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Abstract

We study Sobolev classes of weakly differentiable mappings f : X→ Y between
compact Riemannian manifolds without boundary. These mappings need not be
continuous. They actually possess less regularity than the mappings in W 1,n(X , Y) ,
n = dimX. The central themes being discussed are:

• smooth approximation of those mappings
• integrability of the Jacobian determinant

The approximation problem in the category of Sobolev spaces between manifolds
W 1,p(X , Y), 1 6 p 6 n, has been recently settled in [2], [3], [17], [23], [24]. How-
ever, the point of our results is that we make no topological restrictions on manifolds
X and Y. We characterize, essentially all, classes of weakly differentiable mappings
which satisfy the approximation property. The novelty of our approach is that we
were able to detect tiny sets on which the mappings are continuous. These sets
give rise to the so-called web like structure of X associated with the given mapping
f : X→ Y.

The integrability theory of Jacobians in a manifold setting is really different
than one might a priori expect based on the results in the Euclidean space. To our
surprise, the case when the target manifold Y admits only trivial cohomology groups
H`(Y), 1 6 ` < n = dimY, like n-sphere, is more difficult than the nontrivial case
in which Y has at least one non-zero `-cohomology. The necessity of topological
constraints on the target manifold is a new phenomenon in the theory of Jacobians.

Received by the editor July 14, 2004.
2000 Mathematics Subject Classification. Primary 58D15; Secondary 46E35.
Key words and phrases. Sobolev spaces, mappings between manifolds, approximation, Ja-

cobain, Hardy space, degree, rational homology sphere.
Haj lasz was supported by the KBN grant 2 PO3A 028 22 and also by the NSF grant DMS-

0500966.
Iwaniec was supported by the NSF grants DMS-0301582 and DMS-0244297.
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CHAPTER 1

Introduction

Sobolev theory on Riemannian manifolds has come into widespread usage in
modern geometry and topology. It also continues to be of great importance in
nonlinear partial differential equations (PDE’s for short), variational problems, like
those in the theory of harmonic maps [26], [37] or quasiconformal deformations [32],
[35], nonlinear elasticity, continuum mechanics, and much more. Looking ahead, we
have attempted in this paper to present such mappings with all their nuances and
possible applications.

The primary objects of our study are weakly differentiable mappings:

(1.1) f : X→ Y
where X and Y are smooth compact oriented Riemannian manifolds without bound-
ary, dimX = n > 2 and dimY = m > 2. One might say that C. B. Morrey [43] was
the first to consider such mappings. The Sobolev class W 1,p(X , Y) can be defined in
a myriad of ways that are not always equivalent. In our approach we appeal to the
celebrated theorem of J. Nash [47], which ensures that Y can be C∞-isometrically
imbedded in some Euclidean space RN . Let us assume that Y ⊂ RN , for simplic-
ity. This being so, we say that f = (f1, ..., fN ) : X → RN belongs to the Sobolev
space W 1,p(X , Y) if each coordinate function f i : X → R lies in the usual Sobolev
space W 1,p(X), and f(x) ∈ Y for almost every x ∈ X. We do not reserve any par-
ticular notation of the Riemannian tensors on X and Y, as these tensors will be
fixed for the duration of this paper. The volume elements on X and Y, denoted by
dx ∈ C∞(∧nX) and dy ∈ C∞(∧mY), will be the ones induced by the orientation
and the metric tensors. In this way W 1,p(X , Y), 1 6 p < ∞, becomes a complete
metric subspace of the linear space W 1,p(X , RN ).

In the Riemannian manifolds setting it is not clear at all whether smooth map-
pings f ∈ C∞(X , Y) are dense in W 1,p(X , Y), a question raised by J. Eells and
L. Lemaire [10]. This is trivially the case for p > n. R. Schoen and K. Uhlenbeck
[49], [50] showed that the answer is also positive when p = n. That is all we can
have in the category of the Sobolev spaces W 1,p(X , Y), unless additional topological
conditions are imposed on the manifolds X and Y [23], [24]. For example, in the
same paper R. Schoen and K. Uhlenbeck [50] demonstrate that C∞(Sn, Sn−1) is not
dense in W 1,p(Sn, Sn−1) for every n−1 6 p < n. While it is not clear at this point,
the Sobolev space W 1,n(X , Y), with n = dimX > 2, will be the borderline case for
many more phenomena concerning weakly differentiable mappings. Other related
papers are [2], [3] [17], [18], [19], [20]. Sobolev spaces with exponents 1 < p < n
are natural in the theory of harmonic mappings [26], [10], [37], [49] and other re-
lated areas. However, properties of these mappings are very different from those in
W 1,n(X , Y). This difference lies fairly deep in the concept of the topological degree.
If dimX = dimY = n, then a smooth mapping f : X→ Y has well defined degree

(1.2) deg (f ;X ,Y) =
1

volY

∫
X
J (x, f) dx

1



2 1. INTRODUCTION

where J (x, f) stands for the Jacobian determinant of f . It is evident that this
formula makes sense also for mappings in W 1,n(X , Y). But it is less obvious whether
it relates to topological properties of such mappings. Indeed it does, thanks to the
density of C∞(X , Y) in W 1,n(X , Y). One might try to extend formula (1.2) to
mappings f ∈ W 1,p(X , Y), 1 < p < n. For example, by assuming that the Jacobian
is integrable. This attempt will fail, simply because there is no way to control the
integral of the Jacobian by means of the p-norms of the differential of f . Actually,
as f runs over W 1,p(X , Y), 1 < p < n, the integrals at (1.2) assume every real
number.

In spite of these examples, we are still able to build a viable theory of
weakly differentiable mappings slightly less regular than those in the Sobolev space
W 1,n(X , Y). One representative example is the Orlicz-Sobolev space W 1,P (X , Y)
of mapping f : X→ Y whose differential Df : TX→ TY satisfies

(1.3)
∫

X
P (|Df(x)|) dx <∞, P (t) =

tn

log(e+ t)

Let us emphasize, without getting into some technical details, that our theory will
actually work for other Orlicz-Sobolev spaces W 1,P (X , Y). But we must assume
that P grows fast enough to satisfy the so-called divergence condition

(1.4)
∫ ∞

1

P (t)
tn+1

dt = ∞

These classes, although appearing rather restrictive, contain W 1,n(X , Y). However,
they are typically smaller than the intersection of all the spaces W 1,p(X , Y), 1 6
p < n.

(1.5) W 1,n(X , Y) ⊂ W 1,P (X , Y) (
⋂

16p<n

W 1,p(X , Y)

We learn the necessity of the divergence condition (1.4) from the routine example
of the radial projection

(1.6) f◦ : Bn → Sn−1, f◦(x) =
x

|x|
As observed by R. Schoen and K. Uhlenbeck [50], f◦ cannot be approximated by
smooth mapping fj : Bn → Sn−1 in the metric of W 1,p(Bn, Sn−1) with any p >
n−1. This example, modified to manifolds without boundary, receives a thorough
discussion in Section 3.1. Let us find out what we should assume on P to prevent
f◦ from being a member of W 1,P (Bn, Sn−1). The differential of f◦ belongs to the
Marcinkiewicz space L n

weak(Bn). Precisely, we have |Df◦(x)| = |x|−1 and hence

(1.7)
∫
|Df◦|>t

dx =
|Bn|
tn

, 1 6 t <∞

Integration in polar coordinates gives the formula

(1.8)
∫

B
P (|Df◦(x)|) dx = |Sn−1|

∫ ∞

1

P (t)
tn+1

dt

Thus f◦ /∈ W 1,P (Bn) if and only if P satisfies the divergence condition. That is why
(1.3) is necessary to exclude f◦ from our theory.

In Section 5.6 we find the closure of C∞(X,Y) in the Marcinkiewicz class
W 1,n

weak(X , Y).
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Theorem 1.1. The closure of C∞(X,Y) in the metric topology of the
Marcinkiewicz class W 1,n

weak(X , Y) consists of mappings f ∈ W 1,1(X , Y) such that

(1.9) lim
t→∞

tn
∫
|Df |>t

dx = 0

This condition is slightly stronger than that of requiring |Df | ∈ L n
weak(X). It is

worth noting that for every 0 6 α < n, the condition (1.9) is equivalent to

(1.10) lim
t→∞

tn−α

∫
|Df |>t

|Df(x)|α dx = 0

In spirit similar to that of Theorem 1.1, we formulate our most general approxima-
tion result.

Theorem 1.2. Every weakly differentiable mapping f : X → Y, dimX = n,
satisfying

(1.11) lim inf
t→∞

tn−p

∫
|Df |>t

|Df(x)|p dx = 0 , n− 1 < p < n

can be approximated by smooth mappings fj : X → Y in the metric topology of
W 1,p(X , Y).

This seemingly insignificant replacement of ”lim” in (1.10) by ”lim inf”, has far
reaching advantages. Among them is the density of C∞(X , Y) in the Orlicz-Sobolev
spaces W 1,P (X , Y). In addition to (1.4), we shall impose some minor technical
assumptions on P , see Theorem 5.2.

One further category of mappings appears in a natural way; the grand Sobolev
space, denoted by GW 1,n(X , Y). It consists of mappings

f ∈
⋂

16s<n

W 1,s(X , Y)

such that

(1.12) ||Df || n)
def== sup

0<ε6n−1

(
ε

∫
X
|Df(x)|n−εdx

) 1
n−ε

<∞

To illustrate, this space contains W 1,n
weak(X , Y). Rather than discuss this space in

full details, let us introduce a subspace VW 1,n(X , Y) ⊂ GW 1,n(X , Y) characterized
by the condition,

(1.13) lim
ε→0

ε

∫
X
|Df(x)|n−ε dx = 0

Our consideration of this subspace is motivated by the following result:

Theorem 1.3. Smooth mappings are dense in VW 1,n(X , Y).

All known proofs of the density of smooth mappings in W 1,n(X , Y) are based on
the embedding of W 1,n(X , Y) into VMO(X , Y) -the space of mappings of vanishing
mean oscillation [6], [7]. It turns out that the spaces W 1,P (X , Y) and VW 1,n(X , Y),
for which we prove density results, do not admit embeddings in VMO(X , Y). Thus
we had to use a completely different idea. Our proofs of smooth approximation
involve an interesting new device, the so-called web like structure on X. For a
somewhat related approximation method see [21]. A web on X is a compact set
F ⊂ X of measure zero whose complement consists of a finite number of components,
disjoint open connected sets called meshes of the web.
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Given f : X → Y, as in Theorem 1.2, there exist webs F ⊂ X, with meshes as
small as we wish, so that f restricted to F is continuous. Moreover, oscillations of f
over the boundary of every mesh of the web can be made arbitrarily small. And that
is why we say; f has vanishing web oscillations. The presence of small oscillations
of mappings in W 1,n(X , Y) or VW 1,n(X , Y), and in other Sobolev subclasses of
W 1,p(X , Y) with exponent p below the dimension of X, seems to be important in
future applications.

Now, that we have the approximation theorems, we will be able to give meaning
to usually divergent integrals of the Jacobian of f : X → Y, dimX = dimY = n.
Like in the Euclidean case [1], [45], [13], [32] this leads to a definition of the
distributional Jacobian. In various situations the manifold setting is really different
than one might a priori expect. Manifolds of the same deRham cohomology groups
as Sn will be named rational homology spheres. This class of manifolds contains all
homology spheres (manifolds whose integral homology groups are the same as those
of the sphere) though these two classes are not the same. Indeed, for p > 1 the
lens spaces L(p, q) are 3-dimensional rational homology spheres, but their integral
homology1 groups are different from those of S3, see e.g. Proposition 21.28 in [15].
To our surprise the case when the target manifold Y is a rational homology sphere
is more difficult than all other cases. What makes a difference is that in these other
cases every n-form ω ∈ C∞(∧nY) decomposes into wedge products of closed forms
of degree smaller than n; that is,

(1.14) ω =
K∑

i=1

αi ∧ βi

where

(1.15)
{
αi ∈ C∞(∧`iY) ∩ ker d , `i, ki ∈ {1, 2, ..., n− 1}
βi ∈ C∞(∧kiY) ∩ ker d , `i + ki = n

Such is not the case of the n-sphere Y = Sn. These forms, once pulled back via a
mapping f : X→ Y, bring us to analogous decomposition of f ]ω in X,

(1.16) f ]ω =
K∑

i=1

f ]αi ∧ f ]βi

Under suitable regularity of the mapping f , the pullbacks f ]αi and f ]βi are closed
forms. At this point, a careful reader may observe that the dimension of Y is
immaterial if we confine ourselves to pullbacks of the wedge products at (1.14), with
ki +`i = n 6 dimY. We refer to (1.14) as Cartan forms, named after H. Cartan who
studies similar decompositions of differential forms. These ideas fit into even larger
framework. The pullback at (1.16) is just a special case of a Cartan form on X, the
domain of f . Precisely, the n-form Λ = f ]ω on X admits Cartan’s decomposition as
well:

(1.17) Λ =
K∑

i=1

Φi ∧Ψi

where

(1.18)
{

Φi ∈ L pi(∧`iX) ∩ ker d , `i, ki ∈ {1, 2, ..., n− 1}
Ψi ∈ L ri(∧kiX) ∩ ker d , `i + ki = n

1In what follows by cohomology we will always mean deRham cohomology
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If we assume that f ∈ W 1,s(X , Y) for some s > n− 1, then f ]αi = Φi ∈ L
s
`i (∧`iX)

and f ]βi = Ψ ∈ L
s
ki (∧kiX).

The integral
∫

X J (x, f) dx =
∫

X Λ exists in a well defined weak sense. It will
actually converge if J (x, f) > 0, because of Monotone Convergence Theorem. We
refer to mappings having nonnegative Jacobian as orientation preserving, which not
necessarily agrees with the term commonly used in topology.

The situation is dramatically different if one cannot decompose f ]ω into wedge
products. To illustrate, we give the following rather striking result.

Theorem 1.4. Every Orlicz-Sobolev class W 1,P (Sn,Sn), with P (t) = o(tn), con-
tains an orientation preserving mapping whose Jacobian is not integrable.

This contrasts sharply with the situation for mappings into Rn, see [34] and
[36].

Mapping supporting Theorem 1.4 are constructed in Section 3. This amounts
to saying that if the target manifold Y is a rational homology sphere, then the
classical integral formula for the degree of f fails in every Orlicz-Sobolev class below
W 1,n(X , Y).

It is evident from the Sobolev imbedding theorem that two mappings f, g ∈
W 1,p(X,Y), with p > n = dimX, which are sufficiently close in W 1,p(X , Y), are
homotopic. Here X and Y may have different dimension and need not be even
orientable. In [56] and [57], B. White proved a stronger result according to which
every two continuous mappings of the Sobolev class W 1,n(X,Y) are homotopic,
provided they are sufficiently close in W 1,n(X, Y). This and the fact that smooth
mappings are dense in W 1,n(X,Y) allow us to define homotopy classes in the space
W 1,n(X,Y).

The above reflections on the homotopy classes suggest several natural questions,
like the following one:

Question 1.5. Do there exist any topological conditions on X and Y under
which every two mappings f, g ∈ W 1,p(X , Y) ∩ C (X , Y), n − 1 < p < n = dimX,
sufficiently close in the metric of W 1,p(X , Y), are homotopic?

This is not away the case for continuous mappings in W 1,p(X , Sn). However,
the answer is in the affirmative if πn(Y) = 0, where we even do not require that
dimY = n. If, in addition, πn−1(Y) = 0 then smooth mappings are dense in
W 1,p(X, Y) by [24]. Note also that the homotopy condition is of a different nature
than the cohomological one. Indeed, it is not difficult to construct a manifold Y of
dimension n with nontrivial cohomology group H`(Y) for some 1 6 ` < n and such
that πn(Y) 6= 0. This shows that continuity of the degree can not be deduced from
the homotopy equivalence of mappings under the assumption that πn(Y) = 0.

The difference between trivial and nontrivial target space in terms of its `-
cohomologies 1 6 ` < n, can also be detected in the borderline Sobolev space
W 1,n(X , Y). Two well known results in Rn are worthwhile to consider also on man-
ifolds. Our first result asserts that if the Jacobian determinant J (x, f) of a mapping
f ∈ W 1,n(X , Y) is a priori nonnegative then J (x, f) belongs to the Zygmund space
L log L (X). The second result asserts that if, in addition, Y is not a rational
homology sphere, then we also have a uniform bound,

(1.19)
∫

X
J (x, f) log

(
e+

J (x, f)∫
X J (z, f) dz

)
dx 4

∫
X
|Df |n
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Remark. Throughout this paper we use the symbol 4 to indicate that the inequality
holds with certain positive constant in the right hand side. This constant, referred
to as implied constant, will vary from line to line. In all instances the reader may
easily recognize which parameters the implied constant depends on. If not, we will
explicitly specify those parameters. For example in (1.19), we will inform the reader
that the implied constant depends only on the manifolds X and Y.

The L log L -integrability of J (x, f) remains true in case of the rational homol-
ogy sphere space but the arguments will be completely different. Unexpectedly, the
uniform bound (1.19) is lost. If the Jacobian changes sign then it still belongs to the
Hardy space H 1(X), a well known result by R. Coifman, P. Lions, Y. Meyer and
S. Semmes [9] in Rn, see also [33], [36]. Again, in manifold setting the arguments
establishing H 1-regularity of the Jacobian will be more subtle than in Rn. We have
a uniform bounds only when the target manifold has a nontrivial cohomology; that
is H`(Y) 6= 0 for some 1 6 ` < n. Precisely, the estimate takes the form

(1.20) || f ]ω ||H 1(X) 4
∫

X
|Df |n

These and many more new results will be discussed at full length throughout
this work. But first some background material is in order.



CHAPTER 2

Preliminaries Concerning Manifolds

This section is written to provide notation and to serve as brief introduction to
the L p-theory of differential forms. The general references here are [8], [43], [51],
[27] and [35], [55].

2.1. Manifolds

While many geometric constructions in Rn can be transferred to the Riemannian
manifolds, the sometimes cumbersome technical details are often new and desired.
Many unfamiliar differences will be explicitly emphasized here. Those differences
sometimes only technical, sometimes delicate and important, are scattered through-
out the research journals. Although, most of these facts will be left unproven in this
text, we state them clearly so that they are available for a routine verification.

Our ambient space, subject to weakly differentiable deformations, will be an
oriented compact (without boundary) smooth Riemannian manifold X of dimension
n > 2.

2.1.1. Legitimate balls. Making precise estimates demands that we must
work with one atlas A consisting of a finite number of coordinate charts (Ω, κ) ∈ A,
where κ : Ω → Rn is a C∞-diffeomorphism of an open region Ω ⊂ X onto Rn.
Let us choose and fix such an atlas A and call it the reference atlas. We then in-
troduce the so-called reliable radius of the manifold X. This is a positive number,
denoted by R = RX, such that for 0 < r 6 RX every pair of concentric geodesic
balls B(x, r) ⊂ B(x, 4r) ⊂ X fits in one coordinate region Ω of the atlas A. We refer
to such B(x, r) as legitimate ball in X. The point to introducing this concept is that
estimates on a legitimate ball can be reduced equivalently to analogous estimates
in the Euclidean space. We mention now that the legitimate balls B = B(x, r) ⊂ X
share basic properties of the Euclidean balls. In particular,

(2.1) |B| 4 (diam B)n 4 |B|
Here the implied constant depends only on the manifold X.

2.1.2. Whitney covering. The familiar decomposition of an open set Ω ⊂ Rn

into Whitney cubes can be adapted to manifolds. While cubes are perfect regions for
constructing various partitions of Rn, there are serious geometric and combinatorial
obstacles to do the same on manifolds. We shall work with the legitimate balls
instead of cubes. Since it is impossible to partition a manifold into mutually disjoint
balls, we will work with a finite covering in which the number of overlapping balls
depends only on the manifold X.

Proposition 2.1. Given a non-empty open set Ω  X and its complement
F = X \Ω. There exists a collection F = {B1,B2, ...} of legitimate balls Bi ⊂ X such
that

1) Bi ⊂ 2Bi ⊂ Ω, i = 1, 2, ...

7
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2) Ω =
⋃∞

i=1 Bi

3)
∑∞

i=1
χ

2Bi
(x) 4 1 for all x ∈ Ω

4) diamBi 4 dist (Bi,F) 4 diamBi for all i = 1, 2...

Hereafter, χE denotes the characteristic function of a measurable set E ⊂ X.
Also, 2B stands for the ball of the same center as B but with radius 2 times larger.

2.2. The Sobolev space W 1,p(X ,Y)

The various classes of mappings f : X→ Y in this paper are defined based on the
classical Sobolev theory of real valued functions. Note that W 1,p(X) = W 1,p(X , R)
is a Banach space equipped with the norm

(2.2) || f ||
W 1,p = || f ||

L1 + ||Df ||
L p

We adopt the classical results in Rn to our manifold setting, see for instance [48].

Lemma 2.2. Smooth functions in C∞(X) are dense in W 1,p(X), 1 6 p <∞.

Lemma 2.3. [Poincaré Inequality] For every set E of a positive measure in
X and f ∈ W 1,p(X) we have∫

X
|f − fE|p 6 CE

∫
X
|Df(x)|p dx

The constant CE actually depends only on the measure of E. As usual, the
integral average of f over the set E is denoted by

fE = −
∫

E
f(x) dx =

1
|E|

∫
E
f(x) dx

The local variant of Poincaré inequality reads as:

Lemma 2.4. For every legitimate ball B = B(a, r), we have∫
B
|f − fB|p 4 rp

∫
B
|Df(x)|p dx , whenever f ∈ W 1,p(X)

As a matter of fact this inequality is true for all geodesic balls in X, but we shall
exploit this inequality only for legitimate balls. Regarding the implied constant, we
must emphasize that it depends neither on f nor on the radius r.

Now given two Riemannian manifolds X and Y, we shall consider the Sobolev
space W 1,p(X , Y) of mappings whose tangent linear map (differential)

(2.3) Df(x) : TxX→ TyY, y = f(x)

is L p-integrable. Our description, and certainly a rigorous definition of W 1,p(X , Y),
relies on an imbedding Y ⊂ RN [47].

Theorem 2.5. (J. Nash) Every C∞-smooth Riemannian manifold Y can be
C∞-isometrically imbedded in some Euclidean space RN .

The reader is also referred to M. L. Gromov and V. A. Rohlin [16] for an account
of the imbedding problem. The Nash theorem allows us to consider W 1,p(X , Y) as
a subclass of a linear space of mappings f : X → RN such that f(x) ∈ Y at
almost every x ∈ X. The metric topology in W 1,p(X , Y) will be inherited from the
associated norm topology in the linear space W 1,p(X , RN ). In this way the Sobolev
class W 1,p(X , Y) becomes a complete metric space. In what follows we shall tacitly
use the fact that W 1,p(X , Y) is also closed under weak topology of W 1,p(X , RN ).
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2.3. Differential forms

Throughout this paper we let C∞(∧`X), 0 6 ` 6 n = dimX, denote the space
of smooth `-forms on X. Two differential operators on forms will be of particular
interest to us. First is the exterior derivative,

(2.4) d : C∞(∧`X) → C∞(∧`+1X)

Second is the formal adjoint of d, also called Hodge codifferential,

(2.5) d∗ = (−1)n`+1 ∗ d∗ : C∞(∧`+1X) → C∞(∧`X)

where ∗ : C∞(∧`X) → C∞(∧n−`X) denotes the Hodge star duality operator. Here,
we conveniently set C∞(∧`X) = 0, whenever ` < 0 or ` > n. Note that ∗∗ =
(−1)`(n−`) on C∞(∧`X). The point-wise scalar product of forms α, β ∈ C∞(∧`X) is
given by 〈α, β〉 dx = α ∧ ∗β ∈ C∞(∧nX), and hence

(2.6)
∫

X
〈α, β〉 dx =

∫
X
α ∧ ∗β

The duality between d and d∗ is emphasized in the formula of integration by parts

(2.7)
∫

X
〈dϕ, ψ〉 =

∫
X
〈ϕ, d∗ψ〉

for ϕ ∈ C∞(∧`X) and ψ ∈ C∞(∧`+1X). Now a differential form ϕ ∈ L p(∧`X)
is said to be closed in the sense of distributions if

∫
X 〈ϕ, d

∗ψ〉 = 0 for every test
form ψ ∈ C∞(∧`+1X). We write it as dϕ = 0. Similarly, we establish what it
means for ψ to be coclosed, and write it as d∗ψ = 0. Forms of the type dα, with
α ∈ W 1,p(∧`−1X), are called exact while those of type d∗β, with β ∈ W 1,p(∧`+1X),
are called coexact. It follows from the identities d ◦ d = 0 and d∗ ◦ d∗ = 0 that the
`-forms dα ∈ L p(∧`X) and d∗β ∈ L p(∧`X) are closed and coclosed, respectively.
Finally, those forms h ∈ L p(∧`X) which are closed and coclosed will be called
harmonic fields of degree `. We denote by H(∧`X) the space of all harmonic fields of
degree ` and regard it as well known that this space is finite dimensional. H(∧`X)
consists of C∞-smooth forms. Being so, all possible norms onH(∧`X) are equivalent.
For instance, we shall benefit from the estimate

(2.8) ||h ||
L∞(∧`X)

4 ||h ||
L1(∧`X)

and further,

(2.9) ||h ||
L∞(∧`X)

4

(∫
X
|h|p
) 1

p

for all p > 0

In relation to the imbedding L 1
weak(∧`X) ⊂ L p(∧`X), with 0 < p < 1, we record

the following estimate

(2.10) ||h ||
L∞(∧`X)

4

(∫
X
|h|p
) 1

p

4 |X|
1−p

p sup

{
t

∫
|h|>t

dx; t > 0

}

as is easily verified by Tchebyshev inequality, see (4.6).
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2.3.1. Sobolev classes of differential forms. Four spaces of differential
forms have a special place in our studies. These spaces are:

- The Sobolev space of closed forms:

L p(∧`X) ∩ ker d

- The Sobolev space of coclosed forms:

L p(∧`X) ∩ ker d∗

- The Sobolev space of exact forms:

dW 1,p(∧`−1X) =
{
dα; α ∈ W 1,p(∧`−1X)

}
⊂ L p(∧`X) ∩ ker d

- The Sobolev space of coexact forms:

d∗W 1,p(∧`+1X) =
{
d∗β; β ∈ W 1,p(∧`+1X)

}
⊂ L p(∧`X) ∩ ker d∗

It is far from being evident, although it is true, that for 1 < p <∞ all four of these
classes are complete linear subspaces of L p(∧`X), see for instance [35]. In each of
those classes the corresponding subspace of smooth forms is dense.

2.3.2. Hodge decomposition. Decomposition of a differential form ω ∈
L p(∧`X) into exact, coexact and harmonic component will play essential role in
our proofs.

Theorem 2.6. [Hodge decomposition] For 1 < p <∞ and ` = 0, 1, ..., n we
have the following direct sum decomposition

(2.11) L p(∧`X) = dW 1,p(∧`−1X)⊕ d∗W 1,p(∧`+1X)⊕H(∧`X)

Accordingly, every ω ∈ L p(∧`X) can be uniquely written as

(2.12) ω = dα+ d∗β + h

where

(2.13) ||α ||W 1,p(∧`−1X) + ||β ||W 1,p(∧`+1X) + ||h ||L∞(∧`X) 4 ||ω ||L p(∧`X)

We restrain ourselves to only a few comments about the case when ω is a closed
form. It follows from the uniqueness of this decomposition that the coexact compo-
nent of ω vanishes. That is,

(2.14) ω = dα+ h, for ω ∈ L p(∧`X) ∩ ker d

In fact, this is none other than the L p-setting of the deRham cohomology:

Every closed form in L p(∧`X) ∩ kerd is exact modulo harmonic fields.

In other words, each deRham `-cohomology class of X is uniquely represented by
a harmonic field. In symbols H`(X) ∼= H(∧`X). The harmonic field at (2.14) can
be explicitly expressed as h = Tω, where T is a Calderón-Zygmund type operator
acting on L p(∧`X). As this operator is weak (1, 1)-type, a uniform L 1

weak-estimate
combined with (2.10) yields

(2.15) ||h ||
L∞(∧`X)

4 sup

{
t

∫
|h|>t

dx; t > 0

}
4 ||ω ||

L1(∧`X)

We reiterate that the implied constant depends on X.
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2.3.3. Pullback. Our applications of the L p-theory of differential forms con-
cern the pullbacks via a mapping f : X → Y of differential forms in the target
space. Let α ∈ C∞(∧`Y) and f ∈ W 1,p(X , Y), p > ` > 1. The pullback f ]α lies in

L
p
` (∧`X), because of the point-wise inequality

(2.16)
∣∣∣f ]α

∣∣∣ 4 |Df |`

We point out that the usual commutation rule

(2.17) f ] ◦ d = d ◦ f ]

requires some regularity of f . For instance it holds for f ∈ W 1,p(X , Y), provided
p > `+ 1. The exterior derivative in the right hand side is understood in the sense
of distributions, while the left hand side is a form in L

p
`+1 (∧`+1X).

2.3.4. Partition of unity. The arguments for our proofs as well as the defi-
nition of the Hardy space H 1(X) will involve a device of regularization. For such
purposes partition of unity is needed. To assemble local estimates into global ones
we shall make use of partitions of unity with small supports on X.

Given any locally finite covering F of X, a smooth partition of unity subordinate
to F is a collection

{
ϕU ; U ∈ F

}
of functions ϕU ∈ C∞

0 (U) such that
• 0 6 ϕU(x) 6 1
•
∑

U∈F

ϕU(x) = 1 for all x ∈ X

The existence of partitions of unity is well known. We illustrate the utility of
it with an example. Suppose we are given differential forms α ∈ L p(∧`X) and
β ∈ W 1,p(∧`−1X). With the aid of a partition of unity we may express α and dβ as:

(2.18) α =
∑
U∈F

αU
def==
∑
U∈F

ϕU α

(2.19) dβ =
∑
U∈F

dβU
def==
∑
U∈F

d(ϕU β)

Here each term dβU is an exact form. In contrast, if α is only closed the terms αU
are no longer closed forms. In spite of such inconvenience the above decomposition
is still useful. The point to it is that the exterior derivative

(2.20) dαU = ϕU dα+ dϕU ∧ α
enjoys the same regularity as dα.

2.3.5. Cartan forms. Let Y be a C∞-smooth oriented closed Riemannian
manifold of dimension m > 2. Recall that C∞(∧`Y), 1 6 ` 6 m, is a module over
the ring C∞(Y). The first thing we wish to discuss here is that C∞(∧`Y) is finitely
generated by exact differential forms, which we denote by

(2.21) dΞ1, dΞ2, ..., dΞM

where Ξi ∈ C∞(∧`−1Y). This simply means that every γ ∈ C∞(∧`Y) can be written
as

(2.22)
M∑
i=1

λi dΞi where λ ∈ C∞(Y)

In general, one cannot guarantee that the generators dΞ1, dΞ2, ..., dΞM will be
linearly independent at each point y ∈ Y. Therefore, the decomposition at (2.22)
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need not be unique. Our goal is to select the generators carefully and give an explicit
formula for the coefficients λi ∈ C∞(Y) in terms of γ ∈ C∞(∧`Y).

Proposition 2.7. There exist differential forms Ξi ∈ C∞(∧`−1Y) and Γi ∈
C∞(∧`Y), i = 1, 2, ...,M , such that every γ ∈ C∞(∧`Y) admits a decomposition

(2.23) γ =
M∑
i=1

λi dΞi , where λi = 〈γ,Γi〉

As before, in (2.6), the symbol 〈 , 〉 stands for the point-wise scalar product of
differential forms. Precisely, using the Hodge star operator, λi dy = λi ∧ (∗Γi). We
take particular note of the fact that the functions λi depend on γ in a linear fashion.

For the proof, it is useful to begin with a finite atlas of local charts (Ωk, κk) on
Y, k = 1, 2, ...,K, such that each mapping

κk = (κ1
k, κ

2
k, ..., κ

m
k ) : Ωk → Rm

is a diffeomorphism of an open region Ωk ⊂ Y onto Rm and
⋃K

k=1 Ωk = Y. Let us
state it in this way:

dκ1
k ∧ dκ2

k ∧ ... ∧ dκm
k 6= 0 on Ωk

Upon obvious modifications (multiply by a suitable bump function) we produce a
system of mappings, again denote by κk, such that

• Each κk is defined on the entire manifold Y and maps it smoothly into Rm.
• The Jacobian determinant of κk, which we define by the rule

Jk(y) dy = dκ1
k ∧ dκ2

k ∧ ... ∧ dκm
k

satisfies:
Jk(y) > 1 for y ∈ Ωk

In this extension of κk the new open sets Ωk are actually slightly smaller than the
original ones, though they still cover the manifold Y. To each k = 1, 2, ...,K and
`-tuple I; 1 6 i1 < i2 < ... < i` 6 m, there corresponds a differential form

(2.24) ΞI
k = κi1

k dκi2
k ∧ ... ∧ dκi`

k ∈ C∞(∧`−1Y)

Now, the exact forms that will generate C∞(∧Y), can be defined as

(2.25) dΞI
k = dκi1

k ∧ dκi2
k ∧ ... ∧ dκi`

k ∈ C∞(∧`Y)

They generate the module C∞(∧Y) over the ring C∞(Y). To see this we fix a
partition of unity {ϕk}k=1,2,...,K subordinate to the cover {Ωk}k=1,2,...,K . Let us
introduce differential forms ΓI

k ∈ C∞
◦ (∧`Ωk), by the rule

(2.26) ∗ΓI
k =

ϕk dΞI′
k

Jk
, where I: 16i1<i2<...<i`6m

k=1,2,...,K

The superscript I ′ stands for an ordered complementary (m − `)-tuple; I ′ =
(i′1, i

′
2, ..., i

′
m−`) is ordered in such a way that (i1, ..., i`, i′1, ..., i

′
m−`) constitutes an

even permutation of (1, 2, ...,m). In this way dΞI′
k = dκ

i′1
k ∧ ... ∧ dκi′m−`

k is a smooth
(m− `)-form on Y. The Hodge star operator ∗ : C∞(∧m−`Y) → C∞(∧`Y) converts
it onto an `-form, thus ΓI

k ∈ C∞
◦ (∧`Ωk). To prove the decomposition formula at

(2.23) we recall that ϕkγ, being a form in C∞(∧`Ωk), can be uniquely written as

ϕk γ =
∑

16i1<...<i`6m

αi1...i`
k dκi1

k ∧ dκi2
k ∧ ... ∧ dκi`

k where αi1...i`
k ∈ C∞(Ωk)
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To compute the coefficients αi1,...,i`
k we take the wedge product of both sides with

the form,

dΞI′
k = dκ

i′1
k ∧ dκi′2

k ∧ ... ∧ dκi′m−`

k ∈ C∞(∧`Y)

The exterior multiplication annihilates all terms except the one corresponding to
I; 1 6 i1 < ... < i` 6 m

ϕk γ ∧ dΞI′
k = αi1...i`

k (y) Jk(y) dy

Applying Hodge star operator this equation gives us the coefficients

(2.27) αi1...i`
k = ∗

(
γ ∧

ϕk dΞI′
k

Jk

)
=
〈
γ,ΓI

k

〉
Hence

(2.28) ϕkγ =
∑

I

〈
γ,ΓI

k

〉
dΞI

k, k = 1, 2, ...,K

Finally, summing up, we arrive at the desired decomposition

(2.29) γ =
K∑

k=1

∑
I

〈
γ,ΓI

k

〉
dΞI

k

However, to be consistent with the assertion of Proposition 2.8 we must rename
the indices. Precisely, we must abbreviate the multi-index I

k to a single letter i =
1, 2, ...,M , where M = K

(
m
`

)
.

Uniform bounds of the functions λi in terms of γ follow directly from the formula
(2.23). Let us record the following one

(2.30) ||λi || C 1(Y) 4 || γ || C 1(Y)

The decomposition, as constructed above, is at intrinsic interest in regard to the
following representation of the exact forms on Y.

Proposition 2.8. Every exact n-form ω ∈ C∞(∧nY), 2 6 n 6 dimY, can be
written as

(2.31) ω =
M∑
i=1

dλi ∧ dΞi

where λi are smooth functions on Y.

Proof. We write ω = dγ, with some γ ∈ C∞(∧n−1Y). Then, with the aid of
Proposition 2.7, we decompose γ as

γ =
K∑

i=1

λi dΞi

Finally, we differentiate to obtain

dγ =
K∑

i=1

dλi ∧ dΞi

as desired.
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Concerning estimates of λi in terms of ω, let us emphasize that our decompo-
sition depends on the choice of γ. For this reason it is desirable to introduce the
following norm

(2.32) |[ω ]|∞ = inf
{
|| γ || C 1(∧n−1Y); dγ = ω

}
With this definition at hand we can achieve the following estimate

(2.33) ||λi || C 1(Y) 4 |[ω ]|∞
Proposition 2.8 gives rise to a class of the so called Cartan forms, named after H.
Cartan who studied similar differential expressions.

Definition 2.9. [Cartan forms] An n-form ω ∈ C∞(∧nY), n 6 m = dimY,
is said to be a Cartan form if it can be decomposed as

(2.34) ω =
M∑
i=1

αi ∧ βi

where αi ∈ C∞(∧`iY) ∩ ker d and βi ∈ C∞(∧kiY) ∩ ker d. Here we assume that
ki, `i > 1 and ki + `i = n.

Thus the exact forms in C∞(∧nY), with 2 6 n 6 dimY, are Cartan forms. We
take up this topic here by assuming that dimY = dimX = n.

Corollary 2.10. Every n-form ω ∈ C∞(∧nY), dimY = n, whose integral over
Y vanishes is exact. Consequently, ω is a Cartan form of the type

(2.35) ω =
M∑
i=1

dλi ∧ dΞi

Corollary 2.11. If the manifold Y of dimension n admits at least one Cartan
n-form with non-vanishing integral, then all n-forms on Y are Cartan forms.

Corollary 2.12. [decomposition of n-forms] Every ω ∈ C∞(∧nY),
dimY = n, can be written as

(2.36) ω =
(
−
∫

Y
ω

)
dy +

M∑
i=1

dλi ∧ dΞi

Next we bring on stage the manifolds which are cohomologically simple. Recall
that Y is a rational homology sphere if all its cohomology groups H`(Y), with
1 6 ` < n, vanish. In this case Cartan n-forms

(2.37) ω =
M∑
i=1

αi ∧ βi

are necessarily exact and as such have vanishing integral mean over Y. Indeed, every
closed form αi is exact so is each wedge product αi∧βi, i = 1, ...,M . In other words,
the condition H`(Y) 6= 0, for some 1 6 ` < n, is necessary in order to find a Cartan
form on Y with non-vanishing integral. Our next result shows that this condition is
also sufficient.

Suppose H`(Y) 6= 0 for some 1 6 ` < n. Hodge-deRham theory tells us that
there exists a nonzero harmonic field h ∈ H(∧`Y). Consider the n-form

(2.38) ω = h ∧ ∗h = |h|2 dy
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where ∗h ∈ C∞(∧n−`Y) is Hodge dual to h. By the definition of H(∧`Y) the form h
is both closed and coclosed. We then see that ∗h is also closed. Thus ω is a Cartan
form. That ω has non-vanishing integral follows from the formula

(2.39)
∫

Y
ω =

∫
Y
h ∧ ∗h =

∫
Y
|h|2 dy 6= 0

We end this section by combining these later observations with Corollary 2.11.

Proposition 2.13. Let dimY = n. Then every ω ∈ C∞(∧nY) is a Cartan form
if and only if H`(Y) 6= 0, for some 1 6 ` < n; that is, if Y is not rational homology
sphere.

2.4. Mollifiers and smoothing operator

For the duration of this paper we fix a nonnegative function Φ ∈ C∞
0 (Rn)

supported in the closed unit ball and having integral 1. For example

(2.40) Φ(x) = Cn

{
exp 1

|x|2−1
if |x| < 1

0 if |x| > 1

where Cn is a constant. The one parameter family

(2.41) Φt(x) =
1
tn

Φ
(x
t

)
, t > 0

defines an approximation of the Dirac mass at the origin; Φt are called mollifiers.
Given u ∈ L 1

loc(Rn), the mollification of u is the family of functions ut ∈ C∞(Rn),
t > 0, defined by the convolution formula

(2.42) ut(x) =
∫

Rn

Φt(x− z)u(z) dz

Various bounds for a function u ∈ W 1,p
loc (Rn), 1 6 p 6 ∞, imply the same bounds

for ut. Basic properties of the mollification are listed below:
(i) lim

t→0
ut(x) = u(x) for almost every x ∈ Rn

(ii) If u is continuous then ut converges to u uniformly on compact subsets
(iii) Mollification preserves the L p-bounds;

||ut ||L p(Rn) 4 ||u ||L p(Rn) , 1 6 p 6 ∞

|| dut ||L p(Rn) 4 || du ||L p(Rn) , 1 6 p 6 ∞

(iv) For 1 6 p <∞ and u ∈ W 1,p(Rn), we have

lim
t→0

||ut − u ||L p(Rn) = 0

lim
t→0

||ut − u ||W 1,p(Rn) = 0

The implied constants in (iii) are actually equal to 1, but not on manifolds latter on.
It is well known that lim

t→0
ut(x) = u(x) at every Lebesgue point of u, regardless of

the generating mollifier Φ. For this property one could take Φ to be the normalized
characteristic function of the unit ball:

(2.43) Φ(x) =
χB(x)
|B|
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But this choice of Φ does not work for the definition of the Hardy space. Neverthe-
less, for Φ defined at (2.43), the mollifications lead us to the familiar L 1-averages
over the balls B(x, r):

(2.44) ur(x) = −
∫

B(x,r)
u(z) dz

Next we invoke the reference atlas A on X , which we have already fixed in
Section 2.1.1. Now we also fix a partition of unity {ϕΩ}Ω∈A subordinate to A. Thus,
to every Ω there corresponds a coordinate mapping κ : Ω onto−→ Rn. The mollification
of a function f ∈ L 1(X) can now be defined by the rule

(2.45) ft(x) =
∑
Ω∈A

ϕΩ(x)
∫

Ω
Φt(κ(x)− κ(z))J (z, κ)f(z) dz

Each integral term is a smooth function on Ω, equal to (f ◦κ−1)t ◦κ ∈ C∞(Ω). We
shall write this formula in a compact form as

(2.46) ft(x) =
∫

X
Kt(x, z)f(z) dz

where Kt : X× X→ R+ is C∞-smooth for all t > 0.
Clearly, all basic properties of the mollification procedure, listed in (i-iv), remain

valid on a manifold X. But we must restrict ourselves to sufficiently small parameters
t, say

(2.47) 0 < t 6 tX

The upper bound tX depends not only on X, but also on the atlas A and the partition
of unity. As those entities are fixed once and for all, tX is also fixed for the duration
of this text. The reader may wish to note that the proof of (iii) relies on Lemma
2.3 with E = X.

Mollification procedure usually expands the support of f . For example, if
supp f ⊂ U, then supp ft ⊂ Ut′ , where

Ut′ =
{
x ∈ X ; dist (x,U) < t′

}
and t 4 t′ 4 t

Here too, the implied constants for the inequalities t 4 t′ 4 t depend only on X.
This can be seen from the equation

(v) Kt(x, z) = 0, whenever dist (x, z) < t

Moreover, if f : X→ RN is constant then ft : X→ RN is also constant for all t > 0,
which is immediate from the identity

(vi)
∫

XKt(x, z) dz ≡ 1, for all t > 0
Finally, combining (v) and (vi) we obtain

(vii) osc
U
ft 4 ess osc

U′
f t 4 t′ 4 t

Perhaps, the definition of the essential oscillation of a measurable function f : V→
RN is in order. The symbol ess osc

V
f stands for the infimum of all δ > 0 such that

the set {(x1, x2) ∈ V× V; |f(x1)− f(x2)| > δ} has measure zero in V× V.

2.5. Maximal operators

The well-developed study of maximal functions has an analogue for Riemannian
manifolds. Here we shall frame the definitions and basic properties in this setting,
some pending a discussion in subsequent sections.
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2.5.1. The Hardy-Littlewood maximal operator. Given 1 6 p < ∞ and
h ∈ L p(X, V), where V is a finite dimensional normed space, we define

(2.48) Mph(x) = sup

{(
−
∫

B
|h(x)|p dx

) 1
p

; x ∈ B ⊂ X

}
The supremum runs over all metric balls B ⊂ X containing a given point x. Since
the entire manifold X is also a ball we see that for every x ∈ X

(2.49) Mph(x) >

(
−
∫

X
|h|p
) 1

p

Lebesgue Differentiation Theorem tells us that

(2.50) |h(x)| 6 Mph(x) for a.e. x ∈ X
Also note, by using Hölder’s inequality, that the function p→ Mph(x) is increasing.
For notational convenience we omit the subscript p if it equals 1. Thus

(2.51) Mph = (M|h|p)
1
p

Proposition 2.14. [Weak type estimate] For every h ∈ L p(X , V) the
maximal function Mph belongs to the Marcinkiewicz class L p

weak(X) and we have

(2.52)
∫
Mph>2t

dx 4
1
tp

∫
|h|>t

|h(x)|p dx

for all t > 0.

We will not prove this proposition here. The arguments establishing (2.52) are
very similar to those used in the Euclidean setting. Let us point out that the main
tool is Vitali type covering lemma, which is true in any separable metric space. But
we are not involved in such generality. The interested reader may try to consult
[12, 2.8.4-2.8.6].

As a consequence of the weak-type estimate at (2.52), and of sublinearity of Ms,
we obtain

Corollary 2.15. Let {hj} converge to h in L s(X , V), s ≥ 1, then {Mshj}
contains a subsequence converging to Msh almost everywhere.

Of course, Mp is a sublinear bounded operator in L∞(X , V). By interpolation,
we infer strong type estimates.

Proposition 2.16. The maximal operator Mp : L s(X , V) → L s(X) is
bounded for all p < s 6 ∞. Precisely, we have

(2.53) ||Mph || s 4 ||h || s
Reviewing the maximal function Mf in relation to the mollifiers ft we first

notice that

(2.54) |ft(x)| 4 −
∫

B(x,r)
|f(z)| dz

where t 6 r 4 t. In particular,

(2.55) |ft(x)| 4 Mf(x) for every x ∈ X
As for the differential Dft, we have the following estimate

(2.56) |Dft(x)| 4 −
∫

B(x,r)
|f(z)| dz +−

∫
B(x,r)

|Df(z)| dz
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This also applies to f(x)−C, where C can be any constant. It has to be noted that
(f − C)t = ft − C, hence

(2.57) |Dft(x)| 4 −
∫

B(x,r)
|f(z)− C| dz +−

∫
B(x,r)

|Df(z)| dz

Poincaré inequality yields a desired estimate of the first integral in terms of Df .

−
∫

B(x,r)
|f(z)− C| dz 4 r −

∫
B(x,r)

|Df(z)| dz 4 −
∫

B(x,r)
|Df(z)| dz

Finally, as the integral averages do not exceed the maximal function, we conclude
with the inequality

(2.58) |Dft(x)| 4 M(Df)(x) for all x ∈ X

2.5.2. The Fefferman-Stein operator and the Hardy space. The one
parameter family of C∞-smooth functions Kt : X×X→ R+, 0 < t 6 tX, introduced
in Section 2.4, will be employed to define another maximal operator on X. For an
n-form ω ∈ L 1(∧nX) we define a function ωt ∈ C∞(X) by the rule

(2.59) ωt(x) =
∫

X
Kt(x, ·)ω, 0 < t 6 tX

If ω = h(z) dz, where h is an integrable function and dz is the Riemannian volume
element on X, we also write

(2.60) ht(x) =
∫

X
Kt(x, z)h(z) dz

Then lim
t→0

ht(x) = h(x) at the Lebesgue points of h. This gives a way to the concept
of the maximal operator; replace lim

t→0
by sup

t>0
. Recall that the Hardy-Littlewood

maximal function of h ∈ L 1(X) is defined by

(Mh)(x) = sup

{
−
∫

B
|h(z)| dz; x ∈ B ⊂ X

}
< sup

0<t6tX

|h|t(x)(2.61)

where the supremum runs over all metric balls containing the given point x ∈ X.
More sensitive on various cancellations is the Fefferman-Stein maximal function

(2.62) (Mh)(x) = sup
0<t6tX

|ht(x)|, h ∈ L 1(∧nX)

Let us emphasize explicitly that here we first mollify h and then take the absolute
value of it. Clearly, we have

(2.63) Mh(x) 4 Mh(x)

but not conversely. As a note of additional interest, the maximal operator M can be
defined on Schwartz distributions due to the smoothness of the generating function
Φ, see [53].

Definition 2.17. [Hardy space] An n-form h ∈ L 1(∧nX) is said to be in the
Hardy space H 1(∧nX) if Mh ∈ L 1(X).

We see that H 1(∧nX) is a Banach space with respect to the norm

(2.64) ||h ||H 1(X) =
∫

X
Mh
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We refer to [54] for yet another approach to H 1-spaces on manifolds. Now, we recall
very briefly the Zygmund space L log L (X). It consists of functions h : X→ R such
that

(2.65) ||h ||L log L =
∫

X
|h(x)| log

(
e+

|h(x)|∫
X |h|

)
dx <∞

see also Section 4.3. It is known that L log L (X) ⊂ H 1(X). Indeed, for h ∈
L log L (X), we have the point-wise inequality |Mh| 6 |Mh| ∈ L 1(X), by Stein’s
Theorem [52]. Conversely, any non-negative function in H 1(X) lies in L log L (X),
see [53].





CHAPTER 3

Examples

In this section we go through some well known and some new examples which
provide a view on weakly differentiable mapping. In this vein the following mod-
ification of the example by R. Schoen and K. Uhlenbeck [49] proves to be most
desirable.

3.1. The longitude projection

Consider the n-sphere Sn in the Euclidean space Rn+1 = Rn × R. We write the
point x ∈ Sn as x = (z, xn+1), where z ∈ Rn and xn+1 ∈ R are coupled by the
equation |z|2 + |xn+1|2 = 1. The projection along the longitude lines of Sn onto its
equatorial sphere Sn−1 = {y ∈ Rn; |y| = 1} is defined by the rule

(3.1) f : Sn \ {n, s} → Sn−1, f(z, xn+1) =
z
|z|

Thus f is not defined at the north pole n = (0, 1) and the south pole s = (0,−1).
Elementary computation shows that

(3.2) |Df(x)| =
1
|z|

Therefore, f ∈ W 1,p(Sn,Sn−1) for all 1 6 p < n but not for p = n. Actually, its
differential lies in the Marcinkiewicz space L n

weak(X). Precisely, we have

(3.3)
1
tn

4
∫
|Df |>t

dx 4
1
tn
, for t > 1

Arguing by analytic methods of topological degree we find that f cannot be approx-
imated by smooth mappings

fj = (f1
j , f

2
j , ..., f

n
j ) : Sn → Sn−1

in the metric of W 1,n−1(Sn,Sn−1). Indeed, looking for a contradiction we examine
the wedge products

df1
j ∧ ... ∧ dfn

j ∈ C∞(∧nSn)

The 1-forms df1
j , df

2
j , ..., df

n
j are linearly dependent (at each point) because of the

relation |f1
j |2 + ... + |fn

j |2 = 1, which yields that f1
j df

1
j + ... + fn

j df
n
j ≡ 0. Hence,

the wedge products df1
j ∧ ... ∧ dfn

j are identically equal to zero. Now, for every
ϕ ∈ C∞(Sn) the integration by parts yields

0 =
∫

Sn

ϕ df1
j ∧ ... ∧ dfn

j = −
∫

Sn

f1
j dϕ ∧ df2

j ∧ ... ∧ dfn
j

The interested reader may recognize that the right hand side defines the so-called
distributional wedge product [27], [32]. These latter integrands possess sufficient

21
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degree of integrability to pass the limit under the integral sign as j →∞. Elementary
computation then shows that

|Bn| [ϕ(n)− ϕ(s)] =
∫

Sn

f1dϕ ∧ df2... ∧ dfn = lim
j→∞

∫
Sn

f1
j dϕ ∧ df2

j ... ∧ dfn
j = 0,

which gives a clear contradiction if we choose ϕ(n) 6= ϕ(s).
In this example f fails to be uniformly continuous near the poles. Furthermore,

the oscillation of f on any (n−1)-surface surrounding one of those poles stays away
from zero, no matter how close to the pole the surface is. And this is exactly what
we shall try to avoid. But the precise results must wait until the relevant concepts
will be introduced.

3.2. Spherical coordinates

Let x = (x1, x2, ..., xn+1) be a point in the n-sphere Sn ⊂ Rn+1, x2
1 + ...+x2

n+1 =
1. Spherical coordinates (z, θ) on Sn can be introduced by setting

(3.4) (x1, x2, ..., xn+1) = (z sin θ, cos θ)

where z lies in the equatorial sphere Sn−1 ⊂ Rn, and 0 6 θ 6 π is the latitude angle,
xn+1 = cos θ. Singularities occur at the north pole n = (0, ..., 0, 1), θ = 0, and at
the south pole s = (0, ..., 0,−1), θ = π. At those poles we cannot determine the
equatorial coordinate z ∈ Sn−1. The usual volume element on Sn takes the following
form in spherical coordinates

(3.5) dx = | sin θ|n−1 dθ dz

where dz stands for the standard volume element on Sn−1. Thus, in particular

(3.6) ωn = |Sn| =
∫

Sn

dx = ωn−1

∫ π

0
sinn−1 θ dθ

For 0 6 α < β 6 π we shall consider the spherical slice

(3.7) Sβ
α =

{
(z cos θ, sin θ); z ∈ Sn−1 and α 6 θ 6 β

}
Its n- dimensional volume can be estimated by

(3.8) |Sβ
α| = ωn−1

∫ β

α
sinn−1 θ dθ 6

ωn−1

n
(βn − αn) = |Bn|(βn − αn)

3.3. Winding around the longitude circles

Given a spherical slice Sβ
α, 0 6 α < β 6 π, let γ : [α, β] → [0,∞) be an increasing

function. A mapping f : Sβ
α → Sn, defined using spherical coordinates by the rule

(3.9) f(z sin θ, cos θ) = (z sin γ(θ), cos γ(θ)) for α 6 θ 6 β ,

is called winding map. Note that (z sin θ, cos θ) and (z sin γ(θ), cos γ(θ)) lay on the
same longitude circle.

We calculate the Jacobian determinant J (x, f) at the points where the derivative
γ′(θ) exists. Observe that the linear tangent map Df(x) : TxSn → Tf(x)Sn is
stretching in the longitude direction by γ′(θ) and in all the equatorial directions by
the factor

∣∣∣ sin γ(θ)
sin θ

∣∣∣. Hence the Jacobian determinant of f at x = (z cos θ, sin θ) is
the product of those stretching factors.

(3.10) J (x, f) = γ′(θ)
∣∣∣∣sin γ(θ)

sin θ

∣∣∣∣n−1

> 0
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The operator norm of the linear map Df(x) is precisely equal to:

(3.11) |Df(x)| = max

{
γ′(θ),

∣∣∣∣sin γ(θ)
sin θ

∣∣∣∣
}
, x = (z sin θ, cos θ)

3.4. A mapping of infinite degree

Consider a sequence of latitude angles

(3.12) θ0 = π >
π

2
> 2θ1 > θ1 > 2θ2 > θ2 > ...2θk > θk > 2θk+1 > θk+1... > 0

Additional conditions on these angles will be imposed later on. The n-sphere Sn is
divided into countable number of spherical slices

(3.13) Sn =
∞⋃

k=0

Sθk
2θk+1

∪
∞⋃

k=1

S2θk
θk

We now construct an infinite covering f : Sn → Sn by the rule
• f : Sθk

2θk+1
→ Sn is the identity for k = 0, 1, ...

• f : S2θk
θk

→ Sn is the latitude winding for k = 1, 2, ...

(3.14)
f(z sin θ, cos θ) = (z sin γk(θ), cos γk(θ))

γk(θ) = θ +
2π(θ − θk)

θk

Let us observe that f : S2θk
θk

→ Sn is the identity on the boundary of S2θk
θk

. Precisely,
we have γk(θk) = θk and γk(2θk) = 2θk + 2π. Furthermore, f maps all points
of latitude θ = 3πθk/(2π + θk) into the south pole. It maps points of latitude
θ = 4πθk/(2π + θk) into the north pole. Outside those latitude spheres f is a local
diffeomorphism. Since the image of S2θk

θk
covers the whole sphere Sn we estimate the

integral of the Jacobian determinant of f as

(3.15)
∫

S2θk
θk

J (x, f) dx > 2ωn

for every k = 1, 2, ... We then conclude that the Jacobian is not integrable

(3.16)
∫

Sn

J (x, f) dx >
∞∑

k=1

2ωn = ∞

Because of this f does not belong to the Sobolev class W 1,n(Sn, Sn). It is desirable
to see which Orlicz-Sobolev classes contain this mapping f . We therefore need to
estimate the differential of f . On each spherical slice Sθk

2θk+1
the norm of Df equals

1, whereas for (z cos θ, sin θ) in S2θk
θk

formula (3.11) yields

|Df(z, θ)| = max

{
1 +

2π
θk
,

∣∣∣∣sin γk(θ)
sin θ

∣∣∣∣
}

6 max

{
1 +

2π
θk
,

1
sin θ

}
6

8
θk

,(3.17)

because θk 6 θ < 2θk. Also observe that the volume of S2θk
θk

does not exceed
2nn−1ωn−1θ

n
k , by the formula at (3.8).
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Now let P : [0,∞) → [0,∞) be any Orlicz function that exhibits slower growth
than tn. Precisely, we assume that

(3.18) lim inf
t→∞

t−nP (t) = 0

The reader may consult Section 4.3 for the definition of the Orlicz function. We find
that ∫

S2θk
θk

P (|Df(x)|) dx 6 | S2θk
θk
| P ( 8

θk
) 6 2nωn−1

n P ( 8
θk

)(3.19)

As |Df(x)| = 1 on the remaining spherical slices, it follows that

(3.20)
∫

Sn

P (|Df(x)|) dx 6 ωn P (1) +
∞∑

k=1

λ(θk)

where

(3.21) λ(ε) = 2nωn−1

n εnP (8
ε )

Since
lim inf

ε→0
λ(ε) = 0,

one can find a sequence of latitude angles satisfying (3.12) such that
∞∑

k=1

λ(θk) <∞

We then conclude this section with our primary result.

Theorem 3.1. For every Orlicz function satisfying (3.18) there exists an ori-
entation preserving mapping f : Sn → Sn in the Orlicz-Sobolev class W 1,P (Sn,Sn)
whose Jacobian determinant is not integrable.



CHAPTER 4

Some Classes of Functions

We recall the Riemannian volume element dx on X. However, our considerations
in this section pertain to abstract measure spaces. Perhaps the reader has already
observed that we have reserved capital script letters for all types of function spaces,
with few exceptions. Thus, let (X , dx) be a finite measure space and 0 < p < ∞.
The Lebesgue L p-space, denoted by L p(X), is a complete metric space. The metric
is induced by the non-linear functional

(4.1) ||F || p = ||F ||L p(X) =
(∫

X
|F (x)|p dx

) 1
p

<∞

see Section 4.3 and formula (4.29).
Before making generalizations we single out the weak-L p space, which is also

known as Marcinkiewicz space.

4.1. Marcinkiewicz space L p
weak(X)

This space consists of functions satisfying

(4.2) [F ]p
def== sup

t>0

(
tp
∫
|F |>t

dx

) 1
p

<∞

Clearly, we have

(4.3) [F ]p 6 ||F || p , hence L p(X) ⊂ L p
weak(X)

It is evident that [ ]p is not a norm, and also || || p fails to be a norm in L p(X) when
0 < p < 1. For every 0 6 α < p, Fubini’s theorem yields

tp
∫
|F |>t

dx 6 tp−α

∫
|F |>t

|F (x)|α dx

= tp
∫
|F |>t

dx+ tp−α

∫
|F |>t

(|F (x)|α − tα) dx

6 [F ]pp + tp−α

∫
|F |>t

(∫ |F (x)|

t
ατα−1

)
dτ dx

= [F ]pp + tp−α

∫ ∞

t
ατα−p−1

(
τp

∫
|F |>τ

dx

)
dτ

6
p

p− α
[F ]pp(4.4)

Taking the supremum over t > 0, we obtain

(4.5) [F ]p 6 [F ]α,p
def== sup

t>0

(
tp−α

∫
|F |>t

|F |α
) 1

p

6 p

√
p

p−α [F ]p

25
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In other words, L p
weak(X) is characterized by the inequality [F ]α,p < ∞ for some

or (equivalently) for all 0 6 α < p. The Lebesgue space L p(X) corresponds to
α = p, in which case ||F || p = [F ]p,p. It follows from the above estimates that
L p

weak(X) ⊂ L α(X), for every 0 < α < p. As a mater of fact, we have the estimate

(4.6) ||F || α 4 |X|
1
α
− 1

p [F ]p

To this end consider the inequalities∫
X
|F |α 6

∫
|F |6t

|F (x)|α dx+
∫
|F |>t

|F (x)|α dx

6 tα|X|+ p

p− α
tα−p[F ]pp(4.7)

by (4.5). Estimate (4.6) is immediate if we take t = |X|−1/p[F ]p.
We shall now place the Marcinkiewicz class L p

weak(X) in a family L α,p(X) of
the so-called very weak Lebesgue spaces, see [30], [13].

4.2. The space L α,p(X)

Given 0 6 α < p, the space L α,p(X) consists of measurable functions F = F (x)
such that

(4.8) {F}α,p
def== lim inf

t→∞

(
tp−α

∫
|F |>t

|F (x)|α dx

) 1
p

<∞

One should be a little cautious because L α,p(X) is not a linear space, though F ∈
L α,p(X) implies λF ∈ L α,p(X) for every λ ∈ R. Precisely, {λF}α,p = |λ| {F}α,p. It
is clear that L p(X) ⊂ L α,p(X) for every 0 < α < p. On the other hand,

(4.9) L α,p(X) *
⋃
s>α

L s(X)

see Section 4.5. For 0 6 α 6 β < p we have the following chain of inclusions

(4.10) L p
weak(X) ⊂ L β,p(X) ⊂ L α,p(X) ⊂ L p

Weak(X)

This latter new space L p
Weak(X) = L 0,p(X) consists of functions satisfying

(4.11) lim inf
t→∞

(
tp
∫
|F |>t

dx

) 1
p

= {F}0,p <∞

The nuance is that we have replaced sup in the definition of L p
weak(X) by lim inf.

Finally, we introduce the subclass L α,p
◦ (X) ⊂ L α,p(X), 0 6 α < p, by requiring

that {F}α,p = 0.

4.2.1. Spherical averages. Let n−1 < α < n and F ∈ L α,n
◦ (X). For a given

point x ∈ X, we shall look closely at the expressions

(4.12) Fx(r) = r

(
−
∫

S(x,r)
|F (y)|α dy

) 1
α

as functions defined for almost every r ∈ (0, R], where R will be a small number. As
usually, S(x, r) = ∂B(x, r) denotes the geodesic sphere in X centered at x and with
radius r. When applied to F = |Df | these integral expressions represent average
stretchings of the deformation f : X → Y. One important feature of the space
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L α,n
◦ (X) is that Fx(r) assumes arbitrarily small values as r → 0. Precise statement

reads as:

Proposition 4.1. For every ε > 0 the set of radii r ∈ (0, R] such that Fx(r) 6 ε
has positive linear measure.

Proof. Recall that F ∈ L α,n
◦ (X) has the property,

(4.13) lim inf
t→∞

tn−α

∫
|F |>t

|F (x)|α dx = 0

Assume, to the contrary, that there exists ε > 0 such that

(4.14) Fx(r) = r

(
−
∫

S(x,r)
|F (y)|α dy

) 1
α

> ε

for almost every r ∈ (0, R]. For simplicity we assume that S(x, r) are spheres in
Rn and x = 0. The general case reduces to this Euclidean one by using the normal
coordinates. In this coordinate system small geodesic spheres centered at x become
the Euclidean spheres centered at 0, see [37, definition 1.4.4.]. Inequality (4.14)
translates into the following estimate

ωn−1 ρ
n−α

n− α
= ωn−1

∫ ρ

0

dr

rα−n+1
<

1
εα

∫ ρ

0

(∫
|x|=r

|F (x)|α dx

)
dr

=
1
εα

∫
|x|6ρ

|F (x)|α dx(4.15)

for every 0 < ρ < R. We split |F | into two parts, say |F | = F1 + F2

(4.16) F1(x) =

{
|F (x)| if |F (x)| 6 ε

2 |x|
0 if |F (x)| > ε

2 |x|

(4.17) F2(x) =

{
0 if |F (x)| 6 ε

2 |x|
|F (x)| if |F (x)| > ε

2 |x|

To simplify writing we introduce the parameter t = ε
2 ρ and proceed as follows:

ωn−1 ρ
n−α

n− α
<

1
εα

∫
|x|6ρ

|F (x)|α dx

=
1
εα

∫
|x|6ρ

|F1(x)|α dx+
1
εα

∫
|x|6ρ

|F2(x)|α dx

6
1
2α

∫
|x|6ρ

dx

|x|α
+

1
εα

∫
|F (x)|>t

|F (x)|α dx

=
ωn−1 ρ

n−α

2α(n− α)
+

(2 ρ)n−α

εn
tn−α

∫
|F (x)|>t

|F (x)|α dx

The first term is absorbed by the left hand side, so we arrive at the estimate

(4.18)
(2α − 1)ωn−1 ε

n

2n(n− α)
6 tn−α

∫
|F |>t

|F (x)|α dx

This estimate is in contradiction with (4.13) once we let t = ε
2 ρ go to infinity.
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4.2.2. Special sequences. By the definition, every F ∈ L α,p(X) admits a
sequence {ti}i=1,2,... of positive numbers increasing to infinity such that

(4.19) sup
i>1

(
tp−α
i

∫
|F |>ti

|F (x)|α dx

) 1
p

<∞

If F ∈ L p
weak(X) then every sequence {ti}i=1,2,... has this property. Now, a sequence

of positive numbers {ti}i=1,2,... increasing to infinity will be referred to as special
sequence for F if

(4.20) lim
i→∞

(
tp−α
i

∫
|F |>ti

|F (x)|α dx

) 1
p

= 0

Thus the notation F ∈ L α,p
◦ (X) simply means that F admits a special sequence.

It is not difficult to see that if F,G ∈ L α,p
◦ (X) have common special sequence {ti}

then the nontrivial linear combination H = λF + µG also lies in L α,p
◦ (X). Indeed,

special sequence for H consists of the number τi = (|λ| + |µ|)ti, by the following
computation: (

τp−α
i

∫
|H|>τi

|H(x)|α dx

) 1
p

6

(|µ|+ |λ|)

[(
tp−α
i

∫
|F |>ti

|F (x)|α dx

) 1
p

+

(
tp−α
i

∫
|G|>ti

|G(x)|α dx

) 1
p
]

However, the linear structure is lost in L α,p
◦ (X) because two different functions may

not have a common special sequence.
The reader may wish to recall the function F (x) = |Df(x)| defined at (3.2).

It belongs to the Marcinkiewicz class L n
weak(X), but fails to satisfy the condition

{F}0,n = 0. In Section 8.2 we shall make use of special sequences to introduce the
concept of the so-called weak integrals. It will not matter which special sequence we
choose, they all yield the same weak integral. It is therefore natural and important
to know in which of the function spaces we always have special sequences. Let us
begin with the Orlicz classes.

4.3. The Orlicz space L P (X)

In this section we briefly review basic concepts of the theory of Orlicz spaces.
Naturally, it also gives us an opportunity to discuss the notation used in this text.

Definition 4.2. The term Orlicz function pertains to any infinitely differen-
tiable function P : R+ → R+ which is strictly increasing and satisfies

(4.21) P (0) def== lim
t→0

P (t) = 0

(4.22) P (∞) def== lim
t→∞

P (t) = ∞

Definition 4.3. The Orlicz space is a collection of measurable functions u :
X→ V, such that

(4.23)
∫

X
P
(
|u(x)|

k

)
dx <∞
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for some positive k = k(u). This space will be denoted by L P (X,V).
Here and in what follows V is a finite dimensional normed space. If V = R we

simply write L P (X). Note explicitly that the usual convexity of P will not always
be required in this paper. Also, if we fix a basis for V then u ∈ L P (X,V) if and
only if its coordinate functions with respect to this basis belong to L P (X). It is
easy to see that L P (X,V) is a linear space. Clearly L p(X,V) is the Orlicz space
for P (t) = tp. Of special importance to us will be the Orlicz spaces L P (X,V)
which are slightly larger than L p(X), 1 6 p < ∞. More precisely, our standing
assumption upon P will be the so-called divergence condition

(4.24)
∫ ∞

1

P (t)
tp+1

dt = ∞, for instance P (t) =
tp

log(e+ t)

Actually, p will be the dimension of X. We shall see in Section 4.5 that
Under the divergence condition at (4.24) we have the inclusion

(4.25) L P (X) ⊂ L α,p
◦ (X) for all 0 6 α < p

The Orlicz space is equipped with the Luxemburg functional (no triangle in-
equality) defined by

(4.26) ||u ||P = inf

{
k > 0;

∫
X
P
(
|u(x)|

k

)
dx 6 1

}
Of course, if a function u vanishes almost everywhere in X then ||u || P = 0.

Otherwise, the infimum in (4.26) is attained at exactly one value k = ||u ||
P
> 0.

As a note of warning, it can happen that

(4.27)
∫

X
P
(
|u(x)|
||u ||

P

)
dx < 1

To see this take P (t) = et−1, X = (0, 1] and u(x) = − log(x+x log2 x) > 0. Indeed,
elementary computation reveals that∫ 1

0

(
e|u(x)| − 1

)
dx =

π

2
− 1 < 1 , whereas ||u || P = 1

because ∫ 1

0

(
e
|u(x)|

k − 1
)
dx = ∞ for all k < 1

On the other hand for u ≡/ 0 we have the equation∫
X
P
(
|u(x)|
||u ||

P

)
dx = 1 , provided ||u ||P > 0

whenever the defining Orlicz function satisfies a doubling condition. This refers to
the condition

(4.28) P (2t) 6 k P (t)

for some k > 1 and all t > 0. We call k the doubling constant.
L P (X , V) is a complete linear metric space in which the distance between u

and v is measured as

(4.29) distP [u, v] = dist
L P (X)

[u, v] def== inf

{
ρ > 0;

∫
X
P
(
|u(x)−v(x)|

ρ

)
dx 6 ρ

}
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Clearly, if distP [u, v] > 0, then

(4.30)
∫

X
P
(
|u(x)−v(x)|

ρ0

)
dx 6 ρ0 for ρ0 = dist

L P (X)
[u, v]

with the possibility of equality to occur sometimes. However, if P satisfies the
doubling condition, then the equality always holds.

The triangle inequality distP [u, v] 6 distP [u,w]+distP [w, v] follows directly from
the elementary inequality

|a+ b|
ρ1 + ρ2

6 max
{
|a|
ρ1
,
|b|
ρ2

}
, ρ1, ρ2 > 0

We apply it to a = u−w and b = w − v. The arguments establishing completeness
of the space L P (X) are much the same as in the case of the space L p(X), with
p > 1.

Taking P (t) = tp, where p > 0, we recover the well know fact that L p(X,V) is
a complete linear metric space with respect to the distance

dist
L P (X)

[u, v] = ||u− v || p/(p+1)

p

For p > 1 the usual distance function ||u − v || p has many advantages, such as
homogeneity. Unfortunately, if 0 < p < 1, this rather nice expression ||u− v || p fails
to satisfy the triangle inequality; L p(X) is not a Banach space.

If a sequence uj converges to u in L P (X , V) then also lim
j→∞

||uj − u ||P = 0.

This follows from the inequality

(4.31) ||u− v ||P 6 dist
L P (X)

[u, v] , provided dist
L P (X)

[u, v] 6 1

Another useful observation is that if functions uj ∈ L P (X , V), are supported in
a common set of finite measure and converge uniformly to u then u ∈ L P (X , V).
Moreover,

(4.32) lim
j→∞

||uj − u ||P 6 lim
j→∞

dist
L P (X)

[uj , u] = 0

Proposition 4.4. Let X be a finite measure space. The closure of bounded
functions in L P (X , V) is a linear subspace given by

(4.33) L P
∞(X,V) =

{
u;
∫

X
P
(
|u(x)|

k

)
dx <∞, for every k > 0

}

In fact we have even more precise result. Given u ∈ L P (X , V), where X is a
finite measure space, its distance to L∞(X , V) ⊂ L P (X , V) can be computed by
the rule

(4.34) dist
L P (X)

[u,L∞] = inf

{
k > 0;

∫
X
P
(
|u(x)|

k

)
dx <∞

}
If the space X possesses some differentiable structure we find the following corollary.

Corollary 4.5. Let Ω be a bounded open subset of Rn (or any Riemannian
n-manifold). Then the closure of C∞(Ω,V) ∩L∞(Ω,V) equals L P

∞(Ω,V).
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It is to be noted that, in general, bounded functions are not dense in L P (X , V).
An example that illustrates this possibility is furnished by P (t) = et − 1, which
defines the so-called exponential class

(4.35) ExpL (X , V) =
{
u;
∫

X
e
|u(x)|

k dx <∞, for some k = k(u) > 0
}

However, L P
∞(X , V) = L P (X , V) if the defining Orlicz function satisfies a dou-

bling condition.
We refer to an Orlicz function P as Young function if its second derivative is

non-negative, i.e. P is convex. In this case L P (X , V) is a Banach space and || ||P
satisfies also the triangle inequality. That is why we shall use the term Luxemburg
norm for || ||P , in the convex case. It compares with the distance function rather
nicely:

(4.36) dist
L P (X)

[u, v] 6
√
||u− v ||

P
, provided ||u− v ||P 6 1

This follows from the inequality P (εt) 6 εP (t) for all 0 6 ε 6 1 and t > 0; a simple
consequence of convexity. Inequalities (4.31) and (4.36) imply that

(4.37) lim
j→0

||uj − u ||P = 0 iff lim
j→0

dist
L P (X)

[uj , u] = 0

Note that even in this convex case the density of bounded functions (Proposition
4.4) in L P (X , V) still requires the doubling condition (4.28) as the example of
exponential class demonstrates.

In many situations, when we speak of the space L P (X , V), we do not need
to explicitly specify the defining function P = P (t); only its behavior for large
values of t will be significant to us. To effectively handle this case we make the
following definition. Given Φ ∈ C [0,∞) (not necessarily increasing), an Orlicz
function P = P (t) is said to be equivalent to Φ if there exists λ > 1 such that

(4.38) 1
λP
(

t
λ

)
6 Φ(t) 6 λP (λt), for all t > 0

We write it as P ≈ Φ. It is not always quaranteed that a given Φ ∈ C [0,∞)
admits an equivalent Orlicz function. However, if two Orlicz functions P and Q are
equivalent via the parameter λ, then

(4.39) 1
λ dist

L P (X)
[u, v] 6 dist

L Q(X)
[u, v] 6 λ dist

L P (X)
[u, v]

Hence L P (X , V) = L Q(X,V), as metric spaces. In particular, two Orlicz functions
equivalent to a given Φ yield the same metric space. When X has finite measure it
will suffice to assume that (4.38) holds for only large values of t, in symbols P ∼ Φ.
Then Φ need not be even defined for all t. In this finite measure case we still have
L P (X , V) = L Q(X , V), whenever P ∼ Φ and Q ∼ Φ.

Some Orlicz spaces play special role in the theory of Jacobians. The Zygmund
spaces already have standard notation which we want to recall here:

• L log L (X) = L P (X), P = t log(e+ t)
• L log−1 L (X) = L P (X), P = t

log(e+t)

• L p logα L (X) = L P (X), P ∼ tp logα(e+ t), 0 < p <∞ and α ∈ R
• L p log log L (X) = L P (X), P ∼ tp log log(ee + t), 0 < p <∞
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4.4. Grand GL p-space

Let 1 < p < ∞, we consider functions F ∈
⋂

16s<p L s(X) furnished with the
norm

(4.40) ||F || p) = sup
0<ε6p−1

(
ε

∫
X
|F (x)|p−ε dx

) 1
p−ε

<∞

This gives us a Banach space, denoted by GL p(X), which is even larger than the
Marcinkiewicz class

(4.41) L p(X) ⊂ L p
weak(X) ⊂ GL p(X)

It is important to realize that L p(X) is not dense in GL p(X). Its closure consists
of functions having ”vanishing p-modulus”, see [34], [30]

(4.42) lim
ε→0

ε

∫
X
|F (x)|p−ε dx = 0

We denote this space by VL p(X). As before, the function F (x) = |DF (x)| de-
fined at (3.2) lies in GL n(X) but not in VL n(X); a cause for the lack of smooth
approximation later on. Let us record two more inclusions (see the next section)

GL p(X) ⊂ L α,p(X)(4.43)
VL p(X) ⊂ L α,p

◦ (X)(4.44)

for every 0 6 α < p.

4.5. Relations between spaces

In this section we will show that

(4.45) VL p(X) ⊂
⋃
P

L P (X) = L α,p
◦ (X) 0 < α < p

where the union runs over all Orlicz functions P satisfying
• divergence condition

(4.46)
∫ ∞

1

P (t)
tp+1

dt = ∞

• growth condition

(4.47) [t−αP (t)] ′ > 0, for large values of t

We would like to remind the reader that the divergence condition (4.46) alone is too
weak to guarantee that the functions in L P (X) belong to L α(X). That is why we
impose the additional condition (4.47) to ensure that L P (X) ⊂ L α(X).

It is well known that L p
weak(X) ⊂

⋂
s<p L s(X). Here we shall demonstrate that

the space L α,p
◦ (X) is not contained in

⋂
s<p L s(X). Even more, we will construct

a function which lies in L α,p(X) but not in L s(X), for any s > α. Of course this
example also will show the inclusion L β,p(X)  L α,p(X), where α < β, because
L α,p(X) ⊂ L α(X).

Let us notice that

(4.48) L α,p
◦ (X) =

{
F ∈ L α(X) : inf

t>0
tp−α

∫
|F |>t

|F (x)|α dx = 0
}

because the infimum is zero if and only if lim inf is zero.
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Proposition 4.6. Suppose that u ∈ VL p(X). Then u ∈ L α,p
◦ (X) for all 0 <

α < p.

Proof. Given ε > 0 we consider the function Ψε(t) = t−ε−1 defined for all t > 0.
Note that

(4.49) ε

∫ ∞

1
Ψε(t) dt = 1

Next we make use of Fubini’s Theorem:

inf
t>1

tp−α

∫
|u|>t

|u(x)|α dx 6 ε

∫ ∞

1
Ψε(t) tp−α

∫
|u|>t

|u(x)|α dx dt

= ε

∫
|u|>1

|u(x)|α
∫ |u(x)|

1
tp−α−ε−1 dt dx

6
ε

p− α− ε

∫
X
|u(x)|p−ε dx(4.50)

Letting ε go to zero, we find that u ∈ L α,p
◦ (X), by (4.48). �

Proposition 4.7. Given an Orlicz-function P satisfying (4.46) and (4.47), 0 <
α < p, let u : X→ R be a measurable function such that

(4.51)
∫

X
P (|u(x)|) dx <∞

Then

(4.52) u ∈ L α,p
◦ (X)

Proof. First we observe that the condition (4.47) implies u ∈ L α(X). Consider
the non-negative function Ψ = tα−p[t−αP (t)]′, with large values of t; say t > A.
Then ∫ ∞

A
Ψ(t) dt =

P (t)
tp

∣∣∣∣∣
∞

A

+ (p− α)
∫ ∞

A

P (t)
tp+1

dt

> −P (A)
Ap

+ (p− α)
∫ ∞

A

P (t)
tp+1

dt = ∞(4.53)

Next we pick up T > A, and compute by using Fubini’s Theorem:(∫ T

A
Ψ(t) dt

)
inf
t>A

tp−α

∫
|u|>t

|u(x)|α dx 6
∫ T

A
Ψ(t) tp−α

(∫
|u|>t

|u|α
)
dt

6
∫
|u|>A

|u|α
∫ |u|

A
Ψ(t)tp−α dt

6
∫
|u|>A

P (|u|) 6
∫

X
P (|u|)(4.54)

Letting T tend to infinity, the claim follows from (4.51), (4.53) and (4.48). �

Proposition 4.8. Suppose that u ∈ L α,p
◦ (X). Then there exists an Orlicz

function P satisfying conditions (4.46) and (4.47) such that

u ∈ L P (X)
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Proof. We find a special sequence {tk} such that

1 < t1 < t1 + 1 < t2 < t2 + 1 < t3 < . . .

and

tp−α
k

∫
|u|>tk

|u(x)|α dx ≤ 2−k

For each k = 1, 2, . . . we find a smooth nonnegative bump function ηk on (0,∞)
with support in (tk, tk + 1), such that∫ tk+1

tk

ηk(s) ds = (p− α)(tk + 1)p−α

We set

η =
∞∑

k=1

ηk

and

P (t) = tα
∫ t

0
η(s) ds, t ∈ [0,∞)

Then ∫ ∞

0

P (t)
tp+1

dt =
∫ ∞

0
tα−p−1P (t)

tα
dt =

∫ ∞

0
tα−p−1

(∫ t

0
η(s) ds

)
dt

=
∫ ∞

0

(∫ ∞

s
tα−p−1η(s) dt

)
ds = (p− α)−1

∫ ∞

0
sα−pη(s) ds

= (p− α)−1
∞∑

k=1

∫ tk+1

tk

sα−pηk(s) ds ≥
∞∑

k=1

1 = ∞

On the other hand,∫
X
P (|u(x)|) dx =

∫
X
|u(x)|α

(∫ |u(x)|

0
η(s) ds

)
dx

=
∫ ∞

0
η(s)

(∫
|u|>s

|u(x)|α dx
)
ds

=
∞∑

k=1

∫ tk+1

tk

ηk(s)
(∫

|u|>s
|u(x)|α dx

)
ds

≤
∞∑

k=1

(∫
|u|>tk

|u(x)|α dx
)∫ tk+1

tk

ηk(s) ds

≤ C

∞∑
k=1

tp−α
k

∫
|u|>tk

|u(x)|α dx

≤ C2−k

which shows that u ∈ L P (X). �

Example 4.9. We prove, be means of an example, that the inclusion in (4.45)
is proper, which will also validate the claim at (4.9). There exists a function F : I =
[0, 1] → [0,∞) in the space L α,p

◦ (I) such that F /∈
⋃

s>α L s(I). It then follows that
F /∈ VL p(I).
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Construction. We define I1 = 0, a1 = 0, t1 = 1 and then by induction:

tk = 2kk

Ik = t−α
k tα−p

k−12−k

ak = ak−1 + Ik

k = 2, 3, . . . ,

Consider the intervals

Ik = [ak−1, ak), k = 2, 3, . . .

and denote their length by

Ik = ak − ak−1 = |Ik|
Then we set

F (x) =
∞∑

k=2

tkχIk
(x) x ∈ I = [0, 1].

Notice the inequality
Ik 6 2−k

and thus
⋃

k Ik ⊂ I. First we show that F belongs to L α,p
◦ (I). The sequence {tk}∞k=1

is special in the sense described in Section 4.2.2. Indeed, for i > k > 2

tp−α
k Iit

α
i = tp−α

k tα−p
i−1 2−i 6 2−i

Hence

(4.55) tp−α
k

∫
F>tk

|F (x)|α dx = tp−α
k

∞∑
i=k+1

Ii t
α
i 6

∞∑
i=k+1

2−i = 2−k → 0

as k goes to infinity. Now, we show that F does not lie in
⋃

s>α L s(I). Indeed,

(4.56)
∫ 1

0
|F (x)|s dx =

∞∑
k=1

tskIk =
∞∑

k=1

2−kts−α
k tα−p

k−1

Using elementary inequality

log
2
tskIk = (s− α)kk − (p− α)(k − 1)k−1 − k

> (s− α)kk − (p− α)kk−1 − kk−1

=
(

(s− α)k − (p− α+ 1)
)
kk−1 →∞

we obtain ∫ 1

0
|F (x)|s dx = ∞

as desired.

4.6. Sobolev classes

A Sobolev mapping f : X → RN is a vector field f = (f1, f2, ..., fN ) whose
coordinate functions lay in the usual Sobolev space W 1,p(X), 1 6 p 6 ∞. As for the
mappings f : X→ Y between manifolds it has been increasingly acknowledged that
the introduction of the Riemannian structure on both X and Y is necessary to build
a viable theory. Broadly speaking the presence of this additional structure involves
no loss of generality and at the same time it pays off handsomely in geometric in-
sights. Adopting the imbedding theorem of J. Nash simplifies matters substantially.
Thus we assume that the target manifold Y is C∞-isometrically imbedded in some
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Euclidean space RN . Now the term Sobolev mapping f : X → Y pertains to a
measurable function f : X→ RN such that f(x) ∈ Y for a.e. x ∈ X.

4.6.1. The Orlicz-Sobolev space W 1,P (X , Y). This space consists of weakly
differentiable functions f : X→ Y ⊂ RN such that

(4.57) || f ||1,P =
∫

X
|f(x)| dx+ ||Df ||P <∞

We should stress that in order to speak of weakly differentiable mapping f : X→ Y
we must ensure that |Df | ∈ L 1(X). This requires that P (t) grows at least linearly,
in symbols P (t) < t. With this assumption in place W 1,P (X , Y) becomes a
complete metric space with respect to the distance

(4.58) dist1,P [f, g] = || f − g ||1 + distP [Df,Dg]

Of course, the distance function depends on the imbedding Y ⊂ RN though different
imbeddings yield the same topology in W 1,P (X , Y). The weak topology in the linear
spaces L P (X , RN ) makes no sense in the nonlinear class L P (X , Y). But we can
speak of weak convergence in W 1,P (X , Y). In what follows we will be interested in
the Orlicz-Sobolev classes W 1,P (X , Y) such that

(4.59)
∫ ∞

1

P (t) dt
tn+1

= ∞

Additional conditions, such as (4.28) or (4.47), will also be imposed when necessary.

4.6.2. The Sobolev classes GW 1,n(X , RN ) and VW 1,n(X , RN ). Here the
dimension of the domain manifold X equals n > 2. The grand Sobolev space
GW 1,n(X , RN ) consists of the vector functions f : X→ RN such that

(4.60) || f ||
1,n)

= || f ||1 + sup
0<ε6n−1

(
ε

∫
X
|Df(x)|n−ε dx

) 1
n−ε

<∞

This is a norm which makes GW 1,n(X , RN ) a Banach space. The closure of
C∞(X , RN ) in this space denoted by VW 1,n(X , RN ) is characterized precisely by
the condition

(4.61) lim
ε→0

ε

∫
X
|Df(x)|n−ε dx = 0

However, the density of C∞(X , Y) in VW 1,n(X , Y) will require some work if the
target manifold Y is not a vector space. We shall establish this important fact in
Section 5.8.



CHAPTER 5

Smooth Approximation

The first of the main questions that faces us is to whether smooth mappings
f : X → Y are dense in the given Sobolev class. As we have said, this approxima-
tion problem has already a remarkable history, J. Eells and L. Lemaire [10] first
consider W 1,p(X , Y), with p > n = dimX. By virtue of the embedding theorem
such mappings are continuous. A general fact is that whenever f : X → Y hap-
pens to be continuous the usual mollification followed by the projection of a tubular
neighborhood of Y gives the desired approximation of f , see also [6] for the related
ideas concerning the space VMO(X , Y)-mappings with vanishing mean oscillations.
But the true difficulty shows up below the dimension of X; that is, for 1 6 p < n.
The prevailing idea of our approach is that in the Sobolev classes slightly below
W 1,n(X , Y) we were able to detect certain sets (refered to as webs) on which a
given map is still continuous.

5.1. Web like structures

We repeat from Introduction that a web on X is a compact set F ⊂ X of Lebesgue
measure zero whose complement consists of finite number of components Ui, i =
1, ..., I (disjoint open connected sets). We call them meshes of the web; thus,

(5.1) X \ F =
I⋃

i=1

Ui =
⋃

U∈W

U

Let the collection of meshes be denoted by W = {Ui; i = 1, ..., I}. In what follows
we will spin webs on X with arbitrarily small meshes. The precise term for this is

(5.2) fine-diameter (F) = max
{

diamU; U ∈ W
}

It seems that in the perspective we need only consider ”regular web structures”,
such as Lipschitz or even more regular. In this paper the web will be no other than
a finite union of geodesic spheres in X.

5.2. Vanishing web oscillations

We shall investigate Sobolev mappings f ∈ W 1,p(X , RN ) which have continuous
trace along the web. Precisely this means that there exists a continuous function
ϕ : X→ RN such that f − ϕ ∈ W 1,p

◦ (U,RN ), for every mesh U ∈ W. Equivalently,

(5.3) f ∈ ϕ+ W 1,p
◦ (X \ F, RN )

where W 1,p
◦ (U,RN ) is the closure of C∞

◦ (U,RN ) in W 1,p(U,RN ). Note that the
above assumptions imply ϕ ∈ W 1,p(X , RN ). Now, we say that a mapping f ∈
W 1,p(X , RN ) has vanishing web oscillations if to every ε > 0 there corresponds a
web F ⊂ X such that:

1) fine-diameter(F) 6 ε
2) f has continuous trace along F, say ϕ ∈ W 1,p(X , RN ) ∩ C (X , RN )

37
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3) For every mesh U ∈ W, it holds

osc(f, ∂U) def== max
{
|ϕ(x1)− ϕ(x2)|; x1, x2 ∈ ∂U

}
< ε

Observe that in our definition the Sobolev exponent p plays no role since F is suffi-
ciently regular. But we shall not make use of this observation.

5.3. Statements of the results

Our first theorem shows that the smooth approximation in W 1,p(X , Y), 1 6
p 6 n, is still possible for discontinuous mappings provided they have vanishing web
oscillations. We shall see later that the vanishing web oscillations always occur in
Sobolev spaces slightly weaker than W 1,n(X , Y).

Theorem 5.1. Suppose that f ∈ W 1,p(X , Y), p > 1, has vanishing web oscilla-
tions. Then there exist mappings fj ∈ C∞(X , Y), converging to f in W 1,p(X , Y),
such that

(5.4) |Dfj | 4 M(Df), almost everywhere in X

where the implied constant depends only on X and Y.

Recall that M is the Hardy-Littlewood maximal operator on X. This theorem,
although only auxiliary, will be the key to many more convergence results. Let
us emphasize that M(Df) will possess the same degree of integrability as |Df |,
hence passing to the limit will be achieved by the Lebesgue Dominated Convergence
Theorem.

The longitude projection in Section 3.1 demonstrates that the vanishing web
oscillations fail in the Marcinkiewicz class W 1,n

weak(X , Y). However, the situation is
completely different if we assume instead of (3.3) that

(5.5) lim
t→∞

tn
∫
|Df |>t

dx = 0

Such mappings indeed have vanishing web oscillations. As a consequence of Theorem
5.1 we will obtain Theorem 1.1.

It is certainly curious that the vanishing web oscillations occur even under
slightly weaker assumptions than (5.5). These weaker assumptions are stated in
(1.11). Theorem 1.2 will be a consequence of this observation as well.

This idea applies with great effectiveness to many Orlicz-Sobolev classes
W 1,P (X , Y) in which the defining function P : [0,∞) → [0,∞) satisfies the di-
vergence condition

(5.6)
∫ ∞

1

P (t)
tn+1

dt = ∞

Here is a typical example of such functions

P (t) =
tn

log(e+ t) log log(ee + t)... log .. log(ee·
·

+ t)

It is probably worth mentioning that the divergence condition at (5.6) is critical for
many more phenomena in geometric PDEs. Among them are: the L 1-integrability
of Jacobians [34], [13], [42], monotonicity of Sobolev functions [30], and compact-
ness of mappings with finite distortion [31]. For precise statements concerning
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smooth approximation in W 1,P (X , Y) we need to impose two additional technical
assumptions:

(5.7) the function t−αP (t) , with some α > n− 1 , is nondecreasing

and the doubling condition

(5.8) P (2t) 6 kP (t) for some k > 1 and all t > 0

Theorem 5.2. Let hypothesis (5.6), (5.7) and (5.8) hold. Then the space
C∞(X , Y) is dense in the metric topology W 1,P (X , Y).

We want to emphasize that in most situations these technical assumptions at
(5.7) and (5.7) are satisfied.

5.4. Proof of Theorem 5.1

We divide the proof into 5 steps.

5.4.1. Step 1-Truncations. Let ε be any positive number. We consider a web
F of fine-diameter ε such that f has continuous trace ϕ along F and

(5.9) osc (f, ∂U) 6 ε, for every mesh U ∈ W

Given any mesh U ∈ W, we pick up a point

(5.10) a ∈ f(∂U) ⊂ Y ⊂ RN

and consider a map

(5.11) Tε ◦ f : U→ RN ,

where Tε : RN → RN , called truncation operator, is given by

(5.12) Tε y = a+ (y − a)λ(|y − a|),

(5.13) λ(t) =
{

1 for 0 6 t 6 2ε
4(t−ε)ε

t2
for t > 2ε

It is immediate that 0 6 λ(t) 6 1 and

(5.14) |Tε y − a| 6 4ε for every y ∈ RN

As Tε ∈ C 1(RN ,RN ), we see that Tεf ∈ W 1,p(X , RN ). Using chain rule we compute
the Hilbert-Schmidt norm of the N × n-matrix D(Tεf) ∈ RN×n

(5.15) |D(Tεf)|2 = λ2|Df |2 +
(

2 λ λ′

|f−a| + λ′ λ′
) ∣∣[D∗f ] (f − a)

∣∣2
where λ and its derivative λ′ are computed at t = |f(x) − a|. Recall from algebra
that the Hilbert-Schmidt norm of Df ∈ RN×n is given by

(5.16) |Df |2 = Trace (D∗f Df)

where D∗f ∈ Rn×N denotes transpose of Df . Hence [D∗f ](f − a) is a vector in Rn.
It is important to realize that the last term in (5.15) is non-positive and so we can
ignore it to obtain

(5.17) |D(Tεf)| 6 |Df | almost everywhere in U
We also observe that

(5.18) Tεf − f ∈ W 1,p
0 (U,RN )

Indeed, since f has continuous trace along F there exist u ∈ W 1,p
0 (U,RN ) and a

continuous mapping ϕ ∈ W 1,p(X , RN ), such that f = ϕ+ u on U. We approximate
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u by mappings uj ∈ C∞
0 (U,RN ). In view of continuity of the truncation operator

Tε : W 1,p(U,RN ) → W 1,p(U,RN ) we conclude that

f − Tεf = f − Tε

[
lim

j
(ϕ+ uj)

]
= ϕ+ u− lim

j
Tε(ϕ+ uj)

= u+ lim
j

[ϕ− Tε(ϕ+ uj)] ∈ W 1,p
0 (U,RN )(5.19)

This follows from the observation that ϕ−Tε(ϕ+uj) vanishes near ∂U. To see this
we notice that ϕ(∂U) lies in the ball B(a, ε) ⊂ RN , by (5.9). Since ϕ is continuous,
the image of a neighborhood of ∂U lies in B(a, 2ε). It only remains to notice that
Tε in B(a, 2ε).

As a final step, we perform truncation of f over every mesh U ∈ W and denote
the resulting mapping by f ε : X→ RN . It follows from (5.18) that

(5.20) f ε ∈ W 1,p(X , RN )

and

(5.21) |Df ε(x)| 6 |Df(x)| a.e. x ∈ X
It will be important that there is no constant involved in the right hand side. Unfor-
tunately, the image of X under f ε is not longer in the target manifold Y. However,
in making truncation we gain small oscillations. Precisely, we have

(5.22) |f ε(x1)− f ε(x2)| 6 8 ε for all x1, x2 ∈ U ∈ W

by (5.14). This was true for the original f only when x1, x2 ∈ ∂U

Remark 5.3. Before leaving this step of the proof, let us remark that one could
work with somewhat simpler (though only Lipschitz) truncation operator. However,
we prefer the C 1-truncation to the Lipschitz one in order to justify the use of the
chain rule.

5.4.2. Step 2.-Truncations converge in W 1,p(X , RN ). We investigate the limit
of f ε as ε→ 0. First, by using Poincaré inequality (the version with zero traces) we
see that for every U ∈ W∫

U
|f ε − f |p 4 (diamU)p

∫
U
|Df ε −Df |p

4 (diamU)p

∫
U
|Df |p(5.23)

by (5.17). Since the fine-diameter of F is no larger than ε, we may add those
estimates over all meshes, to obtain

(5.24) || f ε − f ||
L p(X)

4 ε ||Df ||
L p(X)

Hence

(5.25) lim
ε→0

f ε = f in L p(X , RN )

Next, we infer from (5.21) that

(5.26) lim
ε→0

Df ε = Df, in weak topology of L p(X , RN×n)

It is at this point important that the estimate at (5.21) involves no constant. Lower
semicontinuity of the p-norm yields

||Df || p 6 lim
ε→0

inf ||Df ε || p 6 lim
ε→0

sup ||Df ε || p 6 ||Df || p(5.27)



5.4. PROOF OF THEOREM 5.1 41

Hence,

(5.28) lim
ε→0

||Df ε || p = ||Df || p

By virtue of uniform convexity of L p(X , RN×n) we conclude that

(5.29) lim
ε→0

Df ε = Df, strongly in L p(X , RN×n)

as desired.

Remark 5.4. A fact worth noticing is that f ε is not converging uniformly,
unless f is continuous. The reason is that in reality the meshes in the web W are
significantly smaller than the oscillations of f ε. If they were comparable then the
limit mapping would be even Lipschitz continuous.

5.4.3. Step 3.-Mollification. The truncated mappings f ε : X → RN are not
smooth, but they have small local oscillations. We now mollify each f ε, as discussed
in Section 2.4. The mollified mappings will be denoted by f ε

t ∈ C∞(X , RN ), for
0 < t 6 tX. The reader may wish to consult (2.47) for the definition of the upper
bound tX. Hence

(i) We have convergence

(5.30) lim
t→0

|| f ε
t − f ε ||W 1,p(X , RN ) = 0

(ii) It follows by (2.58) and by (5.21) again, that

(5.31) |Df ε
t | 4 M(Df ε) 6 M(Df), for all 0 < t 6 tX

Given small ε > 0 we shall restrict the mollifying parameter 0 < t 6 tX to an interval
0 < t 6 tε. The upper bound tε is determined by requiring the following:

(iii) For every mesh U ∈ M and 0 < t 6 tε it holds

(5.32) osc
U
f ε

t 4 ess osc
Ut′

f ε 6 24ε where t 4 t′ 4 t

see formula (vii) of Section 2.4.

The reasoning for the last inequality is as follows. Once t is sufficiently small so is t′.
We can choose it small enough to ensure that every Ut′ intersects only those meshes
of the web which touch U. Then, by triangle inequality, we see that ess osc

U
[f ε] 6

3 · 8ε, because of (5.22).

5.4.4. Step 4.-Convergence of the mollified truncations. It is immediate from
(5.25), (5.26) and (5.30) that

(5.33) lim
ε→0

f ε
tε = f in W 1,p(X , RN )

We also infer from (5.31) that

(5.34)
∣∣Df ε

tε

∣∣ 4 M(Df)
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5.4.5. Step 5.-Projection onto Y. In the final step we project f ε
t smoothly onto

Y. The actual calculation is reduced to a tubular neighborhood of Y of sufficiently
small width; say

(5.35) Yh =
{
y ∈ RN ; dist (y,Y) < h

}
Note that the closest point projection

(5.36) Π : Yh → Y
is a map of class C∞(Yh,Y). Now, the approximating sequence {fj} of smooth map-
pings converging to f is obtained as fj = Π(f εj

tj
), where εj → 0 and the mollifying

parameters tj → 0, are chosen accordingly. For the proof of Theorem 5.1 we need

only show that the mappings Π
(
f

εj

tj

)
∈ C∞(X , Y) converge to f in W 1,p(X , RN ).

First notice that each f εj

tj
maps X into Yh if εj is sufficiently small. This follows from

the inequality (5.32) and the fact that f ε(X) lies in a small tubular neighborhood of
Y. As j → ∞ the mappings f εj

tj
are arbitrarily close to f εj at some points in each

mesh U, see (5.30). For abbreviation, we let Π′(y) stand for the differential of Π at
y ∈ Yh. The remaining reasoning goes without further explanation.

|| f −Πfε ||W 1,p(X , Y)
= ||Πf −Πfε ||W 1,p(X , Y)

= ||Πf −Πfε || p + ||D(Πf)−D(Πfε) || p
4 || f − fε || p + ||Π′(f) ◦Df −Π′(fε) ◦Dfε || p
4 || f − fε || p + ||Π′(fε) ◦ (Df −Dfε) || p

+ ||Π′(f)−Π′(fε) ◦Df || p
→ 0 + 0 + 0 = 0(5.37)

The only explanation we owe concerns the last step where we have made appeal to
Dominated Convergence Theorem.

5.5. Spinning a web on X

In this subsection we consider a Sobolev mapping f : X→ Y whose differential
lies in the very weak Lebesgue space L α,n(X , RN×N ), where n − 1 < α < n, see
formula (4.8) for the definition of L α,n. Our goal is to build webs on X which
capture arbitrarily small oscillations of f . Precise statement is contained in the
following

Proposition 5.5. Given ε > 0, there exists a finite family W = {Uν ; ν =
1, ...,K} of mutually disjoint open sets Uν ⊂ X, with diamUν 6 ε, whose union
M =

⋃K
ν=1Uν has full measure, and there exists a continuous mapping ϕ : X→ RN

such that
(i)

f − ϕ ∈ W 1,α
◦ (Uν ,RN )

(ii)

osc
∂Uν

ϕ
def== max

{
|ϕ(x1)− ϕ(x2)|; x1, x2 ∈ Uν

}
6 ε

for all ν = 1, 2, ...,K.

It is automatic from (i) that ϕ ∈ W 1,α(X , RN ). We shall then consider the web
F = Fε = X−∪K

ν=1Uν . The key ingredient needed for the construction of such webs
will be the following
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Lemma 5.6. [Oscillations on Spheres] Let h ∈ C∞(X , RN ) and R 6 RX
(reliable radius for X see Section 2.1.1.). Then for every a ∈ X and r ∈ (0, R] we
have

(5.38) osc
S(a,r)

h 4 r

(
−
∫

S(a,r)
|Dh(x)|α dx

) 1
α

provided α > n− 1.

This is none other than a spherical variant of the imbedding inequality. That
is why the Sobolev exponent α is required to be greater than the dimension of the
sphere. We have now all requisites needed for the proof of Proposition 5.5.

Proof of Proposition 5.5. Given a sequence {fj} of mappings fj ∈
C∞(X , RN ), j = 1, 2, ..., converging to f in W 1,α(X , RN ). Fix a positive num-
ber R 6 min{ε, RX}, so that we can use the oscillation Lemma 5.6. Accordingly,

(5.39)

osc
S(x,r)

g 6 Cα(X)r
(
−
∫

S(x,r)
|Dg|α

) 1
α

,

sup
S(x,r)

|g| 6 inf
S(x,r)

|g|+ osc
S(x,r)

g

6

(
−
∫

S(x,r)
|g|α

) 1
α

+ Cα(X)r
(
−
∫

S(x,r)
|Dg|α

) 1
α

whenever 0 < r 6 R and g : X → RN is a smooth function. On the other hand,
since |Df | ∈ L α,n(X), we may appeal to Proposition 4.1 to ensure the inequalities

(5.40) Cα(X) r

(
−
∫

S(x,r)
|Df |α

) 1
α

6
ε

4

for some radii r in a set of positive linear measure in (0, R]. Next, Fubini’s theorem
tells us that

(5.41) lim
j→∞

∫
S(x,r)

(|Dfj −Df |α + |fj − f |α) = 0

for almost every r in (0, R]. When confronted with (5.40), this gives at least one
radius r = rx ∈ (0, R] for which (5.40) and (5.41) hold. We consider the covering
X =

⋃
x∈X B(x, rx) by geodesic open balls. Since X is compact, a finite collection

of these balls will also cover X. We assort this finite collection further to obtain a
sequence, denoted by B1, ...,Bk, Bi = B(xi, ri), such that

(i)
B1 ∪ ... ∪ Bk = X

(ii) No ball in the sequence is contained in the other ball.
Having these selected balls at hand we now define a web F = Fε to be the union of
the spheres Si = ∂Bi, i = 1, 2, ..., k. Then the meshes U1, ...,UK are the connected
components of X \ F. Note (only for a record) that K 6 2k. Now, we pass to a
subsequence, labeled again as fj , such that
(5.42)

‖fj − fj−1‖W 1,α(X) 6 2−j(
−
∫

Si

|fj − f |α
) 1

α

+ Cα(X)r
(
−
∫

Si

|Dfj −Df |α
) 1

α

6 2−j−3ε, i = 1, . . . , k
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We define a truncated sequence {ϕj} by

ϕ1 = f1,

ϕj − ϕj−1 = T2−jε(fj − fj−1), j = 2, 3, . . .

where T2−jε is the truncation operator defined in (5.12) with 2−jε in place of ε and
with a = 0. The properties of the truncation operator ensure that

(5.43) sup
X
|ϕj − ϕj−1| 6 2−j+2ε

see inequality (5.14). Next we apply (5.39) to the mapping fj − fj−1 in place of g
and in view of (5.42) we obtain

(5.44) sup
Si

|fj − fj−1| 6 2−j−2ε

This latter estimate combined with formulas (5.12) and (5.13) show that T2−jε(fj −
fj−1) = fj − fj−1 on every Si, i = 1, ..., k. In particular, we see that

(5.45) ϕj = fj on F

Appealing to (5.21) we have

(5.46) ‖D(ϕj − ϕj−1)‖L α(X) 6 ‖D(fj − fj−1)‖L α(X) 6 2−j

By (5.43) and (5.46), the sequence {gj} is a Cauchy sequence in W 1,α(X) and in
C (X). We define ϕ to be the uniform limit of the sequence {ϕj}. Notice that
ϕj−fj are Lipschitz continuous functions on X and vanish on F, by (5.45). As these
functions converge to ϕ − f in W 1,α(X) we deduce that ϕ − f ∈ W 1,α

◦ (U) for each
connected component U of X \ F. It remains to estimate the oscillation of ϕ on the
web. We infer from (5.39), (5.40), (5.41) and (5.45) that

(5.47)
osc
Si

ϕ 6 lim inf
j

osc
Si

ϕj 6 Cα(X)ri lim inf
j

(
−
∫

Si

|Dϕj |α
) 1

α

6 Cα(X) ri

(
−
∫

Si

|Df |α
) 1

α

≤ ε

4

Now, each Uν lies in a ball B from the family {B1, ...,Bk}. In particular,

(5.48) diamUν 6 ε

Further, ∂Uν consists of certain subsets of the spheres S1, ...,Sk, only those spheres
which intersect B. By condition (ii), every such sphere intersects ∂B. Consequently,
given two points x1, x2 ∈ ∂Uν , say x1 ∈ Si1 and x2 ∈ Si2 , we can find a1 ∈ Si1 ∩ ∂B
and a2 ∈ Si2 ∩ ∂B and conclude by triangle inequality that

|ϕ(x1)− ϕ(x2)| 6 |ϕ(x1)− ϕ(a1)|+ |ϕ(a1)− ϕ(a2)|
+|ϕ(a2)− ϕ(x2)|

6 osc
Si1

ϕ+ osc
S
ϕ+ osc

Si2

ϕ

6 ε(5.49)

by (5.47). �
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5.6. Proof of Theorems 1.1 and 1.2

The distance in the space W 1,n
weak(X , Y) will be denoted by

(5.50) Dist[f, g] = || f − g ||
L (X)

+ sup
t>0

(
tn
∫
|Df−Dg|>t

dx

) 1
n+1

It is obvious that (5.5) holds for smooth mappings and remains valid in the closure of
C∞(X , Y). The only non-trivial part of Theorem 1.1 is that every f ∈ W 1,n

weak(X , Y)
satisfying the condition (1.9) can be approximated by smooth mappings. In view
of the inclusion at (4.10) we see that |Df | satisfies (1.10), for every 0 6 α < n.
Proposition 5.5 tells us that f has vanishing web oscillations. Then by virtue of
Theorem 5.1, there exist smooth mappings fj : X → Y converging to f in every
W 1,α(X , Y), 1 6 α < n. It is important that |Dfj | are dominated, point-wise
almost everywhere, by the maximal function M(Df); that is, independently of
j = 1, 2, ..., see (5.4). Since the operator M : L n

weak → L n
weak is bounded, it follows

that {fj} is bounded in W 1,n
weak(X , Y). Lebesgue Dominated Convergence Theorem

yields
lim

j→∞
Dist[fj , f ] = 0

completing the proof of Theorem 1.1.
The reader may see from Proposition 5.5 that (1.11) implies vanishing web

oscillations. Theorem 1.2 then follows from Theorem 5.1.

5.7. Proof of Theorem 5.2

Given f ∈ W 1,P (X , Y) we find a sequence fj ∈ C∞(X , Y) converging to f
in W 1,1(X , Y), whose differentials Dfj are controlled point-wise by the maximal
function of Df , as in the inequality (5.4). In particular, {Dfj} contains a subse-
quence converging point-wise almost everywhere to Df . Since M : L P → L P is
bounded, again by Lebesgue Dominated Convergence Theorem we conclude that
this subsequence converges to f in the metric topology of W 1,P (X , Y).

5.8. Proof of Theorem 1.3

The distance function in VW 1,n(X , Y) is the one induced by the norm at (4.60).
This space is contained in every L p(X , RN ) , 1 6 p < n. Also M(Df) ∈ VL n(X).
The rest of the proof runs in much the same way as above.





CHAPTER 6

L 1-Estimates of the Jacobian

Let f : X → Y be a Sobolev mapping, where we assume that n = dimX 6
dimY = m. To every C∞-smooth n-form ω ∈ C∞(∧nY) there corresponds its
pullback f ]ω ∈ L (∧nX) via f . The point-wise estimate

(6.1) |f ]ω| 4 |Df |n

gives us at least some idea how to control the degree of integrability of the pullback
f ]ω in terms of |Df |. Surprisingly, if dω = 0, then f ]ω may enjoy higher degree
of integrability than |Df |n. This phenomenon, first observed in [44] and [9] for
mappings in W 1,n(Rn,Rn), has come to play a central role in modern calculus of
variations, nonlinear elasticity and the geometric function theory. Our integral
estimates in this paper are sharp generalizations of these results in the manifold
setting. If we wish not to make any topological assumption on the target manifold
then we need to restrict ourselves to the pullbacks of Cartan n-forms

(6.2) ω =
K∑

i=1

αi ∧ βi,
dαi=dβi=0 deg αi+deg βi=n

deg αi>1 and deg βi>1

The wedge product structure of the terms will be critical for our arguments. For
f ∈ W 1,n(X , Y) we have a linear functional that operates on the test function
ϕ ∈ C∞(X) by the rule(

f ]ω
)

[ϕ] =
∫

X
ϕ
(
f ]ω

)
=
∫

X
ϕ

K∑
i=1

(
f ]αi

)
∧
(
f ]βi

)
4 ||ϕ ||∞

∫
X
|Df(x)|n dx(6.3)

In other words, f ]ω can be viewed as a Schwartz distribution of order zero. The
differential forms f ]αi and f ]βi are closed and, therefore, exact modulo harmonic
fields. One of the useful analytic advantages of this idea is that f ]ω can be defined
as a Schwartz distribution for all mappings

(6.4) f ∈ W 1,s(X , Y), with s =
n2

n+ 1
see Section 6.1 for details. In particular, if fj : X → Y are smooth mappings
converging to f in W 1,s(X , Y) then the pullback f ]ω can be computed by the
formula

(6.5) (f ]ω)[ϕ] = lim
j→∞

∫
X
ϕ (f ]

jω)

We call s = n2

n+1 the critical exponent because this is the smallest one for which we
have existence of the limit at (6.5).

47
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In this larger class of mappings the pullback f ]ω will be a distribution of order
1, meaning that

(6.6)
(
f ]ω

)
[ϕ] 4 ( ||ϕ ||∞ + || dϕ ||∞) ||Df || nL s(X)

for every ϕ ∈ C∞(X). The computation in the forthcoming section will lead us to
integral formulas for the distribution f ]ω. To this effect we shall introduce point-
wise Jacobian Jω(x, f)

(6.7) Jω(x, f) dx =
K∑

i=1

(
f ]αi

)
∧
(
f ]βi

)
= f ]ω

Here we notice that d(f ]αi) = 0 and d(f ]βi) = 0. It suggests that we must consider
even more general wedge products of closed forms.

6.1. Weak wedge products

Consider closed differential forms Φ ∈ L p(∧lX)∩ker d and Ψ ∈ L r(∧kX)∩ker d,
where 1 6 k, l < n, k + l = n and 1 < p, r < ∞. First assume that p and r are
Hölder conjugate. Thus Φ ∧ Ψ is integrable. It defines a Schwartz distribution of
order zero

(6.8) (Φ ∧Ψ)[η] =
∫

X
η (Φ ∧Ψ) for η ∈ C∞(X)

Now the L p-cohomology theory proves handy, see Section 2.3.2. Accordingly, every
closed form Φ ∈ L p(∧lX) is exact modulo harmonic fields. Precisely, we can write

(6.9) Φ = dϕ+ ϑ

where the exact component dϕ ∈ L p(∧lX) and the harmonic field ϑ ∈ C∞(∧lX)
are given by

(6.10) ϕ = EΦ and ϑ = HΦ

The point is that both E and H are bounded linear operators,

(6.11) E : L p(∧lX) → W 1,p(∧l−1X) , 1 < p <∞

and

(6.12) H : L p(∧lX) → C∞(X) , 1 6 p <∞

Using the decomposition Φ = ϑ+ dϕ, we split the integral at (6.8) as

(Φ ∧Ψ)[η] =
∫

X
η (ϑ ∧Ψ) +

∫
X
η (dϕ ∧Ψ)

=
∫

X
η (ϑ ∧Ψ)−

∫
X
dη ∧ (ϕ ∧Ψ)(6.13)

the latter integral converges whenever ϕ ∧ Ψ is integrable. Assume now that 1 6
p, r <∞ is a Sobolev conjugate pair; that is,

(6.14)
1
p

+
1
r

= 1 +
1
n

in particular, one of the exponents is less than n, say 1 6 p < n. Then, by Sobolev
imbedding, we find that ϕ ∈ L

np
n−p (∧l−1X). The exponent np

n−p is exactly Hölder
conjugate to r, ensuring that ϕ ∧Ψ ∈ L 1(∧n−1X).
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Remark 6.1. The reader may wish to argue in much the same way for analogous
formula in case when 1 6 r < n.

We are now ready to make the definition.

Definition 6.2. (Distributional Wedge Product) Let

Φ ∈ L p(∧`X) ∩ ker d and Ψ ∈ L r(∧kX) ∩ ker d

where 1 6 p, r < ∞ are Sobolev conjugate exponents. The distribution Φ ∧ Ψ
operates on the test function η ∈ C∞(X) by the rule

(6.15) (Φ ∧Ψ)[η] def== lim
j→∞

∫
X
η (Φj ∧Ψj)

where Φj ∈ C∞(∧`X) and Ψj ∈ C∞(∧kX) are closed forms converging to Φ and Ψ
in L p(∧`X) and L r(∧kX), respectively.

Remark 6.3. For this definition let us recall that closed forms in C∞(∧lX) are
dense in L p(∧lX)∩ker d, see Section 2.3.1. Also notice that the limit at (6.15) does
not depend on the choice of the sequences {Φj} and {Ψj}.

Remark 6.4. Our arguments above also show that if 1
p + 1

r < 1 + 1
n then the

limit at (6.15) still exists when Φj and Ψj converge to Φ and Ψ weakly in L p(∧`X)
and L r(∧kX), respectively.

It is now obvious how to define the distributional pullback. Suppose we are
given a Cartan form as in (6.2). For f ∈ W 1,s(X , Y), with the critical exponent
s = n2

n+1 , we consider the closed forms

(6.16) Φi = f ]αi ∈ L s/`i(∧`iX) ∩ ker d

(6.17) Ψi = f ]βi ∈ L s/ki(∧kiX) ∩ ker d

where we observe that

(6.18)
`i
s

+
ki

s
= 1 +

1
n

Thus Φi∧Ψi can be regarded as a Schwartz distribution. The distributional pullback
of ω is then defined by

(6.19) (f ]ω)[η] =
K∑

i=1

(Φi ∧Ψi)[η]

6.2. Distributional Jacobian

It is reasonable to ask how the distributional pullback relates to the point-wise
Jacobian. The answer is obvious if f ∈ W 1,n(X , Y), we simply have

(
f ]ω

)
[ϕ] =∫

X ϕ(x)Jω(x, f) dx. However one can go slightly below this regularity assumption.

Theorem 6.5. Let f : X→ Y, n = dimX 6 dimY, be a Sobolev map satisfying

(6.20) lim
t→∞

inf t
n

n+1

∫
|Df |>t

|Df(x)|
n2

n+1 dx = 0

Then there are measurable sets X1 ⊂ X2 ⊂ ... ⊂ X whose union is X such that the
distributional pullback of every Cartan form ω ∈ C∞(∧nY) takes the form

(6.21)
(
f ]ω

)
[ϕ] = lim

j→∞

∫
Xj

ϕ(x)Jω(x, f) dx, ϕ ∈ C∞(X)
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The reader is warned that the sets X1,X2, ... are chosen for a specific map f , the
limit at (6.21) may not exist for other sets. As a matter of fact Xj will be carefully

selected from the level sets of the maximal function of |Df |
n2

n+1 . In particular, the
point-wise Jacobian will be bounded on each of those sets, making the integrals and
their limit at (6.21) to exist.

At this stage we are able to give meaning to the so-called weak integral of the
Jacobian. This is none other than the value of the distribution f ]ω on the test
function identically equal to 1. Formula (6.21) gives

(6.22)
(
f ]ω

)
[1] def== lim

j→∞

∫
Xj

Jω(x, f) dx

The following corollary is straightforward by a monotone convergence argument.

Theorem 6.6. If, in addition to the conditions stated in Theorem 6.5, the Ja-
cobian is nonnegative then it is integrable and coincides with the distribution f ]ω.
Precisely, we have

(6.23)
∫

X
ϕ(x)Jω(x, f) dx =

(
f ]ω

)
[ϕ]

for all ϕ ∈ C∞(X).

Passing to the limit under the integral sign at (6.21) is perfectly justified when-
ever the point-wise Jacobian is integrable over X. Thus, we also have the following
variant of Theorem 6.6.

Theorem 6.7. Under the conditions stated in Theorem 6.5, if Jω(·, f) ∈ L 1(X),
then the point-wise Jacobian coincides with the distribution f ]ω. Precisely, this
means that

(6.24)
∫

X
ϕ(x)Jω(x, f) dx =

(
f ]ω

)
[ϕ]

for all ϕ ∈ C∞(X).

In what follows we refer to Sobolev mappings having non-negative Jacobians
Jω(x, f) as orientation preserving. We reserve the notation J (x, f) for the Jacobian
if ω = dy. Theorem 6.6 may fail if ω is not a Cartan form, which is the case of the
volume form on the n-sphere Sn, see Theorem 3.1. In the Sobolev class W 1,n(X , Y)
the orientation preserving mappings satisfy

(6.25)
∫

X
J (x, f) log

(
e+

J (x, f)∫
X J (z, f) dz

)
dx 4 ||MJ (·, f) ||L 1(X) 4

∫
X
|Df |n

This simply means that J (·, f) belongs to the Zygmund space L log L (X), see S.
Müller [44] for the Euclidean case. In our manifold setting, in which the target
space is not a rational homology sphere this result will follow from the forthcoming
H 1-estimates.

We come now to perhaps the most surprising phenomenon. It is true that if
f ∈ W 1,n(X , Y) and Jω(x, f) > 0, then Jω belongs to L log L (X) regardless
whether ω is a Cartan form or not. However, the uniform bound at (6.25) will be
lost if ω is not a Cartan form.
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6.3. Proof of Theorem 6.5

Although our main objective is to prove Theorem 6.5, the arguments we shall
use here can be set in more general context, which might be of independent interest.
This more general context consists in replacing the forms f ]αi and f ]βi at (6.7) by
arbitrary closed forms.

6.3.1. An integral estimate of wedge products.

Lemma 6.8. Let Φ ∈ C∞(∧`X) and Ψ ∈ C∞(∧kX), k = 1, 2, ..., k + ` = n be
closed differential forms and let p, q > 1, satisfy the Sobolev relation 1

p + 1
q = 1 + 1

n .
Then for every nonempty open set Ω  X and every test function η ∈ C∞(Ω), we
have

(6.26)
∣∣∣∣−∫

Ω
η (Φ ∧Ψ)

∣∣∣∣ 4 || η || C 1(Ω) ||MpΦ ||L∞(XrΩ) ||MrΨ ||L∞(XrΩ)

Here the implied constant depends only on the manifold X.

Proof. Because of the relation 1
p + 1

q = 1 + 1
n one of these exponents does not

exceed 2n
n+1 . Suppose that

(6.27) 1 6 p 6
2n
n+ 1

< n

We consider Whitney’s covering of Ω by legitimate balls Bi, i = 1, 2, ..., as in
Proposition 2.1. Next we construct a partition of unity, non-negative functions
ηi ∈ C∞

0 (2Bi) whose sum equals 1 on Ω and such that |dηi| 4 (diamBi)−1 for
i = 1, 2, .... Our computation begings with the formula:

(6.28)
∫

Ω
η (Φ ∧Ψ) =

∞∑
i=1

∫
2Bi

ηi η (Φ ∧Ψ)

Since 2Bi is a legitimate ball, Poincaré Lemma tells us that the closed form Φ is
also exact on 2Bi. As a matter of fact, using Sobolev theory of differential forms
[35], we find a differential form ϕi ∈ C∞(∧`−12Bi) whose W 1,p-norm is controlled
by L p-norm of Φ, and such that dϕi = Φ. Then, by Sobolev-Poincaré inequality,
we obtain

(6.29)
(
−
∫

2Bi

|ϕi|
np

n−p

)n−p
np

4 (diamBi)
(
−
∫

2Bi

|Φ|p
) 1

p

Next, we integrate (6.28) by parts and use Hölder’s inequality with exponents np
n−p

and r,∣∣∣∣∫
2Bi

ηi η (Φ ∧Ψ)
∣∣∣∣ =

∣∣∣∣∫
2Bi

d(ηi η) (ϕi ∧Ψ)
∣∣∣∣

4 || η ||
C1(Ω)

(diamBi)−1

∫
2Bi

|ϕi||Ψ|

4 || η ||
C1(Ω)

|Bi|
diamBi

(
−
∫

2Bi

|ϕi|
np

n−p

)n−p
np
(
−
∫

2Bi

|Ψ|r
) 1

r

4 || η ||
C1(Ω)

|Bi|
(
−
∫

2Bi

|Φ|p
) 1

p
(
−
∫

2Bi

|Ψ|r
) 1

r

(6.30)
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At this point it is important to observe that if we enlarge the ball 2Bi , by a suitable
factor depending only on X, then it will eventually touch the set X r Ω. This is
immediate from the property 4) listed in Proposition 2.1. In other words, there is
λ = λ(X) such that 2Bi ⊂ λBi and λBirΩ 6= ∅. We infer from this observation that

(6.31)
(
−
∫

2Bi

|Φ|p
) 1

p

4

(
−
∫

λBi

|Φ|p
) 1

p

6 ||MpΦ ||
L∞(XrΩ)

Similarly,

(6.32)
(
−
∫

2Bi

|Ψ|p
) 1

p

4 ||MrΨ ||
L∞(XrΩ)

Therefore, for each ball 2Bi we can write

(6.33)
∣∣∣∣∫

2Bi

ηi η (Φ ∧Ψ)
∣∣∣∣ 4 |Bi| || η || C 1(Ω) ||MpΦ ||

L∞(XrΩ)
||MrΨ ||

L∞(XrΩ)

As the overlaping number for the covering {2Bi}i=1,2,... depends only on X, we see
that

∑∞
i=1 |Bi| 4 |Ω|. Finally, combining (6.28) and (6.33) we conclude with the

desired estimate at (6.26).

6.3.2. Point-wise Jacobian versus distributional Jacobian. Here is the
first of our estimates which relates the point-wise Jacobian with distributional Ja-
cobian.

Lemma 6.9. Suppose that f ∈ C∞(X , Y) and λ > 0. Then

(6.34)
∣∣∣∣(f ]ω)[η]−

∫
XrΩ

η(x)Jω(x, f) dx
∣∣∣∣ 4 λn|Ω| || η ||

C1(X)

where Ω = {x; (MsDf)(x) > λ} and s = n2

n+1 .

Proof. The left hand side of the inequality (6.34) takes the form

(6.35)

∣∣∣∣∣
K∑

i=1

∫
Ω
η (Φi ∧Ψi)

∣∣∣∣∣
where we consider the closed forms Φi = f ]αi ∈ C∞(∧`iX) and Ψi = f ]βi ∈
C∞(∧kiX). Using Lemma 6.8 we find that∣∣∣∣∣

K∑
i=1

∫
Ω
η (Φi ∧Ψi)

∣∣∣∣∣ 6
K∑

i=1

∣∣∣∣∫
Ω
η (Φi ∧Ψi)

∣∣∣∣
(6.36) 4 |Ω| || η || C 1(Ω)

K∑
i=1

||MpiΦi ||L∞(XrΩ)
||MriΨi ||L∞(XrΩ)

where pi = s
`i

and ri = s
ki

. Next we observe that

(6.37) |Φi|pi = |f ]αi|pi 4 |Df |`ipi = |Df |s

and

(6.38) |Ψi|ri = |f ]βi|ri 4 |Df |kiri = |Df |s

Finally, inequality (6.34) follows readily from the point-wise estimates

(6.39) MpiΦi 4 (MsDf)`i 6 λ`i
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and

(6.40) MriΨi 4 (MsDf)ki 6 λki

where `i + ki = n.

6.3.3. Proof of Theorem 6.5. First observe that our mapping f also satisfies
inequality (6.34) for all but a countable number of parameters λ > 0. Indeed, by
Theorem 1.2 there exist mappings fj ∈ C∞(X , Y) converging to f in W 1,s(X , Y),
s = n2

n+1 . We need only justify a passage to the limit in the following inequalities:

(6.41)

∣∣∣∣∣(f ]
jω)[η]−

∫
MsDfj6λ

η(x)Jω(x, fj) dx

∣∣∣∣∣ 4 λn || η ||
C1(X)

∫
MsDfj>λ

dx

We recall that λ is a regular value of h if the set {x; h(x) = λ} has measure zero.
We also point out that the non regular values are always countable. Since, for any
ε > 0,

(6.42)
∫
MsDfj>λ

dx 6
∫
MsDf>λ−ε

dx+
∫
Ms|Df−Dfj |>ε

dx

By the weak-type estimate at (2.52) we obtain

(6.43) lim sup
j→∞

∫
MsDfj>λ

dx 6
∫
MsDf>λ

dx

for each regular value λ. Of course, (f ]
jω)[η] → (f ]ω)[η], by the definition of the

distributional pullback. To deal with the integral in the left hand side we write it
as

(6.44)
∫

X
η(x)Jω(x, fj)χj(x) dx

where χj are characteristic functions of the level sets {x; MsDfj(x) 6 λ}. Since
the integrands are uniformly bounded by λn || η ||L∞(X), we can apply the Lebesgue
Dominated Convergence Theorem. Indeed, Jω(x, fj) → Jω(x, f) a.e., so we need
only verify that χj converge a.e. to χ-the characteristic function of {x; MsDf 6 λ}.
This is true for all regular values of MsDf .

Lemma 6.10. Given measurable functions hj : X → R converging to h almost
everywhere, then for every regular value λ

(6.45) lim
j→∞

χ
j = χ a.e.

where χj and χ are the characteristic functions of the level sets {x; hj(x) 6 λ} and
{x; h(x) 6 λ}, respectively.

We recall that λ is a regular value of h if the set {x; h(x) = λ} has measure
zero. We also point out that the set of non regular values is always countable. We
can apply this lemma to hj = MsDfj and h = MsDf in view of Corollary 2.15.

Having disposed with the inequality

(6.46)
∣∣∣∣(f ]ω)[η]−

∫
MsDf6λ

η(x)Jω(x, f) dx
∣∣∣∣ 4 λn || η ||

C1(X)

∫
MsDf>λ

dx
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we now fix a special sequence {tj} for |Df |. Recall that a special sequence consists
of numbers tj , increasing to infinity, such that

(6.47) lim
j→∞

t
n

n+1

j

∫
|Df |>tj

|Df(x)|
n2

n+1 dx = 0

There are many such sequences. We choose and fix the one which consists of regular
values of 1

2MsDf . Now we are in a position to define the sets Xj

(6.48) Xj =
{
x; (MsDf)(x) 6 2tj

}
s =

n2

n+ 1
We make use of the estimate in Lemma 6.9 with λ = 2tj ; these are regular values
of MsDf .∣∣∣∣∣(f ]ω)[η]−

∫
Xj

η(x)Jω(x, f) dx

∣∣∣∣∣ 4 || η ||
C1(X)

tnj

∫
MsDf>2tj

dx

4 || η ||
C1(X)

tn−s
j

∫
|Df |>tj

|Df |s

The latter follows by weak type inequality stated in Proposition (2.14). Letting tj
go to infinity we conclude with (6.21). The proof of Theorem 6.5 is complete.

The interested reader may wish to observe that the above arguments also work
for differential forms. Let us state this more general variant of Theorem 6.5 without
proof.

Theorem 6.11. Given a Cartan form Λ =
∑K

i=1 Φi∧Ψi, where Φi ∈ L pi(∧`iX)∩
ker d and Ψi ∈ L ri(∧kiX)∩ ker d, 1 6 ki, `i < n, ki + `i = n. Here each pair (pi, ri)
consists of Sobolev conjugate exponents. Suppose that

(6.49) lim inf
t→∞

t
1
n

∫
H>t

H(x) dx = 0

where H =
∑K

i=1

(
|Φi|pi`i + |Ψi|riki

)
. Then there are measurable sets X1 ⊂ X2 ⊂

... ⊂ X whose union is X such that
• Λ is L 1-integrable over each Xi

• For every η ∈ C∞(X), we have

(6.50) Λ[η] def==
K∑

i=1

(Φi ∧Ψi)[η] = lim
j→∞

∫
Xj

ηΛ



CHAPTER 7

H 1-Estimates

In this section we formulate and prove the sharpest possible result concerning
H 1-regularity of the Jacobian, see [46] for somewhat different ideas. Before, we
need some auxiliary material.

7.1. The Hausdorff content

Let s > 0 and E ⊂ Rn. The s-content of E is defined as

(7.1) hs(E) = inf
∞∑

j=1

(diamBj)s,

where the infimum is taken over all sequences of balls Bj ⊂ Rn covering the set E.

Lemma 7.1. Let u ∈ C∞
0 (Ω), B = B(a,R) ⊂ Rn and 0 6 n− s < p 6 n. Then

(7.2) hs({x ∈ B; |u(x)| > 1}) 4 R p+s −
∫

B
|∇u(x)|p dx

For the proof, see [25, p. 45]. We infer from this lemma the following useful
corollary.

Corollary 7.2. Let n2

n+1 < p < n and let B = B(a, %) be a legitimate ball in
X, dimX = n. Then every compact set E ⊂ B can be split into a finite number of
mutually disjoint compact sets E1, ...,Ek such that

(7.3)
k∑

i=1

diam Ei 4 %n+1

(
−
∫

B
|∇u(x)|p dx

)n
p

for every test function u ∈ C (B) ∩ W 1,p(B) satisfying boundary conditions: u 6 0
on ∂B and u > 1 on E.

Proof. As the concentric balls B ⊂ 3B lay in a coordinate region Ω, we may
change the variables via the diffeomorphism κ : Ω onto−→ Rn, reducing the problem
to the Euclidean space. We now apply Lemma 7.1 with s = p

n < 1. Clearly,
n− s < p < n and

(7.4) hs(E) 4 %p+s −
∫

B
|∇u|p

There exists a finite cover of E by balls B1, ...,Bm such that

(7.5)
m∑

j=1

(diamBj)s 4 %p+s −
∫

B
|∇u|p

55
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Let C1,C2, ...,Ck be connected components of
⋃m

j=1 Bj , and denote Ei = E ∩ Ci,
i = 1, ..., k. Obviously, Ei are mutually disjoint compact sets whose union is E. The
rest is the following elementary computation

k∑
i=1

diamEi 6
k∑

i=1

diamCi 6
m∑

j=1

diamBj

6
[ m∑

j=1

(diamBj)s
] 1

s
4 %n+1

(
−
∫

B
|∇u|p

)n
p

(7.6)

as claimed. Later we shall choose the following exponents

(7.7) p =
2n2

2n+ 1
, so that s =

2n
2n+ 1

7.2. The H 1-Theorem

We shall now state and prove our main result. As regards the dimensions we
assume that 2 6 n = dimX 6 dimY = m. Given any mapping g ∈ W 1,n(X , Y).
Let B(g, ε) denote the ball centered at g and with radius ε in the space W 1,n(X , Y),
namely

B(g, ρ) =
{
f ∈ W 1,n(X , Y) : || f − g ||W 1,n < ρ

}
Theorem 7.3. Suppose ω ∈ C∞(∧nY) is either a Cartan form or a closed form

and g ∈ W 1,n(X , Y). Then there exist a constant C(ω, g) and a radius ε > 0 such
that

(7.8) || f ]ω ||
H 1(X)

6 C(ω, g)
∫

X
|Df(x)|n dx

for all f ∈ B(g, ε). Moreover, the pullback operator

(7.9) ]ω : W 1,n(X , Y) → H 1(∧nX)

is continuous.

Remark 7.4. If ω =
∑
αi ∧ βi is a Cartan form, as in (6.2), then in fact

(7.10) || f ]ω ||H 1(X) 4 ||ω ||
∫

X
|Df(x)|n dx

for all f ∈ W 1,n(X , Y) where

(7.11) ||ω || =
∑

||αi ||L∞(Y) ||βi ||L∞(Y)

Remark 7.5. The key to Theorem 7.3 is the following inequality for the
Fefferman-Stein maximal function of f ]ω, see (2.62) for the definition,

(7.12) M(f ]ω) 4 C(ω, g)
[
Mp(Df) + ||Df || n

]n
where

(7.13) Mp(Df) = (M|Df |p)
1
p , p =

2n2

2n+ 1
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Indeed, having established the point-wise estimate at (7.12), the inequality at
(7.8) becomes straightforward by the maximal theorem. As for the continuity of the
pullback ]ω, we argue as follows. Let fj → f in W 1,n(X , Y). We need only show
that

(7.14) M(f ]
jω − f ]ω) → 0 in L 1(X)

To this end, we may assume that fj ∈ B(g, ε) as this is certainly the case for
sufficiently large j. For such j, we have the uniform point-wise inequality

sup
t>0

∣∣∣∣∫
X
Kt(x, ·)(f ]

jω − f ]ω)
∣∣∣∣

(7.15) 4 [Mp(Dfj) + Mp(Df) + ||Dfj || n + ||Df || n]n

for every x ∈ X. The right hand side converges in L 1(X) to 2n (Mp(Df)+ ||Df || n)n.
It is, therefore, legitimate to use Lebesgue Dominated Convergence Theorem. We
shall have established (7.14) if we prove that for almost every x ∈ X

(7.16) sup
t>0

∣∣∣∣∫
X
Kt(x, ·)(f ]

jω − f ]ω)
∣∣∣∣→ 0

Here the supremum is controlled by means of the Hardy-Littlewood maximal func-
tion; we are reduced to proving that

(7.17) M(f ]
jω − f ]ω) → 0 a.e. in X

But this is well known, since f ]
jω → f ]ω in L 1(X).

7.2.1. Step 1.-The case of Cartan forms. We begin with the inequality
(7.10).

It suffices to consider one wedge product ω = α ∧ β, with α ∈ C∞(∧lY) ∩ ker d
and β ∈ C∞(∧n−lY) ∩ ker d. We may also assume that n

2 6 l < n, so that

(7.18) f ]ω = f ]α ∧ f ]β

In this formula we have sufficient degree of regularity to ensure that the forms f ]α
and f ]β are closed. These forms satisfy:

(7.19)
∣∣∣f ]α

∣∣∣ 4 ||α ||∞|Df |l ∈ L
n
l (X)

(7.20)
∣∣∣f ]β

∣∣∣ 4 ||β ||∞|Df |n−l ∈ L
n

n−l (X)

The Hodge theory of the deRham cohomology tells us that

(7.21) f ]α = dγ + χ, χ ∈ W 1, n
l (∧l−1X)

where χ is a harmonic field of degree l. It represents the cohomology class of f ]α.
Harmonic fields, being C∞-smooth, are harmless. They form a finite dimensional
space and we have nice bounds, such as

(7.22) ||χ ||∞ 4 ||χ || s 4 || f ]α || s 4 ||α ||∞ ||Df || lls
provided 1 < s <∞. Taking s = n

l we obtain

(7.23) ||χ ||∞ 4 ||α ||∞ ||Df || ln
Accordingly, we split f ]ω as

(7.24) f ]ω = dγ ∧ (f ]β) + χ ∧ (f ]β)
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The latter term poses no difficulty as it belongs to L 2(∧nX). Indeed, we have

||χ ∧ (f ]β) || 2 4 ||χ ||∞ || f ]β || 2
4 ||α ||∞ ||β ||∞ ||Df || ln || |Df |n−l || 2
4 ||α ||∞ ||β ||∞ ||Df || nn(7.25)

Note that we have actually a point-wise estimate of the maximal function

M(χ ∧ f ]β) 4 ||χ ||∞ M(f ]β)

4 ||χ ||∞ ||β ||∞ M(|Df |n−l)

4 ||α ||∞ ||β ||∞ ||Df || ln [Mp(|Df |)]n−l

4 ||α ||∞ ||β ||∞
[
||Df || n + Mp(|Df |)

]n(7.26)

We shall now proceed to the estimates of the maximal function of dγ∧(f ]β). Before
jumping to the computation let us observe that the exact l-form dγ is not affected by
adding any closed form to γ. We have the following variant of the Poincaré-Sobolev
inequality for differential forms [35].

(7.27)
(∫

B
|γ − γ0|

ns
n−s

)n−s
ns

4

(∫
B
|dγ|s

) 1
s

, 1 6 s < n,

where B = B(x, t) is a legitimate ball in X, 0 < t < RX, and γ0 is a suitable closed
form on B. As far as integration is concerned we also notice that the mollifying
kernels ζ → Kt(x, ζ) are supported in the ball B = B(x, t′), where t′ is comparable
with t by a factor depending only on X.

Remark 7.6. For notational convenience one could introduce new kernel

K ′
t(x, ζ) = Kt′(x, ζ)

so that the function ζ → K ′
t(x, ζ) would be supported in B = B(x, t). Instead of

doing this we simply assume that ζ → Kt(x, ζ) is supported in B(x, t).

Integration by parts yields∣∣∣(dγ ∧ f ]β)t(x)
∣∣∣ =

∣∣∣∣∫
B
Kt(x, ·)d(γ − γ0) ∧ f ]β

∣∣∣∣(7.28)

4
||β ||∞
tn+1

∫
B
|γ − γ0||Df |n−l

4
||β ||∞
tn+1

(∫
B
|γ − γ0|

ns
n−s

)n−s
ns
(∫

B
|Df |

ns(n−l)
ns−n+s

)ns−n+s
ns

We take s = n2

l(n+1) to obtain, for the center of the ball B(x, t),

(7.29)
∣∣∣(dγ ∧ f ]β)t(x)

∣∣∣ 4 ||β ||∞
(
−
∫

B
|dγ|s

) 1
s
(
−
∫

B
|Df |

n2

n+1

) (n−l)(n+1)

n2

Directly from the decomposition f ]α = dγ + χ it follows that

|dγ| 6 |f ]α|+ ||χ ||∞
4 ||α ||∞|Df |l + ||α ||∞ ||Df || ln(7.30)

Hence

(7.31)
(
−
∫

B
|dγ|s

) 1
s

4 ||α ||

[(
−
∫

B
|Df |

n2

n+1

)n+1

n2

+ ||Df || n

]l
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Note that
(
−
∫

B |Df |
n2

n+1

)n+1

n2

6 Mp(Df), since p = 2n2

2n+1 > n2

n+1 . This combined

with (7.31), (7.27) and (7.29) results in the following estimate

(7.32)
∣∣∣(dγ ∧ f ]β)t

∣∣∣ 4 ||α ||∞ ||β ||∞
[
||Df || n + Mp(Df)

]n

By virtue of the previously established inequality for M(χ ∧ f ]β), we obtain

(7.33)
∣∣∣(f ]ω)t

∣∣∣ 4 ||α ||∞ ||β ||∞
[
||Df || n + Mp(Df)

]n

for 0 < t 6 RX. In summary, if ω = α ∧ β is a Cartan form, then

(7.34) M(f ]ω) 4 ||α ||∞ ||β ||∞
[
||Df || n + Mp(Df)

]n

Hence, Remark 7.4 is straightforward by the maximal theorem.

7.2.2. Step 2.-The case of closed forms. Now, we prove Theorem 7.3 for
closed forms. As pointed out in Remark 7.5 we need only establish the following
inequality

(7.35)
∣∣∣∣∫

X
Kt(a, x)Jω(x, f) dx

∣∣∣∣ 4 C(ω, g)
[
Mp(|Df |)(a) + ||Df || n

]n

for all t > 0, a ∈ X and f ∈ B(g, ε). Here Jω(·, f) stands for the pointwise pullback
f ]ω.

We shall work with small balls B(a, t) ⊂ X ; say with radii t 6 R = R(g). Let
us begin with a clear list of the conditions on R and ε needed in the sequel. First
condition is:

(7.36) R 6 RX.

Another restriction on ε and R results from the following lemma

Lemma 7.7. [Oscillation lemma] Let h ∈ C∞(X , Y) and let B(a,R) be a
legitimate ball in X. Then for every 0 < t < 2t 6 R there exists r ∈ (t, 2t) such that

(7.37) osc
∂B(a,r)

h 4 r

(
−
∫

B(a,2r)
|Dh|p

) 1
p

where n− 1 < p = 2n2

n+1 < n. By Hölder’s inequality, there is a constant C(nX) such
that

(7.38)
(

osc
∂B(a,r)

h

)n

6 C(n,X)n

∫
B(a,R)

|Dh|n

We want these oscillations to be smaller than RY. For this reason we must
confine ourselves to R < RX and ε small enough so that

(7.39) C(n,X)n

∫
B(a,R)

|Dg(x)|n dx 6

(
1
2
RY

)n

for all a ∈ X and, in addition, we assume that

(7.40) 2C(n,X) ε < RY
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Next we wish that the integrals
∫

B(a,R) |Df |
n, with a ∈ X and f ∈ B(g, ε) be

sufficiently small. To determine ε we first note the inequality

(7.41)

(∫
B(a,R)

|Df |n dx
)1/n

6
(∫

B(a,R)
|Dg|n dx

)1/n

+
(∫

B(a,R)
|Df −Dg|n dx

)1/n

6
(∫

B(a,R)
|Dg|n dx

)1/n
+ ε

for each a ∈ X. A theorem of B. White (Theorem 2. p. 135 in [56]) states that for
each g ∈ W 1,n(X , Y) there exists ρ > 0 such that if f1, f2 ∈ B(g, 2ρ) are smooth
for i = 1, 2, then f1 and f2 are homotopic. The requirement

(7.42) C(Y)
[(∫

B(a,R)
|Dg|n dx

)1/n
+ ε
]

6 ρ

where the constant C(Y) will be determined later, see (7.53). This is the last
condition on R and ε.

The above conditions at (7.36)–(7.42) determine the numbers R = R(g) > 0
and ε = ε(g) > 0. The remaining estimates in this section will be explicit given
R = R(g) and ε = ε(g). Returning to the inequality (7.35) let us temporarily fix
both f ∈ B(g, ε) and the parameter 0 < t < R(g). It involves no loss of generality in
assuming that f ∈ C∞(X , Y), simply because C∞(X , Y) is dense in W 1,n(X , Y).
It remains to prove the inequality

(7.43)
∣∣∣∣∫

X
Kt(a, x)Jω(x, f)

∣∣∣∣ 4

[
Mp(|Df |)(a)

]n

where the implied constant depends on R which we have already determined for the
given function g.

We fix finite covering of Y by legitimate balls of radius T def== RY. Using the
oscillation inequality at (7.37) we find a radius r ∈ (t, 2t) such that

(7.44) osc
∂B(a,r)

f 6 RY = T

which is immediate from (7.38). We look at the image of f : ∂B(a, r) → Y. It
intersects some legitimate ball B(b, T ) ⊂ Y from the above mentioned finite cover of
Y. Then by (7.44),

(7.45) f(∂B(a, r)) ⊂ B(b, 2T ).

Recall that there is a coordinate chart (Ω, κ) ∈ A in which B(b, 4T ) ⊂ Ω and κ :
Ω onto−→ Rm. We may assume that κ(b) = 0. Consider a cut-off function η ∈ C∞(Y)
with support in B(b, 4T ) and equal to 1 on a neighborhood of B(b, 3T ). The form
(κ−1)]ω is closed in Rm and thus there exists a form γ ∈ C∞(∧n−1Rm) such that
dγ = (κ−1)]ω. We have the identity ω = κ](dγ) = d(κ]γ), hence

(7.46) η ω = d(η · κ]γ)− dη ∧ κ]γ

Consider the form
ω̃ = d(η · κ]γ)
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Then ω̃ is exact and coincides with ω on B(b, 3T ). Since the legitimate ball is selected
from the given finite family, all quantities related to η and κ depend only on Y, and
all quantities related to ω̃ depend only on Y and ω. Define

f̃(x) =

{
κ−1

(
κ(z) + η(f(x))

(
κ(f(x))− κ(z)

))
f(x) ∈ Ω

b f(x) /∈ Ω

where z is a point of Y which is nearest to the mean value of f . Then

Jω(x, f̃) = Jω̃(x, f)

and by (7.34) we have

(7.47)

∣∣∣∫
X
Kt(a, x)Jω(x, f̃) dx

∣∣∣ 6 C(ω)
[
||Df̃ || n + Mp(Df̃)(a)

]n

6 C(ω)
[
||Df || n + || f − z || n + Mp(Df)(a)

]n

6 C(ω)
[
||Df || n + Mp(Df)(a)

]n

where in the last step we have used a version of the Poincaré inequality.
It remains to prove the estimate

(7.48)
∣∣∣∫

X
Kt(a, x)

(
Jω(x, f̃)− Jω(x, f)

)
dx
∣∣∣ ≤ C(ω, g)

[
Mp(Df)(a)

]n
Let us look closely at the set

E def== B(a, r) ∩ f−1
(
Y \ B(b, 3T )

)
⊃ B(a, r) ∩

{
Jω(x, f̃) 6= Jω(x, f)

}
We first notice that f(∂B(a, r)) lies in B(b, 2T ) by (7.45). Thus E is compact subset
of the ball B(a, r). The function

u =
|f − b|
T

− 2

is negative on ∂B(a, r) and assumes values > 1 on the set E. By Corollary 7.2 we
can split E into mutually disjoint compact sets E1, ...,Ek such that

k∑
i=1

diamEi 6 CX r
n+1

(
−
∫

B(a,r)
|∇u|p

)n
p

4 tn+1

[
Mp(|Df |)(a)

]n

(7.49)

We accordingly split the integral at (7.48) as:

(7.50)

∫
B(a,t)

Kt(a, x)
(
Jω(x, f̃)− Jω(x, f))

)
dx

=
k∑

i=1

∫
Ei

Kt(a, x)
(
Jω(x, f̃)− Jω(x, f))

)
dx

An important point to make here is that

(7.51)
∫

Ei

Jω(x, f̃) dx =
∫

Ei

Jω(x, f) dx, for i = 1, 2, ..., k
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To see this we consider the following functions

(7.52) fi =

{
f̃ on E i

f on X \ E i

Then fi are smooth. Using (7.42) we obtain

(7.53) || f − fi || 1,n 6 C(Y)
(∫

B(a,r)
|Df |n

)1/n

Thus both functions f and fi belong to B(g, 2ρ). This, by the definition of ρ, implies
that f and fi are homotopic. Hence∫

X
Jω(x, fi) dx =

∫
X
Jω(x, f) dx

which proves the claim (7.51). Similarly we obtain the estimate

(7.54)
∫

Ei

∣∣Jω(x, f̃)− Jω(x, f)
∣∣ dx 4

∫
B(a,r)

|Df |n 4 ρ

To make use of the formulas (7.49) we pick up some points xi ∈ Ei and express
the integral on the left hand side of (7.48) as

(7.55)

∫
B(a,t)

Kt(a, x)
(
Jω(x, f̃)− Jω(x, f)

)
dx

=
k∑

i=1

∫
Ei

[
Kt(a, x)−Kt(a, xi)

](
Jω(x, f̃)− Jω(x, f)

)
dx

Next, we use the following inequalities for the mollifiers

(7.56) |Kt(a, x)−Kt(a, xi)| 4
|x− xi|
tn+1

6
diamE i

tn+1

for all x ∈ Ei. They follow routinely from (2.45). Finally, by (7.49) and (7.54) we
conclude with the desired estimate

(7.57)

∣∣∣∫
B(a,t)

Kt(a, x)
(
Jω(x, f̃)− Jω(x, f)

)
dx
∣∣∣

4
k∑

i=1

diamE i

tn+1

∫
Ei

∣∣Jω(x, f̃)− Jω(x, f)
∣∣ dx

4

[
Mp(Df)(a)

]n

completing the proof of (7.48) and thus of Theorem 7.3.



CHAPTER 8

Degree Theory

L 1-estimates of the Jacobian and related wedge products lead to an analytic
degree theory of weakly differentiable mappings. Readers interested in this topic
will find it profitable to consult Brezis and Nirenberg [6], [7] and also [4], [5], [11],
[22], [14]. Analytic approach to the degree of smooth mappings begins with a choice
of a closed form ω ∈ C∞(∧nY). This form must have non-vanishing integral, which
may not be possible within the class of Cartan forms;

(8.1) ω =
K∑

i=1

αi ∧ βi, dαi = dβi = 0,
∫

Y
ω 6= 0,

Unluckily, such is the case Y = Sn. On the other hand we need Cartan forms in
order to employ Theorems 6.5, 6.6 and 6.7. More generally, if H l(Y) = 0 for all
1 6 l < n, Cartan’s forms are exact and, therefore, have integral zero. This being
so, we must assume that H l(Y) 6= 0, for some 1 6 l < n.

8.1. Definition of the degree via weak integrals

There are several approaches to the degree of Sobolev mappings that are each
of considerable interest. We shall give first the most general one.

Definition 8.1. Let dimX = dimY = n. The notation and hypothesis being
as in Theorem 6.5, we define the degree of f : X→ Y by the rule

(8.2) deg (f ;X , Y) = lim
j→∞

∫
Xj

Jω(x, f) dx = (f ]ω)[1]

where ω ∈ C∞(∧nY) has integral 1 over Y.

Absence of ω in the notation for the degree is justified by Theorem 8.2 below.
From differential topology we know that the notion of the topological degree of

a mapping f : X→ Y of class C 1(X , Y) coincides with the integral of Jω(x, f) and,
therefore, is an integer. Basic characteristics of deg (f ;X , Y); that justify the name
degree, are listed in the following theorem.

Theorem 8.2. With the reference to Definition 8.1, we have
(i) Different choices of the Cartan forms with integral 1 yield the same limit

at (8.2).
(ii) If smooth mappings fk : X → Y, converge to f in W 1,s(X , Y), with the

critical exponent s = n2

n+1 , then

deg (f ;X , Y) = lim
k→∞

deg (fk;X , Y)

Moreover, such a smooth approximation of f always exists.
(iii) The degree is an integer

63
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(iv) If the Jacobian Jω(x, f) is non-negative, then it is integrable and we have

deg (f ;X , Y) =
∫

X
Jω(x, f) dx

(v) If deg (f ;X , Y) 6= 0, then the image of any set of full measure is dense in
Y

Proof. The proof is simply an adaptation of ideas of analytic degree theory of
smooth mappings. To prove statement (i) we fix two Cartan forms ω, θ ∈ C∞(∧nY)
whose integral is equal to 1. Thus

(8.3) lim
j→∞

∫
Xj

Jω(x, f) dx = (f ]ω)[1]

and

(8.4) lim
j→∞

∫
Xj

Jθ(x, f) dx = (f ]θ)[1]

by Theorem 6.5. Now the problem reduces to showing that (f ]ω)[1] = (f ]θ)[1].
Thanks to Theorem 1.2, we can approximate f by smooth mappings in the metric
topology of W 1,s(X , Y). Since the nonlinear functionals f → (f ]ω)[1] and f →
(f ]θ)[1] are continuous in W 1,s(X , Y), we are further reduced to showing that (f ]ω−
f ]θ)[1] = 0, whenever f ∈ C∞(X , Y). To this end we observe that the differential
form ω− θ ∈ C∞(∧nY) is exact; that is ω− θ = dα for some α ∈ C∞(∧n−1Y). This
is because the integral of ω−θ over Y vanishes and Hn(Y) ' R. The rest is folklore,
f ](dα) = d(f ]α) and by Stokes’ theorem

(8.5) (f ]ω − f ]θ)[1] =
∫

X
d(f ]α) = 0

The property (ii) is immediate from Theorem 1.2. Then to see (iii), we need only
recall that the degree of a smooth mapping is an integer. Also (iv) follows readily
from Theorem 6.6.

As for the statement (v), consider a set X ′ of full measure in X. Let us assume,
to the contrary, that f : X ′ → Y omits an open set V ⊂ Y. Fix a Cartan form
ω ∈ C∞

0 (∧nV) whose integral over Y equals 1; for instance, ω = λ(y) dy with
λ ∈ C∞

0 (V). Thus Jω(x, f) = 0 almost everywhere in X′, hence in X as well.
Being so, the limit at (8.2) is equal to zero, contradicting the assumption that
deg (f ;X , Y) 6= 0.

8.2. Weak integrals

Our next objective is to investigate properties of the degree function f →
deg (f ;X , Y) defined on mappings f ∈ W 1,s(X , Y), s = n2

n+1 , such that

(8.6) lim inf
t→∞

tn−s

∫
|Df |>t

|Df |s = 0

We assume here that Y has nontrivial l-cohomology for some 1 6 l < n = dimY =
dimX. As a preliminary step we consider a nonlinear functional Jω : W 1,s(X , Y) →
R, defined by

(8.7) Jω[f ] = (f ]ω)[1]

where ω ∈ C∞(∧nY) is fixed. We call it weak integral of the Jacobian.
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8.2.1. Continuity of the weak integral. Surprisingly, Jω is continuous even
in the metric topology of W 1,n−1(X , Y).

Lemma 8.3. Suppose fν ∈ W 1,s(X , Y) converge to

f ∈ W 1,s(X , Y) ⊂ W 1,n−1(X , Y)

in the metric of W 1,n−1(X , Y). Then

(8.8) lim
ν→∞

Jω[fν ] = Jω[f ]

8.2.2. L 1-Estimate of the weak integral. Before jumping to the proof of
Lemma 8.3 let us state another surprising result, which will be the key ingredient.

Lemma 8.4. Given Φ ∈ L p(∧lX)∩ker d and Ψ ∈ L r(∧kX)∩ker d, 1 6 k, l < n,
k + l = n, where 1 6 p, r <∞ are Sobolev conjugate exponents. We have

(8.9) |(Φ ∧Ψ)[1]| 4 ||Φ ||L 1(X) ||Ψ ||L 1(X)

This estimate is not always true if we replace 1 by arbitrary test function η ∈
C∞(X).

Proof. By the definition of the distributional wedge product, given at (6.15),
it will be enough to prove (8.9) for smooth forms. In this case, we have

(8.10) (Φ ∧Ψ)[1] =
∫

X
Φ ∧Ψ

If one of the factors Φ or Ψ is exact then so is their wedge product. In this case the
integral vanishes, so there is nothing to estimate. But this is not always the case.
Fortunately, closed forms are exact modulo harmonic fields, which we consider as
harmless terms. Precisely, we proceed as follows:

(8.11) Φ = dϕ+ h, h ∈ Hl(X) and ϕ ∈ C∞(∧l−1X)

Although we may not have good estimates of dϕ in terms of Φ, we do have, how-
ever, good estimates of the harmonic component. Luckily, dϕ disappears after we
integrate at (8.10):

(8.12)
∫

X
Φ ∧Ψ =

∫
X
h ∧Ψ

by Stokes’ theorem. Hence

(8.13) | (Φ ∧Ψ)[1] | 6 ||h ||L∞(X) ||Ψ ||L 1(X)

The rest of the proof relies on the regularity properties of the harmonic fields, see
inequality (2.15). Accordingly,

(8.14) ||h ||∞ 4 sup
t>0

t |{x; |h(x)| > t}| 4 ||Φ || 1

as desired.
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8.2.3. Proof of Lemma 8.3. As we have already observed in Lemma 2.13
every ω ∈ C∞(∧nY) is a Cartan form, say

(8.15) ω =
K∑

i=1

αi ∧ βi

Hence (f ]
ν ω)[1] =

∑K
i=1(Φν

i ∧ Ψν
i )[1], where both Φν

i = f ]
ν αi and Ψν

i = f ]
ν βi are

closed forms of degree 1 6 li < n and 1 6 ki < n, respectively. Similarly, (f ]ω)[1] =∑K
i=1(Φi ∧ Ψi)[1]. First observe the point-wise inequalities |Φν

i | 4 |Dfν |li and
|Ψν

i | 4 |Dfν |ki , li + ki = n. Thus Φν
i ∈ L pi(∧liX) and Ψν

i ∈ L ri(∧kiX), with a
Sobolev conjugate pair of exponents pi = s

li
and ri = s

ki
, 1

pi
+ 1

ri
= n

s = 1 + 1
n . We

need to show that

(8.16) lim
ν→∞

(Φν
i ∧Ψν

i )[1] = (Φi ∧Ψi)[1]

for every i = 1, 2, ...,K. Using telescoping decomposition, this reduces to two equa-
tions:

(8.17) lim
ν→∞

[
(Φν

i − Φi) ∧Ψν
i

]
[1] = 0

and

(8.18) lim
ν→∞

[
(Φi ∧ (Ψν

i −Ψi)
]
[1] = 0

We will only demonstrate the proof of (8.17); the other being similar is omitted. By
Lemma 8.4, we have∣∣∣ [(Φν

i − Φi) ∧Ψν
i

]
[1]
∣∣∣ 4 ||Φν

i − Φi ||L1(X)
||Ψν

i ||L1(X)

4 || f ]
ναi − f ]

να ||L1(X)
||Dfν ||

ki

L ki (X)
(8.19)

Since ki 6 n− 1 the last factor is bounded by ||Dfν || ki
n−1. Next observe the point-

wise inequality

(8.20)
∣∣∣f ]

ναi − f ]
να
∣∣∣ 4 |Dfν −Df |

(
|Dfν |+ |Df |

)li−1 + |fν − f | |Df |li

This can be easily verified using local coordinates. The L 1-norm of the first term
in the right hand side of (8.20) is controlled by

||Dfν −Df || n−1

(
||Dfν || n−1 + ||Df || n−1

)li−1

Simple application of Hölder’s inequality shows that integral of the second term is
bounded by

(8.21)
∫

X
|fν − f | |Df |li 4

(∫
X
|fν − f |n−1 |Df |n−1

) 1
n−1

(∫
X
|Df |n−1

) li−1

n−1

We conclude with the following inequality∣∣∣ (f ]
νω − f ]ω

)
[1]
∣∣∣(8.22)

4

(
|| |fν − f | |Df | || n−1 + ||Dfν −Df || n−1

)(∫
X
|Dfν |n−1 + |Df |n−1

)
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Finally, let ν go to infinity. The integral stays bounded and the term ||Dfν−Df || n−1

goes to zero. Also (fν − f) |Df | goes to zero in L n−1 by the Lebesgue Convergence
Theorem. Hence lim

ν→∞
(f ]

νω) [1] = (f ]ω) [1], as desired.

8.3. Stability of the degree

Next we are concerned with the fundamental question of the degree theory; how
close should the mappings f, g ∈ C∞(X , Y) be in order to ensure that they have the
same degree. We shall measure the distance using the metric of the Sobolev space
W 1,q(X , Y) with q > n − 1. We also assume, as always, that the l-cohomology of
the target space is nontrivial for some 1 6 l < n.

Theorem 8.5. Given M > 0 and q > n− 1, there exists ε = ε(X , Y) such that
if two mappings f, g ∈ C∞(X , Y) satisfy

(8.23) || f ||W 1,q + || g ||W 1,q 6 M and || f − g ||W 1,q 6 ε

Then deg (f ;X , Y) = deg (g;X , Y).

Proof. The reader may carefully reexamine the proof of (8.22) to observe that
we have actually proven the following estimate∣∣∣ (f ]ω − g]ω)[1]

∣∣∣
4

(
|| |f − g| |Df | || n−1 + ||Df −Dg || n−1

)(
||Df || n−1

n−1 + ||Dg || n−1
n−1

)
whenever f, g ∈ C∞(X , Y) and q > n − 1. Since the target space is bounded, it
folows

(8.24)
∣∣∣ (f ]ω − g]ω)[1]

∣∣∣ 4 || f − g ||
W 1,q

(
|| f ||

W 1,q + || g ||
W 1,q

)n−1

This proves Theorem 8.5.

Remark 8.6. Theorem 8.5 also holds for mappings f, g ∈ W 1,s(X , Y), provided
they both satisfy condition (6.20). This is because we could approximate them by
smooth mappings.

8.4. The degree in Orlicz and grand Sobolev spaces

Finally, our discussion is narrowed to Orlicz-Sobolev and to grand-Sobolev
classes of mappings f : X → Y, dimX = dimY = n, where Hl(Y) 6= 0 for some
1 6 l < n. Recall that these classes hold smooth approximation property, by Theo-
rems 5.2 and 1.3.

Let P satisfy the hypothesis of Theorem 5.2. As a corollary of Theorem 8.5, we
conclude:

Theorem 8.7. The degree function

(8.25) deg : W 1,P (X , Y) → {...,−2,−1, 0, 1, 2, ...}

is uniformly continuous on every bounded subclass of W 1,P (X , Y).

Speaking of the category of grand Sobolev spaces, let us recall that

(8.26) lim
ε→0

ε

∫
X
|Df(x)|n−εdx = 0
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whenever f ∈ VW 1,n(X , Y). For such mappings we have yet another interesting
integral formula for the degree

(8.27) deg (f ;X , Y) = lim
ε→0

∫
X

Jω(x, f) dx
|Jω(x, f)|ε

simply because this limit coincides with (f ]ω)[1], see [14], [34]. The advantage
of this latter formula is that we neither approximate f by smooth mappings nor
approximate X by the sets Xj . This formula might be extremely useful in numerical
treatment of the degree theory. Indeed, as deg (f ;X , Y) is an integer, we only need
to compute the limit at (8.27) with sufficient accuracy to ensure that the error is
less than 1

2 . Explicit estimates of the error in terms of ε are also available.
One particular Orlicz-Sobolev subspace of VW 1,n(X , Y) deserves mentioning

here. This is the class of weakly differentiable mapping f : X→ Y whose differential
lies in the Zygmund class L n log−1 L (X); that is

(8.28)
∫

X

|Df(x)|n dx
log(e+ |Df(x)|)

<∞



CHAPTER 9

Mappings of Finite Distortion

Recently there have been considerable advances made in the study of mappings
of finite distortion between the domains in Rn. The reader interested in these
developments is referred to [30], [38], [39], [31] and the recent monograph [32].
What we want to point out here is the extent to which those results are true in the
Riemannian manifold setting.

Definition 9.1. Let dimX = dimY = n. A Sobolev mapping f : X→ Y is said
to have finite distortion if

(i) The Jacobian determinant J (x, f) dx = f ](dy) is integrable
(ii) There is a measurable function K = K(x) > 1, finite almost everywhere,

such that f satisfies the distortion inequality

(9.1) |Df(x)|n 6 K(x)J (x, f) for almost every x ∈ X

We emphasize that in many natural situations the condition (i) is automatic.
Such is the case when f is a local homeomorphism. More generally, J (x, f) ∈ L 1(X)
if the cardinality of the set {x ∈ X; f(x) = y} is an integrable function in y ∈ Y.
Foundational analysis of mappings of finite distortion relies on integration of the
Jacobian. In order to fully benefit from the estimates and the degree formulas we
must stay close to the natural Sobolev class W 1,n(X , Y). Thanks to L 1-estimates
in Section 6 we may consider unbounded distortion K = K(x). It turns out that
the following integral condition on K has interesting implications

(9.2)
∫

X
eΦ(K(x)) dx <∞ , where

∫ ∞

1

Φ(t)
t2

dt = ∞

This implies, via the distortion inequality, that f ∈ W 1,P (X , Y), where P satisfies
the hypotheses of Theorem 8.5. To be precise, we should mention here that one also
needs Φ(t) < log t. This additional condition plays rather technical role, since in
practice Φ(t) behaves more or less like the linear function. For instance, Φ(t) = λt or
Φ(t) = λt log−1(e+ t), λ > 0. As a consequence of our investigation of the pullback
of Sobolev mappings we are able to carry out this program on manifolds.

Theorem 9.2. Let f : X → Y be a non-constant mapping of finite distortion
K = K(x) satisfying (9.2). Then

• f is continuous, open, and discrete.
• The measure of E ⊂ X is zero if and only if f(E) ⊂ Y has measure zero.
• Given λ > 0, C > 0 and d ∈ {1, 2, ...}, the family of mappings f : X → Y

such that

(9.3)
∫

X
eλK(x) dx 6 C

(9.4) deg (f ;X , Y) 6 d

is compact with respect to uniform convergence.
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• If for sufficiently large λ = λ(n)∫
X
eλK(x) dx <∞

then f ∈ W 1,n(X , Y).

We shall not prove this theorem, it can be found in [28], [29], [30], [31], [38],
[39], [40], and [41].
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[21] P. Haj lasz and J. Malý, Approximation in Sobolev spaces of nonlinear expressions involving

the gradient. Ark. Mat. 40 (2002), 245–274.
[22] C. Hamburger, Some properties of the degree for a class of Sobolev maps. Proc. Roy. Soc.

London Ser. A 455 (1999), no. 1986, 2331-2349.
[23] F. Hang, and F. Lin, Topology of Sobolev mappings. Math. Res. Lett. 8 (2001), 321-330.
[24] F. Hang and F. Lin, Topology of Sobolev mappings II. Acta Math. 191 (2003), 55–107.
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