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in a two-weight Poincare inequality? 
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To the memory of Bogdan Ziemian 

Abstract. We prove that  if a Poincari. inequality u ~ i t h  two different weights holds on 
every ball, then a Poincark inequality with the same weight 011 both sides holds as well. 

Introduction. By a two-weight Poincare' inequ,ality we mea.n an inequal- 
ity of the form 

which is supposed to hold for every ball B c Rn uf radius r and every 
u IL C w ( B ) .  Here, 1 I p < x, LL ant1 v are two positive Radon measures. 
and the followirig notation is used for the average: 

The aim of this paper is to prove that. if the above Poincark irlecluality holds 
on every ball and for every smooth function u, then we can replace v by LL on 
the left hand side. For a precise statement. see Corollary 1 below. In fact. our 
present result can be viewed in the more general context of self-improving 
properties of two-weight Poincari. inequalities that will be studied in [15]: 
nevertheless. we present here this direct proof because of its simplicity. 
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Our main result, Theorem 1, is stated in the very general setting of 
Poincark inequalities on metric spaces endowed with doubling measures. The 
theory of Sobolev spaces on metric spaces was basically originated in [20].  
Dealing with such a general situation is justified by numerous applications 
to Sobolev inequalities on Riemannian manifolds, analysis on graphs, and 
Sobolev spaces associated with vector fields: see e.g. [lo] and [22],  where the 
reader will find an exhaustive bibliography on the subject. 

Let (X ,  d) be a metric space. We say that a Bore1 measure LL on (X, d )  
is doublzng if there is a constant C ,  > 0 such that for every ball B C X ,  
p ( 2 B )  < C , p ( B ) .  In addition we require that p ( B )  > 0 on every ball B c X 
and that ,Q is finite on all bounded sets. 

Here and in the sequel we denote by XB, X > 0, the ball concentric with 
B and with radius X times that of B .  By L~, , (p )  we denote the class of 
functions which are LP integrable with respect to ,LL on every ball. By C we 
denote a general positive constant; its value may change even in a single 
string of estimates. 

We would like to thank Dick Wheeden for many stimulating and fruitful 
discussions, and for having generously shared his ideas with us. We also 
thank Jan Ma19 for a fruitful discussion. The idea we earned from him 
helped us simplify our original proof. 

Main result. The main result of the paper reads as follows. 

THEOREM 1. Let ( X , d )  be a ,metric space endowed with two doubling 
measures ,LL and u :  where p is  absolutely contin,uous w,ith respect to u .  Let 
u E L~, , (u)  and 0 < g E Lf,,(p), p > 1. Assume that o n  every ball B c X 
the following version of the "two-weight Poincare' inequality" h,olds: 

where r is the radius of the ball B and C > 0, a > 1 are fixed constants 
independent of B .  Then  there is  another constant C' > 0 such that o n  every 
ball B c X we have the following "one-weight" inequality: 

REMARKS. 1) If we replace the local integrability of u by a stronger 
condition that u is continuous and bounded on every ball, then we do not 
have to assume that p is absolutely continuous with respect to u.  

2 )  Actually the same proof yields slightly more. Indeed, instead of ( 2 )  it 
suffices to assume a weaker inequality 
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and the conclusion remains the same. 
3) The functions u and g are counterparts of a Sobolev function and the 

absolute value of its gradient. One can prove that Poincark type inequalities 
like those in Theorern 1 irnply that the function u inherits most of the 
properties of classical Sobolev functions, as we can see in the references 
cited above in connection with the Sobolev spaces on metric spaces. 

Proof of Theorem 1. Let x E B be a Lebesgue point of u with respect 
to the measure v. Put Bi(x) = B(x,  2i). Let io be the least integer such 
that 2'0 > diam B. Then B c Bin (x). Since, by the Lebesgue differentiation 
theorem [22, Theorem 14.151, u ~ ~ , ,  + u(x) as i, + -m for v-a.e. x E X,  we 
conclude that 

Hence 

Applying the doubling property of the measure p and Fubini's theorem 
yields 
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Hence we can continue: 

Now the elementary inequality 

completes the proof of the theorem. 

REMARK. The absolute continuity of p with respect to u was employed 
to deduce that p-almost all points x E B are Lebesgue points for u with 
respect to the measure u. If we assume that u is continuous, then all points 
are Lebesgue points and hence we do not need to require that p is absolutely 
continiious with respect to u. 

The above result directly applies to two-weight Poincar4 inequalities 
in Rn. 

COROLLARY 1. Let /L and u be two positi~ie Radon measures i n  Wn satis- 
fying the doubling condition. Let 1 5 11 < m and C > 0 be fixed constants. 
Assume that 

uihenever B is  a ball and 'u E C" (B)  (here r is  the radius of B ) .  Then  there 
is  another constant C' > 0 such that 

for all balls B and all u E C" (B) .  

P r o o f .  Theorem 1 together with the remark gives the result with the 
ball 5B on the right hand side. Now the fact that we can replace 5B by B 
is standard; see for example 1211 for a short proof. The proof is complete. m 

REMARKS. 1) Corollary 1 can be easily generalized to the setting of 
Poincark inequalities associated with vector fields; as those in [23], [6], 181- 
[ I l l ,  [13], [19], [22] and the recent [25]. 
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2) The method that allows one to reduce the size of the ball on the right 
hand side is well known. It seems there are at least three basic techniques 
to do that: the one developed by Bornan, [4], [3], [5], [7], [9]. [19], [26], [27]; 
the one developed by Kohn, [24]. [23]; and the one recently discovered in 
1211 and [22]. 

3) So far, we have proved a result for Poincarit inequalities such as (3). We 
call them (p,p)-inequalities. because of the presence of the same exponent 
p on both sides. One could ask whether it is possible to get a similar result 
for (p, q)-Sobolev-Poincarit inequalities, with a larger exponent q on the 
left-hand side. In fact, such a generalization can be easily obtained. Indeed, 
it has recently been discovered that the (p, p)-Poincark inequality like (3) 
enjoys the so-called self-improving property, i.e. it implies the (p, q)-Sobolev- 
Poincark inequality with the optimal exponent on the left hand side: see [29]. 
[I] ,  [2], [13], [14], [19], [21], [22], [28], so that there is no loss of generality in 
taking the same exponent p on both sides of (3). 

Suppose p is the Lebesgue measure in Wn , and let X = (XI ,  . . . , X,) be 
a systenl of Lipschitz continuous vector fields in Rn . If X belongs to the class 
A, of Fefferman-Stein and Muckenhoupt for the Carnot-Carathkodory 
metric, the11 dp  = dx is absolutely continuous with respect to du = X(x)dx, 
and both measures are doubling (cf. [18, IV.21). We denote by U B , ~  and U B  

the average values of u over B with respect to the measures X(x)dx and dx 
respectively. 

Now, if v is a continuously differentiable function, we denote by XuI2  = 

C,  x , u 2  the gradient associated with X.  With these notations, the fol- 
lowing result is an easy consequence of Theorern 1. 

COROLLARY 2. Suppose X  E A, with respect to the C a r n o t  Carathe'odory 
metric associated with X .  If there are constants C > 0 and a 2 1 such 
that for any Carnot-Carathe'odory ball B = B(x ,  r )  and any continuously 
dijfjerentiable function u we have 

then (wi th  a new choice of the constant C )  

Indeed, in this case we can get rid of the enlarging factor 50 that appears 
in (3) by a Bornan chain type argument as in [9]. 

The interest of the above example originates from the following situation: 
suppose there exists a compensation couple ( A ,  s )  for X ( A  E L:,,, s > 1) in 
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the sense of [17], i.e. there exist  constant,^ c, C > 0 such that 

~ ( P ( B ) / T ) "  5 1 A(!/) d!/ 5 C( IL(B) IT )~  
B 

for any Carnot-Carathkodory ball B = B(x ,  r ) .  In fact, the theory in [17] 
is developed for smooth vector fields; nevertheless. the definition of com- 
pensation couple and the arguments we develop require only the Lipschitz 
continuity of the vector fields. If X belongs to the class A, (as it happens 
e.g. for smooth vector fields satisfying Hormander's rank condition), then 
Corollary 2 above holds. 
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