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ABSTRACT. - Let where Q ç Rn is a bounded open domain,
be a set of all mappings u E W 1 ~P ( SZ, Rn ) such that adj Du E Lq Among
other results we prove that if n - 1  p  n, 1  q  n/ (n - 1), then
the subclass of mappings, which consists of mappings with bounded
(n - 1)-dimensional image, is dense in the sequential weak topology of

We also extend this result to other Ap,q type spaces.
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1. INTRODUCTION AND STATEMENT

Let Q be a bounded domain. We define

where the matrix adj Du satisfies the identity (det Du)Id = Du adj Du.
Spaces of this type arise in a natural way as classes on which variational

functionals related to nonlinear elasticity are defined (see e.g. [1], [5], [6],
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416 P. HAJLASZ

[7] [8], [10], [16], [19], [21], [22], [24], [29]). It is very important to note
that if q > p/(n - 1), then the space is not linear. The space is

endowed both with strong and weak topology. We say that u strongly
in if u strongly in and adj Duk - adj Du strongly in Lq;

u weakly in if u weakly in and adj Duk - adj Du
weakly in Lq. All kinds of weak convergence, as usual, will be denoted
by "harpoon" ~ in place of "arrow". Our main results are Theorem 1 and
its generalisation, Theorem 3.

THEOREM 1. - Ifu E Ap, q ( SZ ), SZ C Rn, n -1  p  n, 1  q  n / ( n -1 ),
then there exists a sequence E such that values of belong
to a certain bounded (n - 1)-dimensional simplicial set (which depends
on v) and - u weakly in In the other words the subset of

which consists of mappings with bounded (n - 1)-dimensional range
is dense in in the sequential weak topology.

Remark. - Note that it is not possible to substitute in the above theorem
weak convergence in by strong convergence. Othervise we would
have (after passing to a subsequence), Du a.e. and hence

0 - det det Du a.e.

COROLLARY 1. - If u is as above, then there exists E such

that -~ u weakly in and det 0.

COROLLARY 2. - If u E n ~.1 ( SZ ), then for each q  n / ( n - 1 ) there
exists a sequence u~v>, such that E ~ u weakly in

and det 0.

The above corollaries are in contrast with the following theorem of
Miiller-Qi-Yan [24].

~~ ~ 
n

THEOREM 2 [24, Lemma 4.1 ] ). - Let p > n -1, q > 
n - 1

and - u weakly in 

1. If q > n , , then det det Du in 
n-1

2. If q = 
n 

and det 0, then det det Du in L1(K)
for all compact sets K C SZ.

The following theorem generalizes Theorem l.

THEOREM 3 . - If u E p  n, then there exists a

sequence E Rn) such that values of belong to a

certain bounded [p]-dimensional simplicial set (this set depends on v) and
u(v) ~ u weakly in W 1 ~P. Moreover if adjs Du E for some s, qs
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such that 1  qs  ( [p] + 1 ) / s, then we can additionally obtain that
adjs Du weakly in 

Remarks. - 1) Up to the sign and order, adj s Du is a multidimensional
matrix consisting of all s x s minors of Du (cf [5]). By [p] we denote the
greatest integer, less then or equal to p.

2) By the same reason as in the case of Theorem 1, we cannot substitute
weak convergence by strong convergence.
Theorems 1 and 3 are in some sense related to the results about the

approximation of Sobolev mappings between manifolds N) ([28],
[3] [2], [15], [4], [13], [12]). At first sight the problem seems to be
different because of a different nature of Sobolev mappings N)
and mappings However the careful study shows some deep
connections between these problems. In particular the crucial (for us)
method of retractions (Lemma 1) is a modification of the analogous method
previously used in the context of approximation of Sobolev mappings
between manifolds [4], [13].
To see further connections between the theory of and

mappings we refer to [14].
By Q" we will denote a "general" n-dimensional cube. By C we will

denote a general constant. It can change its value even in the same proof.
Writting for example C(n, p), we will show that this constant depends on
n and p only.

2. PROOFS OF THEOREMS 1 AND 3

Before we proceed to the proofs of these theorems, we shall state and
prove main technical lemma (Lemma 1 below). The following mapping is
defined in Rn ~ ~ x ~ :

In other words is a mapping which is an identity on the complement of
the ball B’~ (x, ~), and which is a projection along radii onto the boundary

~) inside the ball. Evidently is discontinuous at z - x.

Moreover

Vol. 12, n ° 4-1995.



418 P. HAJLASZ

for z E Bn (x, ~). In the sequel we will use the following notation. If
x = (x 1, ... , is a sequence of points of Rn, then we set

In the proof of Theorems 1 and 3 the following lemma will play a
fundamental role.

LEMMA 1. - Let u E Rn ), SZ E p  n. Let A1, ... , Ak E .Rn
be a family of measurable sets such that (~/2)n  |Ai|  oo and
dist (Ai , A~) > 2~ for all i ~ j. Then for almost all x = (xl, ... , E

Al x ~ ~ ~ x Ak, o u E Moreover there exists x E Al x ~ ~ ~ x Ak
such that

where the constant C(n, p) depends on n and p only.
Remark. - Assumption dist (Ai, A~ ) > 2~ guarantees that the sets

= {x E Rn dist (x, Ai )  ~~ are pairwise disjoint.
Before we proceed to the proof of Lemma 1 we shall be concerned with

some other lemmas.

We say that f E ACL if the function f is Borel measurable and
absolutely continuous on almost all lines parallel to coordinate axes.

Since absolutely continuous functions are almost everywhere differentiable,
f E ACL has partial derivatives a.e. and hence the gradient ~f is

defined a.e. Now we say that f E ACLP (n) if f E LP(O) n ACL (n)
LP. The following characterization of Sobolev space is due to

Nikodym ([25], [20, Section 1.1.3]).

THEOREM 4 (Nikodym). - = A C Lp ( SZ ) .
Since maybe it is not evident how to understand this theorem, we

shall comment it now. This theorem states that each ACLp (H) function
belongs to and the gradient V f, which is defined a.e. for

f E ACLP (S2) is just the distributional gradient. On the other hand, each
element f E (which is an equivalence class of functions equal
exept the set of measure zero) admit a Borel representative, which belongs
to the space ACLp ( SZ ) .

LEMMA 2. - Let f : X -~ Y be a mapping between separable
metric spaces X and Y. If f is a Borel mapping, then the graph
Gj = ~ (x, f(x)) I x E X} C X x Y is a Borel set.
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419A NOTE ON WEAK APPROXIMATION OF MINORS

Proof - Let {~4~}~i be a family of pairwise disjoint Borel subsets of
00

Y such that U = Y and diam A(n)i  1/M. Then the set

00

is Borel and hence Gy = n Bn is also a Borel set.
n=1 

We also need the following famous theorem of Lusin and Sierpinski
[17], [18], [9, Thm. 2.2.13].

THEOREM 5 (Lusin-Sierpinski). - Let P : Rn be an orthogonal
projection. If B C is a Borel set, then P(B) C Rn is Hn-measurable.

Remark. - Note that this theorem is no longer valid if we assume that B
is Hn+k measurable, instead of being Borel. Note also that it is not true in
general that P(B) is Borel even if B is Borel.
We will use the above Lusin-Sierpinski’s theorem in the proof of the

following "Sard’s type" lemma.

LEMMA 3. - Assume that f : l~~ is a Borel mapping. Then the
following two conditions are equivalent:

1. For almost all segments I C parallel to one of the coordinate
axes, = 0.

2. For almost all x E R~, the set f -1 (x) is disjoint from almost all
segments parallel to one of the coordinate axes.

Remark. - For generalizations and further results see [ 11 ], [13].

Proof. - Let P : Qn  P(xl, ... , xn) _ (x2, ... , ,xn) be the
orthogonal projection in the direction parallel to the first coordinate axis. It
induces the projection P : Q" x x R~, P(x, ~) _ (P(x), y).
By Lemma 2, the graph G f C Qn x is a Borel set and hence by
Theorem 5, the set ç x is ® Hk-measurable.
Now it follows directly from Fubini’s theorem that the following three
conditions are equivalent.

2. For almost all segments I, parallel to the axis = 0.

3. For almost all X E R~, f -1 (x) is disjoint from almost all segments
parallel to x 1.

Vol. 12, nO 4-1995.
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Of course one can repeat the above construction with x 1 replaced by
x2, x3, ..., Then the lemma follows easily.
The above lemma can be applied to R~) mappings as it follows

from the following elementary observation.

LEMMA 4. - If f : [0, 1] --~ 2 is absolutely continuous then
= 0.

Proof - Othervise, applying Fubini’s theorem, we would find the one
dimensional slice of the set f ( [0,1] ) with positive one dimensional measure,
and such that this slice is the image of a certain subset of [0,1] with
the measure zero. This contradicts the following well known fact: If

g : [0,1] ~ R is absolutely continuous and E C [0,1], = 0
then H1 (g(E)) = 0 (see [27, Theorem 7.18]).
Lemmas 3 and 4 lead to the fact that if f E ACL(Q", R~), where l~ > 2,

then for almost all X E Rk, is disjoint from almost all lines parallel
to an arbitrary coordinate axis. Hence o f E ACL(Q’~, R~) for almost
all X E R~. Now we are in position to prove Lemma 1.

Proof of Lemma l. - As we have already seen, for almost all

x E Ai x ~ ~ ~ x Ak , o u E ACL(n); hence the gradient o u) is
defined almost everywhere and now in order to prove o u E 

it suffices to prove that o u)|] E Lp (SZ) (see Theorem 4).

Evidently o u(z) = u(z) for z E 0 B U ~)) and hence

is clear that the lemma will follow if we prove the inequality

Note that id for j and hence for almost all

z e 
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421A NOTE ON WEAK APPROXIMATION OF MINORS

Denoting the left hand side of (2) by I we have

In the last but one step we used the estimate 
This ends the proof of (2) and hence that of the lemma.

Proof of Theorem 1. - First we will prove the theorem under the additional
assumption that the image of u is bounded i.e. u(x) E Qn for almost all
x E S2, where Qn is a certain cube. Then, as we will see, the general case
will follow from the density of bounded maps in the strong topology.

Divide the cube Qn in a standard way, into vn identical, small cubes.
Denote these cubes by i = 1, 2,..., yn. be a cube with

the same centre as and half the edgelength. Let x We

define the retraction

as follows

where 8(x, z) > 0 is such that E In the other words,
inside C~7i ’v, is a retraction along radii onto with "source" at
x. Evidently is bilipschitz equivalent with 1rx,e type mapping (with
6’ = Cv-l), so we can repeate the proof of Lemma 1, replacing Ai by

n’v. This leads to the following corollary: There exists xi ~ 1 2Qn,03BDi for

i = 1, 2, ... , vn, such that

and

Vol. 12, n ° 4-1995.
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Evidently the image of u~"~ is (n - 1)-dimensional. Since for cp E CB
then it is easy to see

repeating arguments from the proof of Lemma 1 that we can choose

for i = 1, 2, ... , vn in a way, such that in addition to (4)

Now it suffices to prove that, after extracting a subsequence, - u in
and adj adj Du in Lq. We have u~v~ (z) ~ ]  Cv-1

a.e., so u(v) -~ u a.e. and hence in LP (since u and u(v) are bounded).
The estimations (4), (5) show that sequences Du(v) and adj Du(v) are

bounded in LP and Lq respectively. Hence u~v> ~ u in and moreover
after taking a subsequence adj in Lq to a certain H E Lq. By
the theorem of Ball and Reshetnyak [ 1 ], [26], [5, Chapter 4, Thm. 2.6], [16],
adj adj Du in measures, and hence adj Du = H. This completes
the proof in the case of bounded maps.

Since the constants in the inequalities (4) and (5) do not depend on
the size of the cube Qn, then the theorem will follow if we prove the
density of bounded maps in the strong topology of To this end, let
PR : Rn  [-R, R]n be a retraction with a Lipschitz constant 1; now it is
easy to see that PR o u R-~ u in and adj D (PR o u) R~ adj Du in
Lq (in the proof of the second convergence we use an elementary inequality

This completes the proof.

Proof of Theorem 3. - By the same reason as in the proof of Theorem 1,
we can assume that u is bounded, i.e. u(x) E Qn for a.e. x, where Qn
is a fixed cube.

At the beginning we prove the first part of the theorem, i. e. we will

be concerned with the weak convergence of u~v>, without taking care of
minors adj s 

In the first step, as in the proof of Theorem 1, we compose the mapping u
with the discontinuous retraction onto (n - 1)-dimensional set which is the
union of the boundaries of all cubes Q7’v, i = 1 , 2, ... , vn.

This way we obtain (cf. the proof of Theorem 1) a mapping E
!~

U (~~i ’v) with
i=1
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(uiv) is the composition of u with a discontinuous retraction described
above.) Since ulv) v u a.e., then it follows from (6) that ulv) in

If p > n - 1, then the proof is completed. Hence we can assume
that p  n - 1. The set consists of 2n, (n - 1 )-dimensional cubes.
Now we divide each such (n - I )-dimensional cube into a family of vn-1
very small cubes (with edgelength Cv-2). This leads to the decomposition

vn

= U and hence to the decomposition of U ~Q~".
j=i 

’ 

i=l

Now almost the same arguments as in the proof of (6) show that we can
vn

compose the mapping uiv) with the discontinuous retraction from U 
i=1

onto (n - 2)-dimensional set U This way we obtain the mapping

E with

As above then the proof is completed. If
p  n - 2, then we can of course continue this construction and compose

with retraction onto (n - 3)-dimensional set. By induction, we can
continue this construction up to the moment, we compose with retraction
onto [p]-dimensional set. This way we get E with values
in [p]-dimensional set. Moreover 

Since u(03BD)n-[p [  u a.e., then by (7),  u in W1,p. This ends the
proof of the first part of Theorem 3.

If we know additionally that adjs Du e Lqs for some 1 

(M + ~)/~~ then as in the proof of Theorem 1, we can assume that
additionally to (7), the following inequality holds

Hence up to a subsequence, adjs 2014 ~ in L~ to a certain H ~ 
The inequality 1  qs  ([p]+l)/~ implies that? ~ s, hence by the theorem
of Ball-Reshetnyak (cf the proof of Theorem 1), adjs adjs Du
in measures and hence H = adjs Du. This ends the proof
Vol. 12, n° 4-1995.
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