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ABSTRACT. The approximation theorem of Michael and Ziemer
asserts that any function u ∈ Wk,p(Rn) can be redefined on a
set of small Bessel capacity Bk−m,p to yield a function w ∈ Cm,
which moreover is close to u in the sense of Sobolev normWm,p.
We extend this result in two ways. First, we show that it is possi-
ble to obtain the approximation in the higher order Sobolev space
Wm+1,p without changing the estimate for the capacity. More-
over, we generalize the theorem to the case of approximation by
Cm,λ functions. The proofs are based on a new extension for-
mula, different from the classical one of Whitney.

1. INTRODUCTION

The well known theorem of Luzin states that for any measurable function u de-
fined on Rn and any ε > 0, one can find a continuous function ϕ and a closed
set F with the Lebesgue measure of Rn \ F smaller than ε, such that u ≡ ϕ
on F . There have been several refinements of Luzin’s theorem by showing that
the more regular measurable function u, the smoother approximating functionϕ
can be chosen. Our paper is about such generalizations of the Luzin theorem for
functions u in Sobolev spaces Wk,p.

Let us start with an account of the history of the problem. All the results
that we are going to mention are based on the celebrated Whitney Cm-extension
theorem [30] (see also [20] and Theorem 4.4 below), which provides a necessary
and sufficient condition for a continuous function on an arbitrary closed subset of
Rn to be extendable to a Cm smooth function on the entire Rn.

We postpone explanation of some of the (mostly standard) notation and ter-
minology that will be used now till the next section, “Preliminaries”.

It seems that the story has started with a result of Federer (proved implicitly
in [11, p. 442]) who showed that if a function u on Rn is differentiable a.e., then
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to every ε > 0 there exists a function w ∈ C1(Rn) and a closed set F such that
u ≡ w on F and |Rn \ F| < ε (|A| denotes the Lebesgue measure of A). The
result is a simple consequence of the Whitney extension theorem.

Another result is due to Whitney [31] who proved that if a function u has
approximate partial derivatives a.e., then the same claim holds as in the Federer
theorem. We will not recall the definition of the approximate partial derivative, we
simply note that classical partial derivatives are approximate partial derivatives as
well. A well known result of Nikodym [25] (see also [10, 4.9.1], and Lemma 4.7
below) states that every Sobolev function u ∈ W 1,p(Rn) admits a representative
which has partial derivatives a.e. and thus it follows from the Whitney theorem
[31] that u coincides with a C1 function off a set of an arbitrary small Lebesgue
measure (it seems that this simple application of Whitney’s theorem [31] was un-
noticed in the literature).

A far reaching generalization of the last observation is due to Calderón and
Zygmund [7, Theorem 13] who extended the theorem to Sobolev spaces with
higher order derivatives. They proved that for u in the Sobolev space Wk,p and
arbitrary ε > 0 there exists a closed set F and a function w ∈ Ck(Rn) such that
|Rn \ F| < ε and u ≡ w on F . Again the proof was based upon a reduction
of the problem to the Whitney Ck-extension theorem. This reduction was much
more difficult than in the case of first order Sobolev spaces. Actually, Calderón
and Zygmund proved a modified version of Whitney’s theorem, convenient for
applications to Sobolev spaces [7, Theorem 9] (their theorem contains however a
small gap; we comment on it later).

The next result is due to Liu [19]. He proved that for u ∈ Wk,p the function
w ∈ Ck(Rn) can be chosen in a way that in addition to the condition u ≡ w in a
closed set F with |Rn\F| < ε from Calderón and Zygmund’s theorem one obtains
the estimate for the Sobolev norm ‖u−w‖Wk,p < ε. Again the main idea of the
proof was similar to that before: reduce the problem to Whitney’s Ck-extension
theorem and carefully examine the norm of the Whitney extention to obtain the
desired estimate for the Sobolev norm of u−w.

A strengthened version of the Calderón and Zygmund theorem, with addi-
tional information in terms of capacities, is due to Michael and Ziemer [24] (see
also [32], [33], [6]). They proved the following result.

Theorem 1.1. Let Ω ⊂ Rn be open. Assume that 1 < p < ∞, ε > 0 and
m ∈ {0,1, . . . , k}. Then, for any u ∈ Wk,p

loc (Ω) there exists a closed subset F of Ω
and a function w ∈ Cm(Ω)∩Wm,p

loc (Ω) such that
(i) Bk−m,p(Ω \ F) < ε, where Bk−m,p denotes the Bessel capacity;

(ii) Dαu(x) = Dαw(x) for any x ∈ F and any α with |α| ≤m;
(iii) u−w ∈ Wm,p

0 (Ω);
(iv) ‖u−w‖Wm,p(Ω) < ε.

An earlier version of this theorem, without (iii) and (iv), was proved by Bagby
and Ziemer [3]. For k =m, the Bessel capacity B0,p coincides with the Lebesgue
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measure and hence Theorem 1.1 covers the result of Liu. If k > m, sets of small
Bk−m,p capacity are “smaller” than generic sets of small Lebesgue’s measure. The
price one has to pay for a very good estimate of the size of the complement of F
in (i) is the lesser degree of smoothness of w ∈ Cm, m < k and the estimate in
the lower order Sobolev normWm,p, m < k (lesser and lower than corresponding
estimates in the theorem of Liu).

Let us mention that there is a small gap in the proof of Calderón and Zyg-
mund’s theorem. Namely their version of Whitney’s extension theorem [7, The-
orem 9] is slightly in error and it is not true without some modifications in the
statement. The result of Calderón and Zygmund was employed by Bagby and
Ziemer, [3], Liu, [19], and Michael and Ziemer, [24]. Fortunately Ziemer [32],
[33, Chapter 3], corrects the statement of Theorem 9 in [7] and thereby fixes the
gap and saves the results mentioned above.

The theorem of Michael and Ziemer has been generalized to the case of Bessel
potential spaces and Besov spaces by Stocke [28].

It is getting boring, but let us mention one more time that Michael and
Ziemer employed Whitney’s Cm-extension theorem (in the form proved by Cal-
derón and Zygmund [7, Theorem 9]).

A short proof of the Michael and Ziemer theorem was obtained by Bojarski
and Hajłasz, [6]. Their idea was the following. First they proved pointwise in-
equalities, Corollary 3.9 below. If u ∈ Wk,p

loc ⊂ Wm,1
loc and M[

R(∇mu) goes uni-
formly to 0 on a closed set F as R → 0, then it immediately follows that the
function u restricted to F satisfies the assumptions of classical Whitney’s Cm-
extension theorem (Theorem 4.4). Now the estimate for the Bessel capacity of the
set where the maximal functionM[

R(∇mu) is large and the careful examination of
the explicit formula for Whitney’s extension of u|F give the result.

We discovered that a new technique that omits Whitney’s theorem leads to
a better result: for m < k one obtains a higher order approximation ‖u −
w‖Wm+1,p(Ω) < ε without loosing any information about capacity of the excep-
tional set and about the smoothness of the approximating function w. This is one
of the two main results of the paper.

Theorem 1.2. Let Ω ⊂ Rn be open. Assume that 1 < p < ∞, ε > 0 and
m ∈ {0,1, . . . , k− 1}. Then for any u ∈ Wk,p

loc (Ω) there exists a closed subset F ⊂ Ω
and a function w ∈ Cm(Ω)∩Wm+1,p

loc (Ω) such that
(i) Bk−m,p(Ω \ F) < ε;

(ii) Dαu(x) = Dαw(x) for any x ∈ F and any α with |α| ≤m;
(iii) u−w ∈ Wm+1,p

0 (Ω);
(iv) ‖u−w‖Wm+1,p(Ω) ≤ C(n, k,p)‖u‖Wm+1,p(Ω\F) < ε.

Also condition (iv) is slightly stronger than the corresponding one in Theorem
1.1.

If m = k, then our method leads to the approximation in Wk,p
0 only, like in

theorems by Liu and by Michael and Ziemer, but, of course, in this case there is
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no hope to obtain an approximation in a higher order space. However we still
have

‖u−w‖Wk,p(Ω) ≤ C‖u‖Wk,p(Ω\F) < ε
like in Theorem 1.2.

Let us formulate a special case of the theorem in the case of first order deriva-
tives. It is a classical result that a function u ∈ W 1,p(Rn), where 1 < p < ∞
admits a representative which is continuous outside a set of arbitrary small Bessel
capacity B1,p. The following theorem is considerably stronger, and follows directly
from Theorem 1.2.

Theorem 1.3. Let u ∈ W 1,p(Rn), 1 < p <∞. Then to every ε > 0 there exists
a continuous function in the Sobolev space w ∈ C0 ∩W 1,p(Rn) such that

(i) B1,p({x ∈ Rn | u(x) ≠ w(x)}) < ε;
(ii) ‖u−w‖W1,p(Rn) < ε.

It was a natural problem to ask for an approximation by functions in the
class Cm,λ, λ ∈ (0,1) in order to obtain a continuous scale of approximation.
One of the ideas is to modify the proof in [6] by employing different pointwise
inequalities, Corollary 3.7 below. Reasoning like this one proves that if u ∈ Wk,p

loc ,
p > 1, 0 ≤ m ≤ k − 1, λ ∈ (0,1), and ε > 0, then there exists w ∈ Cm,λloc (Ω)
such that u ≡ w on F with Bk−m−λ,p(Ω \ F) < ε, ‖u−w‖Wm,p(Ω) < ε.

However, employing the method which leads to Theorem 1.2 we get higher
order approximation in this case as well, namely ‖u −w‖Wm+1,p < ε with the
estimate for the capacity unchanged. This is the other main result of the paper. In
order to formulate the theorem we need to define a class of smooth functions. We
say that u ∈ C̃m,λ(Ω), m ∈ {0,1,2, . . . }, λ ∈ (0,1), if u ∈ Cm(Ω) and for every
compact set K ⊂ Ω
(1.1) lim

%→0
sup
x,y∈K
x≠y

|x−y|≤%

|∇mu(x)−∇mu(y)|
|x −y|λ = 0.

For a function u ∈ Cm,λ(Ω) the supremum that appears in (1.1) is bounded
only, so (1.1) means that on compact sets m-th order derivatives of functions in
the class C̃m,λ have better modulus of continuity than C0,λ-Hölder continuous
functions. On the other hand, a function u ∈ C̃m,λ(Ω) need not have globally
Hölder continuous derivatives as the constant C in the inequality

|∇mu(x)−∇mu(y)| ≤ C|x −y|λ, for x, y ∈ K

may blow-up to infinity with a sequence of compact sets K ⊂ Ω that exorce Ω.
We can now formulate the result.
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Theorem 1.4. Let Ω ⊂ Rn be an open set. Assume that 1 < p < ∞, λ ∈ (0,1)
and m ∈ {0,1, . . . , k− 1}. Then, for any u ∈ Wk,p

loc (Ω) and any ε > 0 there exists
a closed subset F of Ω and a function w ∈ C̃m,λ(Ω)∩Wm+1,p

loc (Ω) such that
(i) Bk−m−λ,p(Ω \ F) < ε;

(ii) In the particular case when k = m + 1 and (1 − λ)p ≤ n we also have
Hn−(1−λ)p
∞ (Ω \ F) < ε, where Hn−(1−λ)p

∞ denotes the Hausdorff content;
(iii) Dαu(x) = Dαw(x) for any x ∈ F and any α with |α| ≤m;
(iv) u−w ∈ Wm+1,p

0 (Ω);
(v) ‖u−w‖Wm+1,p(Ω) ≤ C(n, k, λ,p)‖u‖Wm+1,p(Ω\F) < ε.

An abstract version of the result, which is valid for k = 1 and for functions
in Sobolev spaces on a metric space as defined in [16], has been recently obtained
by Hajłasz and Kinnunen, [17]. A careful reader should note that Theorem 1.4
strengthens and extends Malý’s result [21] (Theorem 7, page 252) on Hölder type
quasicontinuity of Sobolev functions. Our proof seems to be more natural and,
contrary to Malý’s, can be easily written for Sobolev spaces with derivatives of
arbitrary order: we do not use truncation at all. Our theorem yields sharper infor-
mation on capacity even for first order derivatives, and the Hölder exponent of the
approximating function can be chosen in an arbitrary way. When a preliminary
version of this paper had already been completed, we received a preprint of David
Swanson [29], who extended our results to fractional Sobolev spaces, i.e., Bessel
potential spaces Lα,p.

Remarks.
(1) In Theorems 1.1, 1.2 and 1.4 it is assumed that u and its derivatives are only

locally integrable, but the choice of F allows one to control the appropriate
norm of (u−w) by the Sobolev norm of u on Ω \ F—which becomes finite
(and small) if F is sufficiently “large”.

(2) In the theorems F is a closed subset of Ω, i.e., an intersection of a closed subset
of Rn with Ω, so F does not have to be a closed subset of Rn. In particular we
can have F = Ω.

(3) In the supercritical case p > n, condition (ii) of Theorem 1.4 yields in fact
an optimal imbedding of W 1,p into C0,λ. In fact, for λ = 1 − n/p condi-
tion (ii) ascertains that H 0∞(F) is small; since H 0∞(E) ≥ 1 for all nonempty
sets E, F is empty, and (the canonical representative of ) u agrees everywhere
with a Hölder continuous function. Combining this with a classical induc-
tive argument, one sees that (ii) gives in fact an optimal imbedding of Wk,p

into Cs,λ in the whole supercritical range kp > n. Note also that the be-
haviour of Bessel capacity on balls (see Ziemer [33, Section 2.6]), implies
that Bα,p(E) ≤ CHn−αp

∞ (E) when diamE < 1
2 and αp < n. Therefore,

for k = m + 1 condition (ii) of Theorem 1.4 is stronger than (i); the latter
one does not imply an imbedding into C0,λ for the optimal value of Hölder
exponent λ. We were not able to obtain an analogue of (ii) for k > m+ 1.
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All Theorems 1.1, 1.2 and 1.4 require a very careful choice of a representative
of the function u ∈ Wk,p

loc (in the class of functions which equal to u a.e.). Typ-
ically, one chooses the so-called quasicontinuous representative. This approach,
however, is rather technical as it requires a good understanding of the capacity
theory. In our approach we choose a canonical Borel representative of the function
and its distributional derivatives, using the formula

(1.2) ũ(x) := lim sup
r→0

∫
B(x,r)

u(y)dy.

This representative is well defined at each point x of the domain of u. In condi-
tion (ii) of Theorems 1.1 and 1.2 and condition (iii) of Theorem 1.4 the values
of Dαu(x) are understood precisely in this sense. Let us note that the canonical
Borel representative is quasicontinuous and that each of Theorems 1.1, 1.2 and
1.4 holds for any quasicontinuous representative.

It turns out that pointwise inequalities (Corollary 3.9 and Corollary 3.7) em-
ployed in our proof are true at every point of Ω. This trick, which was used for
the first time in [6], simplifies the proof: no knowledge about quasicontinuous
representatives is required.

However, the main novelty in our proof is the replacement of the Whitney
extension theorem by a new construction that we call Whitney’s smoothing.

When the classical Whitney extension formula is being applied to a Sobolev
function u which have been restricted to some closed set F we loose all the in-
formation about the behaviour of the function in the complement of F . This is
too much. To avoid this, we replace the Whitney extension formula by a new one
which takes into account both the behaviour of the function u on F and its be-
haviour on Ω \ F . The resulting function, which we denote here by ũ is, roughly
speaking, defined as follows. We leave u unchanged on F i.e., ũ ≡ u on F and
define ũ on Ω \ F by applying an approximation procedure to u|Ω\F . We use
the name ‘Whitney’s smoothing’, because ideas related to the Whitney extension
theorem are involved here. Thus in fact we do not define ũ in Ω \ F by extend-
ing u from F , but we pick some smooth approximation of u|Ω\F . This leads to
Theorems 1.2 and 1.4.

Though we have no formal proof of this, we are tempted to think that it is
not possible to obtain our main result via an application of the classical Whitney
theorem. We also believe that our results are optimal in the sense that estimate
(iv) in Theorem 1.2 and estimate (v) in Theorem 1.4 cannot be replaced by the
estimate ‖u−w‖W`,p(Ω) < ε for ` > m+ 1.

Let us remark that the (a priori purely analytic) Luzin theorems for Sobolev
functions are closely related to the theory of the so-called Ck-rectifiable sets in-
troduced by Anzelotti and Serapioni, see [2]. A set M ⊂ Rn+k is called (Hn,n)-
rectifiable of class Ck (or shortly: Ck-rectifiable) if M = M0 ∪ M1, where M1 is
a subset of a countable union of n-dimensional submanifolds Sj ⊂ Rm, each Sj
being of class Ck, and Hn(M0) = 0. (Cs,λ-rectifiable sets are defined in [2] in
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an analogous way.) Such sets have Hn-a.e. “approximate tangent paraboloids” of
order k. Graphs of functions u ∈ Wk,p(Rn) are (Hn,n)-rectifiable sets of class
Ck in Rn+1. Alberti [1] has shown that the theory of Ck-rectifiable sets provides
a natural and optimal setting for a description of singularities of convex func-
tions and convex surfaces. Both [2] and [1] use earlier results of Dorronsoro [9],
who obtained subtle results on the existence of higher order Lq-differentials of
functions in BVkloc(Rn) (the space of functions whose distributional derivatives of
order k are measures). Also both papers [2] and [1] contain the following result:
if u ∈ BVkloc(Rn), then it coincides with a Ck function off a set of arbitrarily small
measure. Alberti applied this theorem to convex functions in Rn which by Alexan-
drov’s theorem belong to BV 2

loc. The results about Luzin properties of BVkloc can be
easily put into the framework of our paper. This will be subject of a forthcoming
paper.

The paper is organized as follows. In section “Preliminaries” we collect all the
notation, definitions and basic results needed in the paper. In section “Pointwise
inequalities” we prove pointwise inequalities which provide main estimates relating
the behaviour of Sobolev functions to the behaviour of Cm-smooth functions.
The last two sections are devoted to the proofs of main results, Theorem 1.2 and
Theorem 1.4. In Section 4 we present a detailed proof of Theorem 1.4 and then,
in Section 5, we show how to modify the proof to get Theorem 1.2.

2. PRELIMINARIES

2.1. Notation, definitions etc. The notation throughout the rest of this pa-
per is either standard or self-explanatory. The Lebesgue measure of a set A will
be denoted by |A|. The barred integral

∫
A f dx as well as fA denotes the aver-

age value of a function f over a measurable set A,
∫
A f = fA := |A|−1

∫
A f dx.

Characteristic function of a set A will be denoted by χA. By Br or B(a, r) we
denote the Euclidean ball in Rn of radius r , centered at a. The letterQ stands for
a cube in Rn with edges parallel to coordinate axes. By kQ, k > 0 we denote the
cube concentric with Q, with the diameter k times that of Q. By Cm,λ(Ω), where
m ∈ {0,1,2, . . . } and λ ∈ (0,1), we denote the class of functions u which are m
times continuously differentiable on Ω with |∇mu(x)−∇mu(y)| ≤ C|x −y|λ
for all x, y ∈ Ω and some constant C > 0. Given two expressions A and B, we
write A ≈ B if C1A ≤ B ≤ C2A for some positive constants C1 and C2.

We write

Tkxf(y) =
∑
|α|≤k

Dαf(x)
(y − x)α

α!
, TkS f (y) =

∫
S
Tkxf (y)dx

to denote the Taylor polynomial and the average of the Taylor polynomial over a
measurable set S, respectively.

By ∇mf we denote the vector with the components Dαf , |α| =m.
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C will denote a general constant which can change its value in the same string
of estimates. Writing C(n,m) we emphasize that the constant depends on n and
m only.

If f is a locally integrable function, then we define f̃ at every point by formula
(1.2). Since by the Lebesgue differentiation theorem, [27], f = f̃ a.e. in what
follows, as a rule, we identify f̃ with f and omit the tilde.

We say that x is a Lebesgue point of f if

lim
r→0

∫
B(x,r)

|f(y)− f(x)|dy = 0

(f(x) is defined by (1.2)). It is a well known result of Lebesgue, [27], that for
f ∈ L1

loc the set of points which are not the Lebesgue points of f is of the Lebesgue
measure zero.

For any open Ω ⊂ Rn,m ∈ {1,2,3, . . . } and 1 ≤ p < ∞ we use the following
definition of the Sobolev space:

Wm,p(Ω) = {f ∈ D′(Ω) | Dαf ∈ Lp(Ω), |α| ≤m},
‖f‖Wm,p(Ω) = ∑

|α|≤m

∥∥Dαf∥∥p,
where ‖·‖p denotes the Lp-norm. Analogously we define the corresponding local
space Wm,p

loc . Obviously Wm,p ⊂ Wm,1
loc . The space Wm,p

0 (Ω) is defined as the
closure of C∞0 (Ω) in the norm of Wm,p(Ω).

In the sequel, some variants of the Hardy-Littewood maximal functions are
used:

Mλ
%f(x) = sup

r<%
rλ ·

∫
B(x,r)

|f(y)|dy, Mλf =Mλ∞f ,

M[
%f(x) = sup

r<%

∫
B(x,r)

|f(y)− f(x)|dy, M[f = M[∞f .

If f = (f1, . . . , fN) is a vector-valued function, then

M[
%f(x) :=

N∑
j=1

M[
%fj(x).

If λ = 0 we usually omit the superscript λ. Maximal functions with the superscript
[ will be called flat maximal functions.

2.2. Potentials, capacity and content. Let Gα, α > 0, be the kernel of
(I −∆)−α/2. Its Fourier transform is given by

Ĝα(ξ) = (2π)−n/2(1+ |ξ|2)−α/2.
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It is well known that Gα is positive, integrable and

(2.1) Gα ∗Gβ = Gα+β
for all α, β > 0. If 0 < α < n, then the kernel Gα has the following estimate near
the origin:

(2.2) |x|α−n ≤ C(n,α)Gα(x) for |x| ≤ 1.

For 0 < α <∞ and 1 < p <∞ the space of Bessel potentials is defined by

Lα,p(Rn) = {Gα ∗ g | g ∈ Lp(Rn)}.

It is a Banach space with the norm ‖f‖α,p = ‖g‖p, where f = Gα∗g. It is a well
known result of Calderón and Lizorkin that for k a positive integer

Wk,p(Rn) = Lk,p(Rn)

as sets, and the norms are equivalent, see [27, Chapter 5].
The Bessel capacity is defined for any set E ⊂ Rn as

Bα,p(E) = inf
∥∥f∥∥pp,

the infimum being taken over the set of those nonnegative f ∈ Lp(Rn) for which
Gα ∗ f(x) ≥ 1 for all x ∈ E.

All sets of small capacity have small Lebesgue’s measure. In fact, Bα,p(E) ≥
C|E|(n−αp)/n when αp < n. This follows from the Sobolev imbedding and the
definition of the Bessel capacity. In some sense sets of small capacity are “smaller”
than generic sets of small Lebesgue’s measure as for 1 < p < n/α the estimates
for the capacity are related to the estimates for the Hausdorff measure and di-
mension. Namely, Bα,p(E) = 0 if Hn−αp(E) < ∞, and Bα,p(E) = 0 implies
Hn−αp+ε(E) = 0 for any ε > 0. If αp = n, then a similar result holds with a
“logarithmic Hausdorff measure”. Finally if αp > n, Bα,p(E) ≥ C > 0, whenever
E ≠∅. This means any set of small Bessel capacity Bα,p is empty when αp > n.

For more details on these topics, see Ziemer’s monograph [33, Chapter 2] and
the original paper of Meyers [23].

The concepts of Bessel capacity is strictly related to that of Hausdorff content
H s∞, where s ≥ 0, which is defined by

H s∞(E) = inf
∞∑
i=1

r si ,

the infimum being taken over all countable coverings of E with balls B(xi, ri). It
is almost obvious that H s(E) = 0 if and only if H s∞(E) = 0. On the other hand,
H s∞(E) is finite for all bounded E ⊂ Rn.
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It is well known, [33, Theorem 2.6.13], that

C1rn−αp ≤ Bα,p(B(x, r)) ≤ C2rn−αp

for all x ∈ Rn and r < 1, whenever αp < n. This together with a standard
covering argument yields

(2.3) Bα,p(E) ≤ CHn−αp
∞ (E)

for any set E ⊂ Rn with diamE ≤ 1, provided αp < n. It follows from this
inequality that when k = m + 1 and (1 − λ)p ≤ n, then the estimate (ii) in
Theorem 1.4 is stronger than the estimate from (i).

We close this section with a few basic estimates of the Bessel capacity and the
Hausdorff content that will be used in the proof of the main result. The results
below are variants of known results.

Lemma 2.1. Let f ∈ Lα,p(Rn), n > λ > 0 and p > 1. Then

Bα+λ,p({x | Mλ
1 f(x) > t}) ≤ Ct−p

∥∥f∥∥pα,p,
where C = C(α,p, λ,n).

Remark. The lemma is true for any λ ≥ 0 with a slightly more technical, but
otherwise similar proof.

Proof. Let f = Gα ∗ g, ‖f‖α,p = ‖g‖p and let ωλ
r = rλ|B(0, r )|−1χB(0,r ).

Then for all r < 1 we have

rλ
∫
B(x,r)

|f(y)|dy =ωλ
r ∗ |f |(x) ≤ωλ

r ∗Gα ∗ |g|(x)

= Gα ∗ωλ
r ∗ |g|(x) ≤ Gα ∗Mλ

1 |g|(x),

which implies Mλ
1 f(x) ≤ Gα ∗Mλ

1g(x). Invoking (2.2), we get

rλ
∫
B(x,r)

|g(y)|dy ≤ C(n)
∫
B(x,r)

|g(y)|
|x −y|n−λ dy

≤ C(n,λ)
∫
B(x,r)

Gλ(x −y)|g(y)|dy.

Hence Mλ
1 g(x) ≤ CGλ ∗ g(x). This and (2.1) give in turn

Mλ
1 f(x) ≤ Gα ∗Mλ

1g(x) ≤ CGα ∗Gλ ∗ |g|(x) = CGα+λ ∗ |g|(x).
We conclude as follows.

Bα+λ,p({Mλ
1 f > t}) ≤ Bα+λ,p

({
Gα+λ ∗

(
C|g|
t

)
> 1

})
≤
∥∥∥∥Cgt

∥∥∥∥p
p
= Ct−p∥∥f∥∥pα,p.
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The proof is complete now. ❐

The following lemma is one of the key tools in the proof of our main theorem.

Lemma 2.2. Assume that u ∈ Wk,p(Rn), where p > 1. Let 0 < λ < n. Then
for any ε > 0 there exists an open set V such that

(i) Bk+λ,p(V) < ε,
(ii) as % → 0, Mλ

%u(x)→ 0 uniformly on the set Rn \ V .

Proof. Take ε > 0. Since compactly supported smooth functions are dense
in Wk,p(Rn), we can pick h ∈ C∞0 (Rn) which satisfies the condition

(2.4) ‖u− h‖Wk,p < ε(p+1)/p.

As h is bounded, one has Mλ
%h(x) ≤ ε for all x ∈ Rn, if % = %(ε) is taken to

be sufficiently small (e.g., % = (ε‖h‖−1∞ )1/λ). By the subadditivity of the maximal
function, we obtain Mλ

%u ≤ Mλ
%h + Mλ

%(u − h) ≤ ε +Mλ
1 (u − h). Hence, by

Lemma 2.1,, (2.4) and the fact that Wk,p = Lk,p, we are led to

Bk+λ,p({x | Mλ
%u(x) > 2ε}) ≤ Bk+λ,p({x | Mλ

1 (u− h)(x) > ε})(2.5)

≤ Cε−p∥∥u− h∥∥p
Wk,p

< Cε.

Set εi = ε/(C · 2i) and %i = %(εi), where i = 1, 2, . . . Applying inequality (2.5),
we check that the set V := ⋃∞

i=1{x | Mλ
%iu(x) > 2εi} has small Bessel capacity.

Moreover, V is open, and, of course, on its complementMλ
%u converges uniformly

to zero as % goes to 0. ❐

Let us state a simple but useful corollary.

Corollary 2.3. Let (k+ λ)p > n. Then, for any u ∈ Wk,p(Rn), the maximal
functions Mλ

%u tend to zero uniformly on Rn as % goes to 0.

If u ∈ Wk,p and λ ∈ (0,1), then it follows from Lemma 2.1 that form+1 ≤
k

(2.6) Bk−m−λ,p({M1−λ
1 |∇m+1u| > t}) ≤ Ct−p∥∥u∥∥p

Wk,p
.

This inequality will be employed in the proof of the main result.
Similar estimates can be proved for the Hausdorff content in place of the

Bessel capacity. The proof of the following lemma mimics the standard proof of
weak type estimates for the Hardy-Littlewood maximal function. We leave details
to the reader.
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Lemma 2.4. Let f ∈ Lp(Rn) with p ∈ [1,∞). Assume that λ > 0 and
λp ≤ n. Then,

Hn−λp
∞ ({x ∈ Rn | Mλ

1 f(x) > t}) ≤ C(n,λ,p)t−p
∥∥f∥∥pLp(Rn).

A counterpart of Lemma 2.2 also holds true.

Lemma 2.5. Let f ∈ Lp(Rn) with p ∈ [1,∞). Assume that λ > 0 and
λp ≤ n. Then for any ε > 0 there exists an open set V such that

(i) Hn−λp
∞ (V) < ε,

(ii) as % → 0, Mλ
%f(x)→ 0 uniformly on the set Rn \ V .

We omit the proof since it is almost identical to the proof of Lemma 2.2.
Let u ∈ Wk,p(Rn), where k = m + 1 and let λ ∈ (0,1) be such that (k −

m− λ)p ≤ n. Then it immediately follows from Lemma 2.4 that

Hn−(k−m−λ)p
∞ ({x ∈ Rn | M1−λ

1 |∇m+1u|(x) > t})(2.7)

≤ Ct−p∥∥∇ku∥∥pLp(Rn).
By (2.3), this inequality is stronger than (2.6). It would be nice to have (2.7) also
for k > m+ 1, but we do not know if it holds true in that case. Such an estimate
would improve the statement of Theorem 1.4: one could replace the Bessel capac-
ity Bk−m−λ,p in (i) in Theorem 1.4 by the Hausdorff content Hn−(k−m−λ)p

∞ (as
in (ii) in Theorem 1.4) for all values of m.

3. POINTWISE INEQUALITIES

To render our exposition self-contained, we repeat here some of the computations
and proofs from [6, Section 2].

To begin with, recall a well known inequality (see e.g. [13, Lemma 7.16]):
there exists a constant C = C(n) such that, for any cube Q ⊂ Rn, any measurable
set S ⊂ Q and for any function f ∈ C1(Q), one has

(3.1) |f(x)− fS| ≤ C |Q||S|
∫
Q

|∇f(y)|
|x −y|n−1 dy for all x ∈ Q.

Extending a trick, used e.g. by Bojarski in [5] or Reshetnyak in [26], one can
obtain a stronger inequality, involving the derivatives of any order m, which is
more sophisticated than (3.1) even in the simple case m = 1.

Lemma 3.1. If f ∈ Cm(Q) and a = (aα)|α|=m, with all aα being real num-
bers, then for any measurable set S ⊂ Q

|f(x)− Tm−1
S f (x)| ≤ C |Q||S|

∫
Q

|∇mf(y)|
|x −y|n−m dy,(3.2)

and
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|f(x)− TmS f(x)| ≤ C
|Q|
|S|

∫
Q

|∇mf(y)− a|
|x −y|n−m dy.(3.3)

Both constants C depend on n and m only.

Proof. To prove inequality (3.3), compute first order partial derivatives (with
respect to y) of

ϕx(y) =
∑

|α|≤m−1

Dαf(y)
(x −y)α

α!
+

∑
|α|=m

aα
(x −y)α

α!
,

check that |∇ϕx(y)| ≤ C(m,n)|∇mf(y)− a| |x −y|m−1, and write

f(x)− TmS f(x) =
(
ϕx(x)−

∫
S
ϕx(y)dy

)
−
∫
S

∑
|α|=m

(Dαf(y)− aα)(x −y)
α

α!
dy

to obtain (3.3) as a direct consequence of (3.1); inequality (3.2) follows easily, by
substituting a = 0. ❐

Lemma 3.1 has an extension, which is valid for all Sobolev functions f ∈
Wm,1

loc . For such f , we choose Borel representatives of the function defined at every
point by the formula

(3.4) f(x) := lim sup
r→0

∫
B(x,r)

f (y)dy.

We will also need the following elementary lemma (see e.g. Lemma 2 in [6])

Lemma 3.2. Let α > 0; then there exists a constant C = C(α,n), such that for
all x, z ∈ Rn and all r > 0

∫
B(x,r)

|y − z|α−n dy ≤
{
C|x − z|α−n if α ≤ n,
C(r + |x − z|)α−n if α > n.

Proof. We assume that z = 0 and consider two cases: r < |x|/2 and r ≥
|x|/2. In the first case, |y| ≈ |x| for all y ∈ B(x, r). In the second case,
B(x, r) ⊂ B(0,3r); one increases the domain of integration and computes the
integral explicitly. ❐

Theorem 3.3. There exists a constant Cm,n such that if f ∈ Wm,1(Q) is defined
at every point by formula (3.4) and a = (aα)|α|=m is an arbitrary family of real
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numbers, then for every measurable set S ⊂ Q the following inequalities hold at each
point x ∈ Q:

|f(x)− Tm−1
S f (x)| ≤ Cm,n |Q||S|

∫
Q

|∇mf(y)|
|x −y|n−m dy,(3.5)

|f(x)− TmS f(x)| ≤ Cm,n
|Q|
|S|

∫
Q

|∇mf(y)− a|
|x −y|n−m dy.(3.6)

Remark. In most of the cases we will apply Theorem 3.3 for S = Q.

Proof. As in the proof of Lemma 3.1, the first inequality follows from the
second one by substituting a = 0; therefore, we only sketch the proof of the
second inequality. A standard approximation argument shows that for every f ∈
Wm,1(Q) inequality (3.6) holds a.e. Next, we average both sides over the ball
B(x, r), apply Fubini theorem to the right-hand side, and estimate the integrand
using Lemma 3.2. Upon passing to the limit r → 0, the theorem follows. ❐

In the sequel we need the following version of Hedberg’s lemma [18].

Lemma 3.4. If µ1 ≥ µ2 > 0, then there exists a constant C = C(n,µ1, µ2) such
that, for all integrable u and all x ∈ Q,∫

Q

|u(y)|
|x −y|n−µ1

dy ≤ C(diamQ)µ2Mµ1−µ2
diamQu(x).

Proof. Break the integral which stands in the left hand side into the sum
of the integrals over “rings” Q ∩ (B(x,diamQ/2k) \ B(x,diamQ/2k+1)), where
k = 0, 1, 2, . . . In each “ring”, we have |x − y|µ ≈ (diamQ/2k)µ for any ex-
ponent µ. Now, estimate the integral over the “ring” by the integral over the
ball B(x,diamQ/2k), note that this integral does not exceed the appropriate
maximal function, and compute the sum of a geometric series to conclude the
argument. ❐

In the remaining part of the paper we assume that the values of all functions
f ∈ Wm,p

loc and all their derivatives of order less than or equal to m are defined at
every point x by formula (3.4) i.e.,

(3.7) Dαf(x) := lim sup
r→0

∫
B(x,r)

Dαf(y)dy, 0 ≤ |α| ≤m.

We now turn to inequalities satisfied by the difference of f(y) and the non-
averaged Taylor polynomial, Tsxf (y), for s ∈ {m− 1,m}.

Take f ∈ Wm,1
loc (Rn). Fix x, y ∈ Rn and a cube Q containing both these

points. By the triangle inequality,

(3.8) |f(y)−Tm−1
x f(y)| ≤ |f(y)−Tm−1

Q f(y)|+|Tm−1
Q f(y)−Tm−1

x f(y)|.
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The first term on the right hand side can be estimated by a direct application of
Theorem 3.3 with S = Q. To estimate the second one, note an obvious fact:
Taylor’s expansion up to order r of any polynomial P of degree r is identically
equal to P . Hence, we have the identity

Tm−1
Q f(y) ≡

∑
|α|≤m−1

DαTm−1
Q f(x)

(y − x)α
α!

.

Since DαTm−1
Q f(x) = Tm−1−|α|

Q Dαf(x), we can write

|Tm−1
Q f(y)− Tm−1

x f(y)|(3.9)

=
∣∣∣∣ ∑
|α|≤m−1

(Dαf(x)− Tm−1−|α|
Q Dαf(x))

(y − x)α
α!

∣∣∣∣
≤

∑
|α|≤m−1

(diamQ)|α||Dαf(x)− Tm−1−|α|
Q Dαf(x)|.

Now, Theorem 3.3 can be employed to estimate all terms on the right hand side.
To shorten the notation, let, for γ > 0,

IγQg(x) : =
∫
Q

g(y)
|x −y|n−γ dy

denote the local Riesz potential of a function g. By inequality (3.5) of Theorem
3.3 with S = Q, we have

|Dαf(x)− Tm−1−|α|
Q Dαf(x)| ≤ CIm−|α|Q |∇mf |(x),

and, since IγQg(x) ≤ (diamQ)γ−1I1
Qg(x) for any γ ≥ 1, any nonnegative func-

tion g, and all x ∈ Q, we finally arrive at the following result.

Theorem 3.5. Assume that f ∈ Wm,1
loc (Rn) has the derivatives Dαf defined

pointwise by formula (3.7). Then there exists a constant C = C(n,m) such that for
any cube Q, and all x, y ∈ Q, we have

(3.10) |f(y)− Tm−1
x f(y)| ≤ C(diamQ)m−1(I1

Q|∇mf |(x)+ I1
Q|∇mf |(y)).

Remark. If for some points x, y ∈ Q we have an indefinite expression like
e.g. |∞ − ∞ + · · · | on the left hand side of (3.10), then we assume that the left
hand side equals infinity for those x and y . Hence, the left hand side of inequality
(3.10) is always well defined, and the inequality holds true for all x, y ∈ Q. In
the indefinite case the inequality follows from the fact that if |Dαf(z)| = ∞ for
some |α| ≤m− 1 and z ∈ Q, then I1

Q|∇mf |(z) = ∞.
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Theorem 3.6. Let λ ∈ (0,1]. For f ∈ Wm,1
loc (Rn) with all derivatives defined

by (3.7), and for any x 6= y ∈ Rn we have

|f(y)− Tm−1
x f(y)|

|x −y|m−1(3.11)

≤ C|x −y|λ(M1−λ
|x−y||∇mf |(x)+M1−λ

|x−y||∇mf |(y)
)
.

Remark. A comment similar to that following Theorem 3.5 applies here. We
assume x ≠ y to avoid 0 in the denominator.

Proof. Apply Theorem 3.5 for an arbitrary cube Q which contains both
points x and y . Next, use Lemma 3.4 with µ1 := 1 and µ2 := λ to estimate
Riesz potentials by maximal functions. Finally, take infimum over diamQ and
observe that inf diamQ = |x −y| (rotate the cube if necessary!). ❐

Writing down the inequality of Theorem 3.6 with f replaced by Dαf , we
immediately obtain the following.

Corollary 3.7. Let λ ∈ (0,1]. For f ∈ Wm,1
loc (Rn) with all derivatives defined

by (3.7), and for any x 6= y ∈ Rn we have

|Dαf(y)− Tm−1−|α|
x Dαf(y)|

|x −y|m−1−|α|(3.12)

≤ C|x −y|λ(M1−λ
|x−y||∇mf |(x)+M1−λ

|x−y||∇mf |(y)
)

for every α with |α| ≤m− 1.

Remark. Ineqality (3.12) in the particular case of first order derivatives has
been employed in [15] in the study of boundary behaviour of conformal and
quasiconformal mappings.

Note that in order to obtain the last corollary and the previous two theorems,
we have used only the first inequality of Theorem 3.3. The second one can be used
to produce a pointwise estimate which resembles Theorem 3.6, with flat maximal
functions M[ appearing on the right hand side of the inequality. To this end,
one estimates |f(y)− Tmx f(y)| as in the proof of Theorem 3.5, with one slight
change: all the terms containing m-th order derivatives of f have to be estimated
directly, without resorting to Theorem 3.3. This computation yields

|f(y)− Tmx f(y)|(3.13)

≤ C(diamQ)m−1(I1
Q|∇mf − a|(x)+ I1

Q|∇mf − b|(y))
+ C|x −y|m

∫
Q
|∇mf(z)−∇mf(x)|dz,
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where a = (aα)|α|=m and b = (bα)|α|=m are arbitrary constant vectors, and Q
is an arbitrary cube which contains x and y . Next, applying Lemma 3.4 with
µ1 = µ2 = 1 and putting a = ∇mf(x), b = ∇mf(y), one obtains the following
theorem and its obvious corollary.

Theorem 3.8. For f ∈ Wm,1
loc (Rn) with all derivatives defined by (3.7), and for

any x 6= y ∈ Rn we have

(3.14)
|f(y)− Tmx f(y)|

|x −y|m ≤ C(M[
|x−y|(∇mf)(x)+M[

|x−y|(∇mf)(y)
)
.

Corollary 3.9. For f ∈ Wm,1
loc (Rn) with all derivatives defined by (3.7), and

for any x 6= y ∈ Rn we have

|Dαf(y)− Tm−|α|x Dαf(y)|
|x −y|m−|α|(3.15)

≤ C(M[
|x−y|(∇mf)(x)+M[

|x−y|(∇mf)(y)
)

for every α with |α| ≤m.

Remark. A version of this inequality was proved in the monograph [4, Corol-
lary 5.8] by Bennett and Sharpley and applied in a simplified proof (basically due
to Calderón and Milman [8]) of DeVore and Scherer’s theorem, which gives an
explicit formula for the so called K-functional for the couple of Sobolev spaces
(Wk,1,Wk,∞).

The next two corollaries are well known. The first one is a direct consequence
of Theorem 3.3 and the Hardy-Littlewood-Sobolev theorem for Riesz potentials.

Corollary 3.10. If f ∈ Wm,p
loc (Rn) and p > 1, mp < n, then the inequality

(∫
Q
|f(x)− Tm−1

Q f(x)|p∗ dx
)1/p∗

≤ C(diamQ)m
(∫

Q
|∇mf(y)|p dy

)1/p

holds for each cube Q ⊂ Rn with the constant C depending on m, n, p only.

A weaker version of this corollary, a Poincaré-type inequality, is valid for all
p ≥ 1 in any dimension n.

Corollary 3.11. If f ∈ Wm,p
loc (Rn), then for each cube Q ⊂ Rn we have

(∫
Q
|f(x)− Tm−1

Q f(x)|p dx
)1/p

≤ C(diamQ)m
(∫

Q
|∇mf(y)|p dy

)1/p
,

with the constant C depending only on m, n, and p.
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4. PROOF OF THEOREM 1.4

In this section, we present a detailed proof of Theorem 1.4. We begin with a
variant of Theorem 1.4 which holds for functions with compact support. The
general case can be then easily obtained by a standard partition of unity argument,
as in the proof of Meyers-Serrin theorem.

Theorem 4.1. Assume that u ∈ Wk,p(Rn), where 1 < p < ∞, has com-
pact support contained in some cube Q, having the edge of unit length. Fix m ∈
{0,1, . . . , k− 1} and λ ∈ (0,1). Then, for any ε > 0 there exists a closed set F ⊂ Rn
and a function w ∈ Cm,λ(Rn) ∩Wm+1,p(Rn) with compact support contained in
3Q such that

(i) Bk−m−λ,p(Rn \ F) < ε;
(ii) In the particular case when k = m + 1 and (1 − λ)p ≤ n we also have

Hn−(1−λ)p
∞ (Rn \ F) < ε;

(iii) Dαu(x) = Dαw(x) for all x ∈ F and all α with |α| ≤m;
(iv) ‖u−w‖Wm+1,p(Rn) ≤ C‖u‖Wm+1,p(Rn\F);
(v) For any α with |α| =m, the modulus of continuity of Dαw goes to zero faster

than tλ, i.e.,

lim
%→0

(
sup
x 6=y

|x−y|≤%

|Dαw(x)−Dαw(y)|
|x −y|λ

)
= 0.

Remarks.
(1) As usual we assume that u and all its distributional derivatives up to order k

are defined everywhere by the formula

Dαu(x) = lim sup
r→0

∫
B(x,r)

Dαu(y)dy, 0 ≤ |α| ≤ k.

(2) The complement of F has small Lebesgue measure (since it has small capacity).
Therefore, the fourth condition of Theorem 4.1 implies that in fact the norm
‖u−w‖Wm+1,p(Rn) can be made arbitrarily small.

Proof. For a fixed ε > 0, we select a closed set F satisfying the two following
conditions:

M1−λ
1 |∇m+1u|(x) ≤ t = t(ε) for all x ∈ F,(4.1)

M1−λ
% |∇m+1u| %=0

-→ 0 uniformly on F.(4.2)

We choose the number t = t(ε) in (4.1) sufficiently large to have Bk−m−λ,p(Rn \
F) < ε. By the results of Section 2.2, this is always possible. With no loss of
generality one can assume that (ii) is also satisfied.
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Moreover, when (k−m−λ)p > n, Corollary 2.3 implies that we can simply
take F = Rn in (4.1) and (4.2). In the latter case M1−λ

1 |∇m+1u| is a bounded
function on Rn. It follows then from (4.1), (4.2), and Corollary 3.7 that the
function u coincides with a Cm,λ function which, in addition, satisfies (v) and
there is nothing more to prove.

Hence, from now on we suppose that (k −m − λ)p ≤ n and that Rn \ F is
nonempty.

Since u has compact support, the setRn\F is bounded. In fact, it is contained
in 3Q, since M1−λ

1 |∇m+1u|(x) ≡ 0 for x 6∈ 3Q.
Now, take the Whitney cube decomposition of Rn \ F , Rn \ F = ⋃

i∈I Qi,
where all the cubes Qi are dyadic, and select an associated smooth partition of
unity {ϕi}i∈I . Recall the standard conditions satisfied by Qi and ϕi:

(i) dist(2Qi, F) ≤ diam 2Qi ≤ 4 dist(2Qi, F);
(ii) Every point of Rn \ F is covered by at most C(n) = 4n different cubes

2Qi;
(iii) For each i ∈ I, suppϕi ⊂ 2Qi ⊂ Rn \ F ;
(iv)

∑
i∈I ϕi(x) ≡ 1 on Rn\F , and, for every i ∈ I, and every α, |Dαϕi| ≤

Cα(diamQi)−|α|.
To leave u unchanged on F and make it sufficiently smooth on the whole space
(without changing its Sobolev norm too much), we introduce the function w
defined by

(4.3) w(x) =

u(x) for x ∈ F,∑
i∈I
ϕi(x)Tm2Qiu(x) for x ∈ Rn \ F.

Here, as before,

Tm2Qiu(x) =
∫

2Qi

( ∑
|α|≤m

Dαu(z)
(x − z)α
α!

)
dz.

Remark. To construct the classical Whitney extension (which, up to now, has
been used in all proofs of Michael and Ziemer’s theorem), one takes in the above
formula Tmai u(x) instead of Tm2Qiu(x), with ai ∈ F minimizing the distance from
F to suppϕi. In contrast with Whitney’s extension theorem, the function w in
(4.3) is not an extension of u from F , but it is defined by taking a suitable smooth
approximation of u|Rn\F .

The rest of the proof will be divided into three independent parts. Each of
them is contained in a separate subsection. First, we prove that the Sobolev norm
of w can be controlled on Rn \ F by the Sobolev norm of u. Next, we prove that
the extension w belongs in fact to Cm,λ and that its modulus of continuity de-
creases at 0 faster than tλ. This is the most tedious (and longest) part of the proof.
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Finally, in the last part, we prove that the extension belongs to the appropriate
Sobolev space on the whole of Rn.

4.1. Sobolev norm estimates. We claim that

(4.4) ‖w‖Wm+1,p(Rn\F) ≤ C‖u‖Wm+1,p(Rn\F).

Sincew ∈ C∞(Rn\F) it suffices to compute derivatives ofw of order |α| ≤m+1
and estimate their Lp norms. To check this, fix α with |α| ≤ m + 1, and apply
Leibniz formula to obtain

Dα
(∑
i∈I
ϕi(x)Tm2Qiu(x)

)
=

∑
β+γ=α
|γ|≤m

(
α
β

)
Sβ,γ(x),

where

(4.5) Sβ,γ(x) =
∑
i∈I
Dβϕi(x)T

m−|γ|
2Qi

Dγu(x).

To estimate the Lp norm of Sβ,γ , we shall consider separately the cases |β| = 0
and |β| 6= 0.

CASE 1. If |β| = 0, then necessarily γ = α and |α| ≤ m (otherwise Sβ,γ is
identically equal to zero). Since each point in Rn \ F belongs to at most C(n)
cubes 2Qi, we have∫
Rn\F

|S0,α(x)|p dx ≤ C
∑
i∈I

∫
2Qi

|Tm−|α|2Qi
Dαu(x)|p dx

≤ C
∑
i∈I

∫
2Qi

m−|α|∑
`=0

|∇`+|α|u(z)|p
(∫

2Qi
|x − z|`p dx

)
dz

≤ C
∑
i∈I

m−|α|∑
`=0

(diamQi)`p
∫

2Qi
|∇`+|α|u(z)|p dz

≤ C‖u‖Wm+1,p(Rn\F).

In the last inequality, we have used the fact that the diameters of Qi are uni-
formly bounded—this follows from the assumption suppu ⊂ Q, which forces the
boundedness of Rn \ F .

CASE 2. For β of nonzero length, we have
∑
i∈I Dβϕi(x) ≡ 0 on Rn \ F , and

one can write

−Sβ,γ(x) =
∑
i∈I
Dβϕi(x)(Dγu(x)− Tm−|γ|2Qi

Dγu(x)).
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Now, by the property (iv) of Whitney decomposition and its associated parti-
tion of unity, for every x ∈ Rn \ F we have

|Sβ,γ(x)| ≤
∑
i∈I
(diamQi)−|β||Dγu(x)− Tm−|γ|2Qi

Dγu(x)|χ2Qi(x).

The sum on the right hand side contains at most 4n nonzero terms (recall that the
cubes 2Qi do not overlap “too much”). Therefore,

|Sβ,γ(x)|p ≤ C
∑
i∈I
(diamQi)−|β|p|Dγu(x)− Tm−|γ|2Qi

Dγu(x)|pχ2Qi(x).

Hence, by Poincaré inequality (see Corollary 3.11 in Section 3), keeping in mind
that β+ γ = α, we obtain∫

Rn\F
|Sβ,γ(x)|p dx

≤ C
∑
i∈I
(diamQi)−|β|p

∫
2Qi

|Dγu(x)− Tm−|γ|2Qi
Dγu(x)|p dx

≤ C
∑
i∈I
(diamQi)−|β|p+(m−|γ|+1)p

∫
2Qi

|∇m−|γ|+1Dγu(x)|p dx

≤ C
∑
i∈I
(diamQi)(m+1−|α|)p

∫
2Qi

|∇m+1u(x)|p dx

≤ C
∫
Rn\F

|∇m+1u(x)|p dx.

As before, the last inequality uses the boundedness of the diameters of Qi (note
that the exponent (m+ 1− |α|)p is nonnegative).

This completes the proof of inequality (4.4), which in turn, once we know
that w ∈ Wm+1,p(Rn), implies the condition (iv) of Theorem 4.1.

4.2. Smoothness of the extension. We claim that

(4.6) w ∈ Cm,λ(Rn)
and moreover, for any β with |β| =m,

(4.7) lim
%→0

(
sup
x 6=y

|x−y|≤%

|Dαw(x)−Dαw(y)|
|x −y|λ

)
= 0.

Set, for |α| ≤m,

(4.8) w̃α(x) =
{
Dαu(x) for x ∈ F,
Dαw(x) for x ∈ Rn \ F.
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As before, let Q denote a cube with the edge of unit length such that suppu ⊂ Q
and let Dαu(x) be defined at every point of F by formula (3.7). The following
lemma is the key estimate of this part of the proof.

Lemma 4.2. There exists a constant C such that for any α with |α| ≤ m, any
x ∈ Rn, and any point a ∈ F we have

(4.9) |w̃α(x)−DαTma u(x)| ≤ Cω(|x − a|) · |x − a|m−|α|,

where the function ω : [0,∞) → [0,∞) is concave, increasing, ω(0) = 0 and
moreover,

lim
t→0

ω(t)
tλ

= 0.

To prove this lemma, one is forced to rewrite important parts of the proof
of Whitney’s extension theorem. Before we shall start the detailed and somewhat
lengthy computations, let us explain briefly the rough idea. We express the differ-
ence w̃α(x) −DαTma u(x) using Leibniz formula, as in the previous subsection,
and estimate separately various terms of the resulting sum. One of the important
steps is to estimate the difference between Dγu(b) and Tr2QiD

γu(b), where b is
a point of F “not too far from 2Qi”—we estimate this difference by a Riesz po-
tential over a cube centered at b, with edge comparable with diam(2Qi). Such a
potential can be controlled by the value of an appropriate maximal function at b,
which in turn does not exceed a certain constant (by the very definition of the set
F).

Those readers who are not interested in all the details might skip Subsections
4.2.1 and 4.2.2 now, and jump directly to the next lemma.

4.2.1. Whitney jets and their properties. For the remaining readers and for the sake
of completeness, we shall recall now the notion of a Whitney jet and other termi-
nology which is usually employed to formulate and prove Whitney’s extension
theorem and which will be used in the proof of Lemma 4.2. To a large extent, our
exposition follows [20, Chapter 1].

Let K be a compact set in Rn. By a jet of orderm on K we mean here a family
f = (fα)|α|≤m of continuous functions on K. The space of all jets is denoted by
Jm(K). We write f(x) = f 0(x), and the “Taylor polynomial” of f is defined by
the familiar formula

Tma f(x) =
∑

|α|≤m
fα(a)

(x − a)α
α!

.

For a fixed a ∈ K and f ∈ Jm(K), Tma f is a polynomial of variable x ∈ Rn.
If |β| ≤m, then Dβ : Jm(K) → Jm−|β|(K) is a linear map defined by

Dβ : (fα)|α|≤m 7 -→ (fα+β)|α|≤m−|β|.
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Any function g ∈ Cm(Rn) gives rise to the jet Jm(g) = (Dαg|K)|α|≤m. Here,
Dα denotes the standard partial derivative. In all the following computations of
this subsection, we shall identify Tma f with the jet Jm(Tma f). The formal Taylor
remainder of f is defined by

Rma f := f − Jm(Tma f) ∈ Jm(K).

Finally, by a modulus of continuity we mean any concave, increasing and continu-
ous functionω : [0,∞)→ [0,∞) withω(0) = 0. A typical example isω(s) = sλ
for some fixed λ ∈ (0,1]. The following theorem gives three equivalent versions
of the inequalities which are satisfied by jets obtained from smooth function by
restricting them to a compact set.

Proposition 4.3. Let f ∈ Jm(K). The following three conditions are equivalent:

(i) (Rmx f)α(y) = o(|x−y|m−|α|) for x, y ∈ K and |α| ≤m, as |x−y| → 0.
(ii) There exists a modulus of continuity ω such that

|(Rmx f)α(y)| ≤ω(|x −y|) · |x −y|m−|α| for x, y ∈ K and |α| ≤m.

(iii) There exists a modulus of continuity ω1 such that

|Tmx f(z)− Tmy f(z)| ≤ω1(|x −y|) ·
(|x − z|m + |y − z|m)

for x, y ∈ K, z ∈ Rn.
Moreover, if (ii) holds, then we can choose ω1 = Cω, and if (iii) holds, then we can
choose ω = Cω1 (in both cases C depends only on m and n).

Proof. See, e.g., [20, Chapter 1]. ❐

The space Em(K) of Whitney functions of class Cm, or Whitney jets of order m,
consists of those jets f ∈ Jm(K) for which one of the equivalent conditions of the
above proposition is satisfied. It is a Banach space with the norm

∥∥f∥∥Km = sup
x∈K|α|≤m

|fα(x)| + sup
x,y∈K
x 6=y
|α|≤m

|(Rmx f)α(y)|
|x −y|m−|α| .

This space of jets is closely connected to the famous Whitney extension theorem
(see [30], [20]). Although we will not use this theorem in the paper we will
formulate it to show how our constructions are related to that result. Whitney’s
theorem reads as follows.

Theorem 4.4. Given a jet f ∈ Jm(K), where K ⊂ Rn is compact. Then there
exists a function g ∈ Cm(Rn) such that Jm(g) = f if and only if f ∈ Em(K).
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The necessity of being a Whitney jet is an obvious consequence of Taylor’s
formula, but the sufficiency is difficult.

Remark. In Section 4, we have seen that a Sobolev function u ∈ Wk,p(Rn)
gives rise to the jet (Dαu)|α|≤m on an appropriate set F , which roughly speaking
consists of those points where the fractional maximal function of |∇mu| was not
too large. This F was closed but not compact; however, all the components of the
jet given by u were identically zero outside a fixed cube. It follows from Corollary
3.7 and (4.2) that (Dαu)|α|≤m is a Whitney jet of order m and hence it follows
from Whitney’s theorem that u|F is a restriction of a Cm(Rn) function to F .
However, we shall not use this observation in our proof.

4.2.2. Hölder estimates, part 1. We are now ready to give the proof of Lemma
4.2.

Proof of Lemma 4.2. First we consider an easy case when x ∈ F and a ∈ F .
Applying Corollary 3.7 we have

|w̃α(x)−DαTma u(x)|(4.10)

= |Dαu(x)− Tm−|α|a Dαu(x)|
≤ C|x − a|m−|α|+λ(M1−λ

|x−a||∇m+1u|(x) + M1−λ
|x−a||∇m+1u|(a)).

Now, set

(4.11) η(t) : = 2tλ · sup
z∈F
%≤t

M1−λ
% |∇m+1u|(z).

By the definition of F , we have η(t) ≤ Ctλ and η(t)/tλ → 0 as t → 0. Moreover,
η is bounded, continuous, increasing and η(0) = 0. It is an easy exercise to show
that there is a continuous, increasing and concave function ω : [0,∞) → [0,∞),
such that η(t) ≤ω(t) ≤ Ctλ and ω(t)/tλ → 0 as t → 0 (i.e., ω is a modulus of
continuity). Hence inequality (4.10) leads to

|w̃α(x)−DαTma u(x)| ≤ Cω(|x − a|)|x − a|m−|α|.
Thus in what follows we may assume that x ∈ Rn \ F . Since

Tma u(x) =
∑
i∈I
ϕi(x)Tma u(x),

for any x ∈ Rn \ F we have

w̃α(x)−DαTma u(x) = Dα
(∑
i∈I
ϕi(x)(Tm2Qiu(x)− Tma u(x))

)

=
∑

β+γ=α

(
α
β

)
Sβ,γ(x),
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where

Sβ,γ(x) =
∑
i∈I
Dβϕi(x)(T

m−|γ|
2Qi

Dγu(x)− Tm−|γ|a Dγu(x)).

If |β| > 0, then
∑
i∈I Dβϕi(x) ≡ 0 and hence

Sβ,γ(x) =
∑
i∈I
Dβϕi(x)(T

m−|γ|
2Qi

Dγu(x)− Tm−|γ|b Dγu(x))

for any point b. Let K = 5Q ∩ F , where Q is the unit cube containing suppu.
Choose b ∈ K such that |x − b| = dist(x,K) (= dist(x, F)). With

bβ =
{
a if |β| = 0,
b if |β| > 0,

we may write

Sβ,γ(x) =
∑
i∈I
Dβϕi(x)(T

m−|γ|
2Qi

Dγu(x)− Tm−|γ|bβ
Dγu(x)).

Let x ∈ Rn \ F = 5Q \ F and a ∈ K. For each i ∈ I, choose a point bi ∈ K such
that

dist(bi,2Qi) = dist(K,2Qi).

Observe that dist(K,2Qi) = dist(F,2Qi). By the triangle inequality,

|Tm−|γ|2Qi
Dγu(x)− Tm−|γ|bβ

Dγu(x)|
≤ |Tm−|γ|2Qi

Dγu(x)− Tm−|γ|bi
Dγu(x)| + |Tm−|γ|bi

Dγu(x)− Tm−|γ|bβ
Dγu(x)|

≡ Hi(x)+ Ji(x).
We will estimate Hi(x) and Ji(x) for x ∈ 2Qi. We first estimate the second
term. Let a, y ∈ K. Take an arbitrary multiindex µ with |µ| ≤ m − |γ|. We
apply Corollary 3.7 to estimate the (formal) Taylor remainder of Dγu; this gives

|(Rm−|γ|a Dγu)µ(y)|
≡ |Dµ(Dγu(y)− Tm−|γ|a Dγu(y))|
≤ C|a−y|m−(|γ|+|µ|)+λ(M1−λ

|a−y||∇m+1u|(a)+M1−λ
|a−y||∇m+1u|(y))

≤ Cω(|a−y|)|a−y|m−(|γ|+|µ|).
This is the condition (ii) in Lemma 4.3. Hence by Lemma 4.3, condition (iii)
must also be satisfied. Therefore

Ji(x) ≤ Cω(|bβ − bi|)(|x − bβ|m−|γ| + |x − bi|m−|γ|)
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for any x ∈ Rn \ F . Let x ∈ 2Qi. We estimate Ji(x) when |β| > 0 and
|β| = 0 separately. Put di = diamQi. Assume first that |β| > 0. Since |b − bi| ≤
|x−b|+|x−bi| and by the properties of Whitney cubesQi we have |x−b| ≈ di,
|x − bi| ≈ di, we conclude that |b − bi| ≤ C(n)di. Hence, invoking concavity
of ω and equality bβ = b, we obtain

(4.12) Ji(x) ≤ Cω(di)dm−|γ|i for x ∈ 2Qi.

When β = 0 we have γ = α and hence

Ji(x) ≤ Cω(|a− bi|)(|x − a|m−|γ| + |x − bi|m−|γ|)

For x ∈ 2Qi, the choice of bi implies that

|x − bi| ≈ di ≈ dist(x, F) ≤ |x − a|
and

|a− bi| ≤ |a− x| + |x − bi| ≤ C|x − a|.

Hence employing concavity of ω we conclude

(4.13) Ji(x) ≤ Cω(|x − a|)|x − a|m−|α|

for x ∈ 2Qi. One can check that it is possible to take here a constant C which
depends on n and m only.

Note that since di ≤ C|x−a| and m−|α| ≤m−|γ|, estimate (4.13) holds
also in the case |β| > 0 by (4.12) and concavity of ω, but then it is weaker than
(4.12).

To obtain a similar estimate for Hi(x), observe that any polynomial f of de-
gree s is identical to its Taylor polynomial Tsaf for any choice of a. An application
of this fact to the polynomial

Tm−|γ|2Qi
Dγu(x)− Tm−|γ|bi

Dγu(x)

yields the estimate

Hi(x) ≤
∑

|η|≤m−|γ|
|Tm−(|γ|+|η|)2Qi

Dγ+ηu(bi)−Dγ+ηu(bi)| |x − bi|
|η|

η!
.

Denote by Q̃i the smallest cube centered at bi, such that 2Qi ⊂ Q̃i. It easily
follows that diam Q̃i ≈ Cdi. Now inequality (3.5), Hedberg’s lemma (Lemma
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3.4), and concavity of ω yield

|Dγ+ηu(bi)− Tm−(|γ|+|η|)2Qi
Dγ+ηu(bi)|

≤ C |Q̃i|
|2Qi|

∫
Q̃i

|∇m+1u(y)|
|bi −y|n−(m−(|γ|+|η|)+1) dy

≤ C(diam Q̃i)m−(|γ|+|η|)+λM1−λ
diam Q̃i

|∇m+1u|(bi)
≤ C(diam Q̃i)m−(|γ|+|η|)ω(diam Q̃i) ≤ C(n,m)dm−(|γ|+|η|)i ω(di).

Collecting all the above estimates we arrive at the inequality

Hi(x) ≤ C(n,m) ·
∑

|η|≤m−|γ|
ω(di) · dm−(|γ|+|η|)i · d|η|i(4.14)

= C(n,m)ω(di)dm−|γ|i ,

valid for x ∈ 2Qi. Since in this case we have di ≈ |x−bi| ≤ C|x−a|, and every
point x in Rn \ F belongs to at most C(n) different cubes 2Qi, we finally obtain

|Sβ,γ(x)| ≤
∑
i∈I
|Dβϕi(x)|(Hi(x)+ Ji(x))

≤ C
∑
i∈I
d−|β|i (ω(di)d

m−|γ|
i + Ji(x))χ2Qi

(x)

≤ Cω(|x − a|)|x − a|m−|α|,

and therefore |w̃α(x)−DαTma u(x)| ≤ Cω(|x−a|)|x−a|m−|α| for x ∈ Rn \F
and a ∈ K.

This inequality implies, in particular, that w̃α is a bounded function on Rn \
F ⊂ 3Q. On the other hand ω(|x −a|)|x −a|m−|α| ≥ C > 0 for all x ∈ Rn \ F
and a ∈ F \ 5Q. Thus in the remaining case x ∈ Rn \ F and a ∈ F \ 5Q we also
have

|w̃α(x)−DαTma u(x)| = |w̃α(x)| ≤ C < C̃ω(|x − a|)|x − a|m−|α|.
This concludes the proof of Lemma 4.2. ❐

The following result is a direct consequence of the above proof. We will need
it in the sequel.

Corollary 4.5. Let x ∈ 2Qi and let b ∈ F be such that |x − b| = dist(x, F).
Then for any multiindex γ with |γ| ≤m we have

|Tm−|γ|2Qi
Dγu(x)− Tm−|γ|b Dγu(x)| ≤ Cω(di)dm−|γ|i ,

where di = diamQi.
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4.2.3. Hölder estimates, part 2. Let us now show that Lemma 4.2 implies smooth-
ness of w, or, more precisely, both claims, (4.6) and (4.7), stated at the beginning
of Subsection 4.2.

Lemma 4.6. The function w defined by (4.3), i.e.,

w(x) =


u(x) for x ∈ F,∑
i∈I
ϕi(x)Tm2Qiu(x) for x ∈ Rn \ F

is m times differentiable in the classical sense. Its derivatives of order m are Hölder
continuous with exponent λ. Moreover, the modulus of continuity of m-th order
derivatives behaves like o(tλ) for t → 0.

Proof. We set δj = (0, . . . ,0,1,0, . . . ,0) (the j-th component is equal to 1).
Recall the notation

w̃α(x) =
{
Dαu(x) for x ∈ F,
Dαw(x) for x ∈ Rn \ F.

For a ∈ F , x ∈ Rn, and |α| <m we have, by the triangle inequality,

∣∣∣w̃α(x)− w̃α(a)−
n∑
j=1

(xj − aj)Dα+δju(a)
∣∣∣

≤ |w̃α(x)−DαTma u(x)| +
∣∣∣∣ ∑

2≤|γ|≤m−|α|
Dα+γu(a)

(x − a)γ
γ!

∣∣∣∣
= o(|x − a|) for x → a.

Thus, w̃α is differentiable in F and

∂w̃α

∂xj
(a) = w̃α+δj (a) for any a ∈ F.

Asw is obviously (infinitely) smooth on Rn\F , this proves, by a simple induction,
that w is m-times differentiable everywhere in Rn and Dαw = w̃α in Rn for all
|α| ≤m.

We now show, that inequality (4.9) of Lemma 4.2 implies also Hölder con-
tinuity of the highest order derivatives of w, including appropriate estimates of
their modulus of continuity.

Note first that for |α| =m inequality (4.9) takes the form

(4.15) |Dαw(x)−Dαw(a)| ≤ Cω(|x − a|) for all a ∈ F and all x ∈ Rn,
with ω(s) = g(s)sλ, where g(s) → 0 as s → 0. Hence, it is enough to estimate
|Dαw(x)−Dαw(y)| for x, y 6∈ F . Consider now two cases.
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CASE 1. Assume that dist(x, F) ≤ 2|x−y|. Pick a, b ∈ F such that dist(x, F) =
|x − a| and dist(y, F) = |y − b|. Then,

|y − b| ≤ |y − a| ≤ 3|x −y|,
and

|a− b| ≤ |a−y| + |y − b| ≤ 6|x −y|.

Hence, by (4.15), using concavity of ω, we have

|Dαw(x)−Dαw(y)| ≤ |Dαw(x)−Dαw(a)| + |Dαw(a)−Dαw(b)|
+ |Dαw(b)−Dαw(y)|

≤ C(ω(|x − a|)+ω(|a− b|)+ω(|b −y|))
≤ Cω(|x −y|).

CASE 2. Assume that dist(x, F) > 2|x −y|. We shall use the estimate

(4.16) |Dαw(x)| ≤ Cω(dist(x, F))dist(x, F)−1 for |α| =m+1 and x 6∈ F,

where ω denotes the modulus of continuity introduced in Lemma 4.2. To verify
this estimate, fix α with |α| =m+ 1 and write

Dαw(x) =
∑

β+γ=α
|β|≥1

(
α
β

)
Sβ,γ(x),

where

Sβ,γ(x) =
∑
i∈I
Dβϕi(x)DγTm2Qiu(x)

=
∑
i∈I
Dβϕi(x)(T

m−|γ|
2Qi

Dγu(x)− Tm−|γ|b Dγu(x)),

and b ∈ F is chosen so that |x − b| = dist(x, F). We employed here the fact that
DαTm2Qiu ≡ 0, so the term with β = 0 does not appear.

Now the estimate of Sβ,γ follows from Corollary 4.5, the fact that any x ∈
Rn \ F belongs to at most C(n) supports suppϕi, the fact that di ≈ dist(x, F)
for x ∈ suppϕi and the concavity of ω. Namely,

|Sβ,γ| ≤
∑

i|x∈suppϕi

Cd−|β|i ω(di)d
m−|γ|
i

≤ Cω(dist(x, F))dist(x, F)m−(|β|+|γ|).
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Since |β| + |γ| =m+ 1, the inequality (4.16) follows.
Now, let |β| = m. Using the mean value theorem, we find, in the interval

joining x and y , a point z which satisfies |x −y| < dist(z, F) ≈ dist(x, F) and

|Dβw(x)−Dβw(y)| =
∣∣∣∣ n∑
j=1

(xj −yj)∂(D
βw)

∂xj
(z)

∣∣∣∣
≤ C|x −y|ω(dist(z, F))dist(z, F)−1

≤ω(|x −y|)

(the first inequality follows from (4.16), and the second from concavity of ω).
This completes the proof of the lemma. ❐

4.3. Distributional derivatives of the extension. We check now that w ∈
Wm+1,p(Rn). We need the following variant of Nikodym’s theorem, see [10,
4.9.2].

Lemma 4.7. Assume 1 ≤ p < ∞.
(i) If u ∈ W 1,p

loc (Rn) is defined everywhere by formula (1.2), then for each k = 1,
2, . . . , n the functions

(4.17) t , u(x1, . . . , xk−1, t, xk+1, . . . , xn)

are absolutely continuous on bounded intervals in R for almost every point x′ =
(x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1. Moreover, the partial derivatives of u,
which exist a.e. (since absolutely continuous functions are differentiable a.e.)
coincide with distributional derivatives of u and hence belong to Lploc(Rn).

(ii) Conversly, suppose u ∈ Lploc(Rn) is such that for each k = 1, 2, . . . , n the
functions (4.17) are absolutely continuous on bounded intervals in R for a.e.
point x′ = (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1 and partial derivatives of u,
which exist, a.e. belong to Lploc(Rn), then u ∈ W 1,p

loc (Rn).

Taking into account the previous parts of the proof, in order to prove that
w ∈ Wm+1,p(Rn) it is enough to show the following result.

Lemma 4.8. If w ∈ Cm(Rn) ∩ Wm+1,p(Rn \ F), where F is a closed set,
u ∈ Wm+1,p(Rn), and Dαw(x) = Dαu(x) for any x ∈ F and any α with
|α| ≤m, then w ∈ Wm+1,p(Rn).

Proof. Obviouslyw is of classWm,p(Rn), and it suffices to prove thatDαw ∈
W 1,p(Rn) for any α with |α| = m. Fix such a multiindex α and set v =
Dαw −Dαu.

(i) It follows from the previous lemma that Dαu is absolutely continuous
on almost all lines parallel to one of coordinate axes, and has Lp-integrable
derivative along these lines.
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Since Dαw is continuous on Rn, it follows that v = Dαw −Dαu is continuous
on all lines described in (i). Since Dαw ∈ W 1,p(Rn \F), we see that the following
holds.

(ii) For almost all lines ` parallel to coordinate axes Dαw|` is absolutely
continuous on compact intervals contained in ` ∩ (Rn \ F), with the deriv-
ative of class Lp(` ∩ (Rn \ F)).

Thus for almost all lines parallel to coordinate axes both conditions (i) and (ii)
are satisfied. Pick such a line `, parallel to the xi axis. Then v is continuous on
`, absolutely continuous on compact intervals in ` ∩ (Rn \ F) with derivative in
Lp(` ∩ (Rn \ F)) and v ≡ 0 in F . Now it easily follows that v|` coincides with
the integral of a function v′ ∈ Lp ∩ L1

loc(`) which is identically zero in `∩ F and
is equal to ∂v/∂xi on `∩ (Rn \ F). Another application of Lemma 4.7 yields the
desired result. ❐

The whole Theorem 4.1 easily follows from the results of Subsections 4.1, 4.2 and
4.3.

The general case of Theorem 1.1 can be reduced in a standard and easy way
to the one considered above, via a partition of unity and an “ε/2j-argument”,
as in the proof of Meyers-Serrin theorem. See [6], [14] for a related trick. This
concludes the proof of Theorem 1.4.

5. PROOF OF THEOREM 1.2

To obtain the proof of Theorem 1.2 one should use the same extension formula
(4.3). However, in order to define the set F , one should use the maximal functions
M[. This forces some technical changes in the proof (in particular, one should use
different pointwise estimates), but the overall idea remains the same. Here is the
sketch of most important steps.

Step 1. It suffices to prove the theorem for functions u with compact support
contained in the unit cube Q. For such u, take a closed set F which satisfies the
two following conditions:

M[
1 (∇mu)(x) ≤ t = t(ε) for all x ∈ F,(5.1)

M[
%(∇mu) %=0

-→ 0 uniformly on F.(5.2)

By [6, Section 4] we can choose t(ε) sufficiently large to have Bk−m,p(Rn\F) < ε.
Next, take the Whitney cube decompositionRn\F = ⋃i Qi and its associated

smooth partition of unity {ϕi}. Set, as before,

(5.3) w(x) =

u(x) for ∈ F,∑
i∈I
ϕi(x)Tm2Qiu(x) for x ∈ Rn \ F.
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Step 2: Sobolev norm estimates. Exactly the same computations as in Subsection
4.1, give

(5.4) ‖w‖Wm+1,p(Rn\F) ≤ C‖u‖Wm+1,p(Rn\F).

Step 3. Adapt the proof presented in Section 4.2 and check that in fact w ∈
Cm(Rn) and Dαw = Dαu on F for all α such that |α| ≤ m. This is rather te-
dious, but only minor changes of purely technical nature are necessary. In particu-
lar to estimate the formal Taylor remainders one should use Corollary 3.9 instead
of Corollary 3.7. Actually the proof is slightly easier than that in Section 4.2 as we
prove less (we do not prove Hölder continuity of m-th order derivatives). Now
the theorem follows directly from Lemma 4.8.

We leave the missing details of this reasoning as an exercise for interested
readers. �
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