

be standard retraction-projection longways radii. Obviously Pj E W1,P(a’, da$ for p < 1. 

Let T be a finite, smooth triangulation of N”. By T’ we denote the I-dimensional skeleton of 
this triangulation consisting of the simplexes laf]7= 1 (writing T’ we sometimes will think about 
a subset of N” and sometimes about the set (of]% i). 

If _$ E int al for i = 1, . . . . r,, then we set 

P”n n = Yl, . . ..Yrn PJ”; 0 . . . 0 P;“: E W1*p(Nn, Tn-‘) for p < n, 
n 

where the mappings P;; are extended to the whole manifold by the formula P~$) = x when 

x $ a;. 
This mapping is locally Lipschitz outside the set W” = (yy, . . . , yFn), where it is not defined. 
If $’ E int al-’ for i = 1, . . . , r,_ 1, then we set 

P;!- f n-1 = , . ..a.“_, Pyyf’ 0 . . . o Py!;,t 1 T”-’ -+ T”-2 9 

where the mappings PJfi are extended to the whole skeleton as above. Evidently 

Py;- ,’ ( . . ..Y”_’ a p 
n 
* n E Wlpp(Nn, Tn-2) 

I” I Y1* . . ..Y. 

forp< n - 1. 
This mapping is locally Lipschitz outside the l-dimensional singularity 

w’ = (P~~,...,,Z)-‘((r;-‘, . ..J.“::]) u w” 

(note that this is a disjoint sum as the mapping Py”;, ,,,,yy is not defined on W’). 
Continuing the above construction we obtain the mapping 

for p < n - k. 

Pyt:P n-k 0 . . . 0 p”, 
9 . . ..Y.“& 

y,, ._,, y;m E WIFp(Nn, T”-k-l). 
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This mapping has a k-dimensional singularity 

Wk = (Plfyk+’ 0 *** ~P,y((ylf-k, . . ..yy-Z]) u wk-‘. 

Remark. Note that the sets Wk for k = 0, 1, . . . . n are skeletons of dual complex to triangu- 
lation T. This dual complex is sometimes used in the geometric proof of the Poincare duality 
theorem. Note also that Tnmk-’ is a deformation retract of N”\ Wk. 

Actually, we have to modify slightly the mappings just described as they are needed for our 
proof. We will define retractions not onto the skeletons Tnpkml, but onto their neighborhoods. 

Let pE : [0, l] -+ [0, 11, p,(t) = max(t, E} (E E [0, 11). We define the mapping Pi,e: cf\{y) -+ d 
by formula 

(we have used the affine structure on the simplex d, see Fig. 1). 
Note that Pj,E is a retraction from d\(y) longways radii onto d\d,,,, where dy,E is a 

homothetic image of the simplex d under the homothety with the center y and scale equal 
to E. Hence Pj,E is a homotopy between Id~,t,,l and Pj when E goes from 0 to 1. If y; E int al, 
i= 1 , . . . , r,, , and E E [0, l] then we can define analogously as above 

~,“;,,..,,;~n, = P;;,~ 0 -.- 0 Py”:.,, E W1,pU’Jn, N”) 

for p c n. 
Moreover, 

IIPY”;, . ..) y;.,& - Id,. 11 1.P ,To 0. 

Now we define analogously retractions onto neighborhoods of lower dimensional skeletons. 
First we will be concerned with a single simplex a”. By (a~-‘)~=+: we denote the family of 
simplexes from the boundary &r’. 

Let y” E int a”, c0 E [0, I], y;-’ E int OF-‘, i = 1, . . . , n + 1, .sr E [0, 11. Let 

P;&: a”\(y”j + #\a;;& 

be defined as above. 

Fig. 1. 
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1 

Y"+(~~-',,,,(p,'.,,(x)tY") Ix-Y”l 

IP~",,WY"l 

Fig. 2. 

To omit huge notations, we will denote by %I’ the given family of points from interiors of 
I-dimensional simplexes. In our case y”-’ = (y~-‘)~Z:. 

Now we define the retraction onto the neighborhood of the (n - 2)-dimensional skeleton of 
cm by the formula 

where 

(see Fig. 2). Note that for given z E a”\(y”) at most one pi does not act on z as an identity. 

The singularity of the mapping (1) is l-dimensional. As we have already said, (1) is a 
retraction onto the neighborhood of the (n - 2)-skeleton. This neighborhood can be deforma- 
tionally retracted onto this skeleton. The retraction can be obtained by passing to the limits 
Eg + 1, E, + 1. 

Evidently PCyn, EO)r (yn-l,E,) E W’vp forp < n - 1. 

Extending the above definition to the whole family of n-dimensional simplexes (o,?)~= , = T”, 
we obtain the retraction onto a neighborhood of Tnm2 

4Yn .Eo),(yn-l,&l) E W1*pWn, N”) forp<n- 1, 

where y” = (y’f, . . . . y,J, ?I”-’ = ly’f-‘, . . . . yFn::). 
This mapping has l-dimensional singularity W’, which does not depend on the choice 

of E, and e1 . Passing to the limits q, + 1, ai + 1, we obtain a deformation retraction of a 
neighborhood of Tne2 onto Tne2. Moreover, 

JlY? 1). (Y”_‘, 1) = Py;: f n-t 0 P"" 
9 . . ..Yr”_. Yl. ..-,Y:“’ 

Analogously we can define retractions onto neighborhoods of the lower dimensional skeletons. 
This leads us to the following theorem. 
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THEOREM 4 [5, proposition 41. If y”-j = (y;-‘, . . . . yy,ij), where yy-’ E int cry-j, and Ej E [0, l] 
forj = 0, 1, . . ..n - k - 1 then 

(1) p = ‘(yn,@. . . . . (‘y*+‘,&,+_,) E W’~P(NR, N”) 

forp < k + 1. 
(2) Mapping P has the (n - k - 1)-dimensional singularity Wnek-*. It is the (n - k - l)- 

dimensional skeleton of the dual complex to triangulation T. This singularity depends on the 
choice of (y~-‘li j, but not on r&jjlj. 

(3) The mapp’ing P retracts N”\Wnsk-’ onto the neighborhood of Tk. We obtain the 
deformation retraction of this neighborhood onto Tk, when we pass to the limits Ej -+ 1 for 
j=O ,...,n-k- 1. 

(4) I(P - Zdjv”II1*, 4 0 when Eg, . . . . &,-k-l -+ 0. 
(5) The skeletons Wneksl and Tk are transversal in the sense of Borsuk, i.e. Tk is a 

deformation retract of N”\ Wndkml and Wnskbl is a deformation retract of N”\Tk. n 

Remarks. (1) The notion of the transversality in the sense of Borsuk was introduced in [6]. 
(2) We have not used the assumption that N” is embedded in lRV in this section. 

3.A LIPSCHITZ MAPPING 

Let N” c IR” be a compact submanifold and T be its smooth triangulation. 

LEMMA 1. If n,(N”) = .. * = xk(Nn) = 0, then there exists a Lipschitz mapping r: IV’ + NR 
such that qrk = h&-k. 

Proof. First we prove the following lemma. 

LEMMA 2. Under the assumptions of lemma 1 there exists a Lipschitz retraction 
p: R” U CTk --) CTk, where CTk denotes the cone over Tk (CTk is embedded in Rut’), 

Proof. The existence of continuous retraction follows from the fact that Tk is a Lipschitz 
neighborhood retract and CTk is contractible. We divide lR” into small cubes using the lattice 
points. On the cubes lying near Tk, we define p as a Lipschitz neighborhood retraction onto Tk. 
On the remaining cubes we define retraction on skeletons using the fact that CTk is 
contractible. This way we have defined a continuous retraction which, in addition, is Lipschitz in 
a neighborhood of Tk. We can improve this retraction to a Lipschitz one because CTk c I?“+’ 
is, up to a biLipschitz equivalence, piecewise linear and, hence, is a Lipschitz neighborhood 
retract. Now it suffices to smooth mapping p (we do not improve p in a neighborhood of Tk, 
as in this neighborhood p is Lipschitz) and compose this improved mapping with the Lipschitz 
neighborhood retraction onto CTk. n 

We are now in a position to finish the proof of lemma 1. 
By lemma 2, it suffices to prove the existence of Lipschitz retraction A: N” U CTk + N” 

(N” U CTk C R’ U CTk). Indeed, given A, we will define 1 by the formula q = 1 0 p. The 
existence of continuous retraction follows from the fact that N” is k-connected and CTk 
consists of (k + l)-dimensional simplexes. Then, smoothing argument ensures the existence of 
the Lipschitz retraction. n 
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4. MORE LIPSCHITZ MAPPINGS 

We will use the notation from Section 2, but we will make one restrictive assumption. We 
assume that the center of retraction Pi,,: d\{x) --t o’\&, i.e. the point x, is far enough from 
the boundary ad. Namely, we assume that x E d,, 1,2, where m denotes the baricenter of the 
simplex d. We make this assumption to have a uniform estimation of the Lipschitz constants 
of the mappings we will define soon. 

Let y”-’ = ]r:-j, . . . . J$+), j = 0, . . . . n - k - 1. Moreover, assume that y;-j are taken 
in accordance with our restrictive assumption. Let E E [0, 11. The image of the mapping 

P, = qyn,,, ,...) (Y’Lf1.E) is a neighborhood of Tk. We denote this neighborhood by ‘U,Tk (this 
neighborhood depends on the choice of y”, . . . , ‘JJ k+l but for the sake of simplicity we do not , 
point it out in the notation). 

The interior of N”\U, Tk will be denoted by 0, Tk, and the common boundary of U, Tk 
and (3, Tk will be denoted by Bd, Tk. We will work now with fixed ?J”, . . . , yk+‘, but we will 
change E (see Fig. 3). 

We can represent N” as a disjoint sum 

N” = Tk U Wn-k-l U u Bd,Tk. 
E E (091) 

(2) 

If E, _( sz, then PC, restricted to Bde, Tk defines the Lipschitz mapping 

PC,: Bd,, Tk + Bd,, Tk. 

Therefore, every continuous function 9: [0, l] --t [0, l] such that P)(E) 2 E, ~(0) = 0, ~(1) = 1 
defines the continuous mapping 

Pq:N”+ N” 

by the formula 

P ColT k = IdTk; 

P .,w”-k-1 = Idwn-k-1; 

P,j&fTk = PqcEj: Bd, Tk --f BdpcEj Tk. 

Fig. 3. 
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Fig. 4. 

Now we will define a rather complicated Lipschitz mapping qs from IR” onto N” (generalizing 
the construction from Section 3). To clarify the idea, we will do it in a few steps. 

Step 1. Let q+, be defined by its graph (see Fig. 4). 
Then Pq, defines the Lipschitz mapping with the following properties: 

(1) P&$ll,Tk = %l,TG 
(2) P&U%, Tk) = Tk, 
(3) P&&/Z Tk) = N”, 
(4) Lip(Pq,) 5 Ce-‘, 

(Lip-Lipschitz constant), where this estimation of the Lipschitz constant is uniform with 
respect to the choice of y”, . . . , yk” (remember about the restrictive assumption). 

Step 2. Let E < 2/3. We extend now Pq, to a mapping defined on a tubular neighborhood of 
N”. Consider the family of functions ps for 6 E [0, 1 - E] defined by their graphs (see Fig. 5). 
(Note that if 6 = 0, then ps coincides with p0 defined in step 1. Moreover, Pq,_, = IdNn.) If 
A > 0 is sufficiently small, then 

v = lx E IT?’ : dist(x, N”) I A) 

is a tubular neighborhood of N”, and the nearest point projection n: v + N” is smooth. Now 
we define the Lipschitz mapping 

Q:=?)+N” 

as follows 

Q(x) = P,((I-s,/kj dist(x,Nn)(n(X))* 
The mapping Q has the following properties: 

(1) QIN” = Pp,> 
(2) Qlav = qav, 
(3) Lip(Q) I CE-’ (for some constant C independent on the choice of y”, . . . . yk+i). 



P. HAJLASZ 

a6 
/ 

1-6-e 

miu (42, 1-6-r) 

Fig. 5 

Properties (1) and (2) are obvious. We will prove (3). This follows from the observation that 
Q is Lipschitz in the horizontal (i.e. parallel to N”) direction as well as in the vertical one, and 
in both cases the Lipschitz constant is bounded by C&-l. 

Step 3. Finally, in this step we define the Lipschitz mapping (depending on the choice of 
y(“, . . . . yk+’ and E E [0, 11) 

qE: R”+ N” 

with the following properties 

(a) &lUU,rk = Zdvcrk9 
(b) Lip(q,) I CE-’ (for some constant C independent of the choice of y’, . . . , yk+‘). 

Remark. Note that the mapping uE is similar to the mapping q defined in Section 3. In fact one 
can prove, following the same ideas as in Section 3, that there exists a Lipschitz mapping 
satisfying (a). I hope that one can prove that the mapping obtained in a similar way as in 
Section 3 admits the estimation (b). This may simplify our considerations. 

First we have to define a special subset G C p. The representation (2) defines the function 

y: N” + [0, 11. 

Namely, y sends a point x E N” to an index of film to which x belongs (rk is endowed with an 
index 1 and Wnmkml with an index 0). Now we define the set (? as follows 

(? = 
L 

l--E 
x E v : y(n(x)) I ah, where olg is defined in Fig. 5 with 6 = T dist(x, N”) 

1 
. 

The nearest point projection rr: cc? + N” admits a smooth extension rr: R” + R”, which 
is equal to identity outside the slightly bigger tubular neighborhood than %’ (hence rc is 
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Fig. 6. 

Lipschitz). Now we are in a position to define the mapping qE, 

Q(x) for x E G, 

V;(X) = rl 0 Q(x) for x E Vij\G, 

rl a x(x) for x E R’\V. 

We know that Q maps the boundary of c onto Tk, 17 acts on Tk as the identity, and Q coincides 
with rc on av. Therefore the mapping qa is continuous and hence Lipschitz. 

Since the mappings q and n are Lipschitz with the Lipschitz constant independent of E and 
the Lipschitz constant of Q admits the estimation Lip(Q) I CE-‘, then the Lipschitz constant 
of qs admits the desired estimation (b). 

it 

5. PROOF OF THEOREM 1 

In this section (as in Section 4) C will denote the general constant and in different formulas 
may denote different constants. 
This proof extends some ideas of [7, theorem l] and of the last part of [S]. 
Let f E W’7p(Mm, N”). We have to prove that: 
(a) if p c k + 1, then f can be approximated by C”(Mm, N”) mappings in the norm 

topology; 
(b) if p = k + 1, then there exists a sequence of C”(M”, N”) mappings convergent to f in 

W lYP-weak topology. 
We will prove simultaneously (a) and (b). First we have to introduce some notation 

concerning the triangulation T of N” and related retractions. Let us consider the mapping 
defined by the formula 

Let 
J?Y! E) = 4Yn,o,, . . . . (Yl+l.o),(Y!E) - 

&, T’-’ = int(N”\Ptyl, ,$N”\ W”-I)). 

The set &, T’-’ depends on the choice of %I”, . . . , y* and E. There exists a constant C > 0 such 
that the maximal number &(E) of sets y” (chosen in accordance with the restrictive assumption 
from Section 4) such that the corresponding sets QE T”-’ are pairwise disjoint is not less than 
CE-“. Assume that the set 3” is fixed. Now there exists a constant C (independent of the choice 
of y”) such that the maximal number &-r(e) of sets ynml (restrictive assumption) with the 
corresponding sets Q2, Tnm2 pairwise disjoint (&2, T”-’ has no common points with 3”) is not 
less than Ce-(“-‘I. Analogously, we can define the numbers k,(e) 2 CE-‘. 
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Fig. I. 

Let Y I, . . . , Y Zncs be a family (of sets 3”) such that the corresponding sets 

Qa,J”-‘, . . . . Qze,k,&-“-l 
are pairwise disjoint. We have 

kn@) 

i , i= 1 f-‘(Q2. iT”-‘) 
(IfI” + ldflp) 5 lb%‘,,. 

Hence there exists j E (1, . . . , k,(~)] such that 

s f_,~Q 
2Z.J 

T”_l 
) 
(b?’ + kVlp) 5 $ Ilflh’,, 5 C-l~“llflli’,p. n 

Fix the set yy. Analogously there exists the set yyn-r such that 

s 
f_,(Q T”_2 (IflP + Idfl’) 5 C-ls”-‘tlfllf,p. 

2c ) 

Fix the set y”-‘. Now there exists the set yy”-’ . . . . Finally we find the set yk” such that 

s 
f_‘(Q 

2e 
T”) (IflP + Idfl’) 5 C-ick+‘llfl/:,,. 

Hence the following trivial fact 

0,, Tk = u;:f Qzc T”-’ 

implies that there exist the constants C’, C > 0 such that 

p + 'df Ip) I C'(P + C-l + ..- + -ck+‘)“f “f,, I Cek+"'f ‘If,,. (3) 

(If y”, . . .) yk” are chosen as above.) 
Let us assume that for every E E [0, l] the sets YF, . . . , 3:” are chosen in such a way that 

(3) holds. Moreover, we can assume that 

If-‘(Q, Tk)l ,70 0 (4) 

(1.1 denotes Lebesgue measure). 
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Let qE: IR’ -+ N” be the mapping defined as in Section 4 with respect to the sets 
y;, . . . . yf+‘. 

LEMMA 3. (a) If p < k + 1, then qJ,,-, f in Wisp. 

(b) If p = k + 1, then ~,f,,~ f in Wlpp (i.e. weakly). 

Proof. Since qE f differs fromf on a set of arbitrary small measure (compare (4)) and all the 
mappings are bounded we have that q,f + f in Lp when E --t 0. We estimate the gradient. 

s Idhf - f )I’ = 
qaf(x) = f(x) for x E f-‘(‘U,Tk) hence 

Mm d(qs f)(x) = df(x) for a.e. x E f -‘(V, Tk) > 

= 
i 
f_‘(o 

E 
Tk) Id&f) - df 1’ 

I 
s f-l(e,T*) Idf IP > . 

The second integral converges to 0 with E -+ 0 because of (4). We estimate the first integral 
using the inequality (3) 

E-P 
E 
Tk) Idf 1’ 5 CE(k+1)-Piif I@,,. 

(a) If p < k + 1, then this integral converges to zero. 
(b) If p = k + 1, then this integral is bounded. n 

It suffices to prove that there exists the sequence of Lipschitz mappings f, E Lip(Mm, N”) 
such that: 

(a) ifp < k + 1, then iif, - reef iiI,pE?oO; 

(b) if p=k+ 1, then f,-f in Lp and ]]d(f, - qE f )Ilp < C where C is a constant 
independent of E. 
(Note that the existence of Lipschitz approximation implies the existence of smooth one-by a 
standard argument-convolution approximation composed with nearest point projection, see 
e.g. [S, lemma 21.) 

We know that there exists a sequence of smooth mappingsfi E C”(M”, R”) such that fr + f 
in Wisp and a.e. 

Let 7z : IR’ + IR” be a smooth extension of the nearest point projection from the tubular neigh- 
borhood onto N”-as in Section 4. 

Since fr converges to f in measure and since 1 f -‘(Oza Tk)l + 0, then for every E > 0 we can 
choose an index I(E) such that 

I(X G,)-l(~y \% Tk)l ,TO 0. (5) 

A large part of the values off lies in Y.tZE Tk = N”\02, Tk (more and more with E + 0), hence 
if I is large enough then almost the same part of the values of J; lies in a neighborhood (in P’) 
of ‘I& Tk, hence we can choose I(E) large enough to satisfy (5) (because the projection of the 
neighborhood of U2,Tk is a subset of ‘U,Tk). 
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Evidently TC 0 J; [s*, n 0 f = f in W’,p (as composition with smooth mappings is continuous 

in W1*p (see e.g. [l-3; 7, p. 631)). 
Hence we can assume enlarging I(E) (in the case of need) that 

I’ Id(n oj&) - df Ip < sp+‘. (6) 
Mm 

Since qs 0 rc 0 ficEj differs from rc 0 ficEj on a set of measures convergent to 0 with E -+ 0 (by (5) 
and the definition of qa) then qE 0 n 0 flcEj + f in Lp (as all the mappings are bounded). 

Now we estimate the gradient. Let g, = n 0 flcEj and A, = g;‘(cU,Tk) (this is a completion 
of the set described in (5)). We prove that f, = qE 0 g, are desired Lipschitz mappings. We have 

5 kVrl,g, - v,f)I” = s 5 + 
Mm 4 

Mm\A = ZI + Zz. 
c 

The map r], acts as an identity on g,(A,), so d(q,g,) = dg, a.e. in A,, hence 

I, = 
.r 

Id@, - v,f)iP 5 C 
(.i 

1% - f)lP + 
.i 

b(f - v,f>IP . 
4 4 A, > 

The first integral on the right-hand side converges to zero. Estimation of the second integral 
follows directly from lemma 3: 

(a) if p < k + 1, then it converges to zero; 
(b) if p = k + 1, then it is bounded. 

z, = 
i 

IdrlAg,) 0 dg, - W(f) 0 df 1’ 
Mm\A, 

5 2p-’ 
kb,W 0 dg, - drle(g,) 0 df 1’ 

Mm\A, 

+ ! k&k,) 0 df - drl,(f 1 0 df 1’ 
Mm/A, 

I c ( s E-P ]dg, - df Ip + 2&-P 
M”‘\A, 

The first integral converges to zero as it follows from (6). Now it remains to estimate the 
second integral. 

E-P s Idfl” 5 E-P Mm\A 

E s f-q0 
ZE 

7”) + E-p s g~‘(~),f-q~z,r~) + E-P i g;‘(lRw”) 

= J, + J2 + J3. 

J1 =&-P 
s 
f_,(8 

2E 
T”) Idf 1’ 5 (by (3)) 5 ce(k+l)-Pll f II:,,. 

(a) If p < k + 1, then Ji C~O 0. 

(b) If p = k + 1, then J1 is bounded. 
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Now we estimate J3. The map fr converges to f in measure, hence 

1591 

thus enlarging (if necessary) I(E) in the definition of g, = 71 0 flcEj we can assume that 
J3 < EETOO. 

Estimation of J2. Since z 0 fr converges to f in measure and the distance between O,Tk and 
‘U,, = N”\02,Tk is positive then 

Thus enlarging (if necessary) I(E) in a definition of g, we can assume that J2 < E ,-s’, 0. n 
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