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Pointwise inequalities for Sobolev functions
and some applications

by

BOGDAN BOJARSKI and PIOTR HAJLASZ (Warszawa)

Abstract. We get a class of pointwise inequalities for Sobolev functions. As a corollary
we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions
can be approximated by C™ functions both in norm and capacity.

1. Introduction. In this paper, we prove some pointwise inequalities for
Sobolev functions, i.e. functions in the Sobolev classes W™?(2), where m is
an integer, p > 1, and {2 is an open subset of R™. For simplicity we restrict
the discussion to the case 2 = R™ and mp < n. The generalized derivatives
Def, la| < m, are defined as equivalence classes of measurable functions.
For our pointwise estimates, presented in a form valid for each point of the
domain {2, it is essential to select a representative in each class which is
a Borel function, i.e. a function well defined at each point of its domain,
essentially by an everywhere convergent limiting process of sequences of
continuous or continuously differentiable real-valued functions. This is best
illustrated by the well known procedure of selecting a Borel function f(z)

for the class of real-valued Lebesgue spaces L] (R™) using the formula

up f fly)dy = limsup f.(x), r>0,
0 B(z,r) r—0

f(z) = lims

r—

where f.(z) are the Steklov means of the Lebesgue function f. Note that the

above limiting process is rather delicate and should be applied @ extreme
care; in particular, it is not additive, and in general f(a:) # —(=f)(x).

An important remark is that our main pointwise inequalities for the

Borel function f(x) may be formulated in terms of the averaged Steklov type
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functions f.(z), with the right hand side of these estimates independent of
the averaging parameter r. The pointwise estimates of this paper may be
obtained from those inequalities for the averages f.(z) by the pointwise
limiting process as r — 0. A systematic exposition of this rather crucial, in
our opinion, point of view is deferred to a subsequent paper.

We have used the Borel functions of type f(z) since this makes the expo-
sition much shorter, allowing more direct references to the existing literature.
Let us remark also that our pointwise estimates for functions in W™P are
rather sharp. In particular, after local integration, for p > 1, they imply
the local Sobolev imbedding inequalities in the most general and precise
form.

This is the first of a series of papers on the local geometric theory of
Sobolev spaces. The analogues of the above results for Sobolev spaces of
fractional crder W™P m real, p > 1, and the related theory of the Sobolev
trace operator on submanifolds will be discussed in subsequent publica-
tions.

Theorem 1 of Section 2 generalizes the classical result. We prove that
the inequalities in Theorem 1 hold everywhere. In the literature the first
inequality was proved to hold almost everywhere (a.e.), but the second one
seems to be missing even in the a.e. form.

In the rest of Section 2 we give the pointwise estimate of the remainder
in the formal Taylor formula for a Sobolev function (Theorem 2). This result
will be used in Section 5 te give a short proof of Michael and Ziemer’s version
of the Calderén-Zygmund theorem ([MZ]).

In Section 3 we deal with an integral representation of Sobolev functions.
The results of this section are somehow parallel to (but independent of) the
results of Section 2. In Section 4, included here for completeness’ sake, and
for the convenience of the reader, we recall some necessary results concerning
the Bessel capacity estimates for the Lebesgue points of a Sobolev function.

Theorems 4 and 5 are well known. Theorem 7 is due to Ziemer ([Z1] and
1Z2]).
L

Basic notations. By |A| we denote the Lebesgue measure of the set A.
By @ we denote a cube in R". fg = fo =1Q|™! JQ f is used to denote the
mean value of f on @. Moreover,

, o —z)* " ik
ruly) = ¥ D@ Thuy) = f Thuly)de.
. J

laj<k

If [ =1 then we set

Tiu(y) = [ Thu(y) e(z)dz.
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By V™f we denote the vector with components D*f, |a] = m. If f is a
locally integrable function, then we define f at every point by the formula

(1) f(z)=limsup f f(y)dy.

T B(z,r)

Note that ?( z) = f(:v) In what follows, as a rule, we identify f with f and
omit the tilde sign.
We say that = is a Lebesgue point of f if

lim  f |f(y) - flz)ldy =0
B(z,r)

(f(z) is defined by (1)). Some variants of the Hardy-Littlewood maximal
functions are used:

Mgf(z)=sup § |f(y)ldy, Mf=Mxf,
r<R B(z,r)

Mff()=suwp f [f(y) - f(a)ldy, M*f=MLF.

T<RB(I,T)
Note that for all x,

M} f(z) < 2Mpf(z) < 2Mf(z).
We use the following definition of the Sobolev space:

WmP()={feD'(R): D*f € LP(N2), |a|] < m},
1£lmp = > 1D flp,
loaj<m

where || - ||, denotes the LP-norm. Analogously we define the corresponding

local space WP Obviously W™? ¢ W', By C we denote the general

constant; it may vary even in the same proof.

2. Pointwise inequalities. Let Q@ C R™ be a cube and let f € C}(Q).
The following inequality is well known to be true for all x € @Q:

\ ; Vil
(2) !f(x)—fQISCJFy—i;_—l

(see e.g. [GT|, Lemma 7.16).

Now we show, by extending the method used in [B1] (see also [R}), how
to obtain the stronger inequality involving the derivatives of any order m.
Even for m = 1 this inequality will be more sophisticated than (2).
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Let f € C™(Q) and let a = (aa)ia;__.m be a family of real numbers. Let
- Y 0w Y
la|<m—1 lal=m
Obviously ¢(z:z) = f(z) and

D
Ay;

o

o)=Y Da+5if(y)(‘”__a'y_)__ 3 amiuL,

al

jaj]=m—1 ) laj=m-1

where §; = (0,...,1,...,0) (the ith component is equal to 1).
Directly from the definition we have

135 = f e+ § Y 07w -a)Eay.
Q@ Q laj=m

Hence, applying (2) to the function ¢, we get

f(2) = TG f(2)| < |¢(e) — pa| + C f V™ f(y) - al |z — y™ dy

/\

7

f V™ f(y) — af —CL| d

i

where (V™ f(y) —a) = (Do‘f\y) — O )|aj=m s treated as a vector.
Thus we have

LEMMA 1. If f € C™(Q) and a = (aa)ja|=m then

VT f(y)l
! Tt C ———————d ,
f(z) - TG (=) < f e
and
(3) F@) - T3 f(2) < C Qf__fx—ylw d

in particular, substituting a = V™ f(x) we have

IV™fly) — me(.r\1

z -y

f@) -TZf@<C [

where the constants C depend on n and m only.

Remark. As far as we know, the second inequality is missing in the
literature.

Proof of Lemma 1. We have proved the second inequality. The first
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follows easily from the second by taking a = 0. Indeed,

f(2) = T3 @) < 1f (@) = T3 f(@)| + C £ V™ f@)llz — 3™ dy

Now we will deal with the Sobolev functions. If f € loc , then we
can choose natural Borel representatives of this function and its derivatives
defined at every point by the formula

(4) D® f(z) = limsup f D*f(y) dy
r—0
B(z,r)

(compare (1)).
Now we prove the following extension of Lemma 1.
THEOREM 1. There exists a constant Cp, ,, such that if f € W™1(Q) is

defined at every point by (4) (with o = 0) and a = (aq)|a|=m 15 an arbitrary
famaly of real numbers, then, at each x € @,

V™ f ()l

(5) f(z) - f(ﬂ<<cmnme———Fe;dy,
(6) Fe) - TR ()] < fﬁﬁillﬂ@.

l n—m

Remarks. 1) It seems to be a new and very important fact (as our
applications show) that inequalities (5) and (6) hold everywhere, and not
only a.e. 2) We prove this theorem with the constants C,, , larger than their
counterparts in Lemma 1. 3) This proof extends the method used iz [H2].
See alsc [B2].

Proof of Theorem 1. The same argument as in the proof of
Lemma 1 shows that the first inequality follows from the second, so it suf-
fices to prove the latter. A standard approximation argument implies that
(3) holds a.e. for f € W™1(Q). Integrating both sides of that inequality

over a ball we have
\

| i :

0 | frwa- f1giwa|co [ f EEEHa,
B(z,r) B(z,r) Q B(z,r)

We can estimate the right hand side of this inequality by Lemma 2 below. To

our knowledge, the estimates of Lemma 2 have been first used by O. Frost-

man [Fr] (see also [La]). Here we present the simple proofs of Lemma 2 as

well as of Lemma 3 for the sake of completeness.
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LEMMA 2. If a > 0, then there exists a constant Cy n such that for all
z,z € R™ and oll 7 > 0,

_ Canlz— 2" ifa<n
[y — @™ < a,n = T4,

JC [y — =l dy < {Ca,n(rJr-]a:—z])a‘n ifa>n.
B(z.,r)

Proof. We can assume that z = 0. If r < 1|z|, then 3jz| < Jy| <
2|z}, hence |y|*™* < Cqnlz|* ™, and the lemma follows. If r > Z|z| then

B(zx,r) C B(0,3r) and hence

fylemdy<cr™ [ e rdy =
B{z,r) B(0,3r)

If o < n, then r®~™ < 2"~ *|z|*"". This ends the proof of the lemma.

As we have already mentioned, Lemma 2 leads to an estimate of the right
hand side of (7), and hence, by passing to the limit, the theorem follows.

In the sequel we need the following lemma of Hedberg [Hel:

LEMMA 3. If a > 0, then there erists a constant Cp, o such that for all
u € LY Q) and all z € Q,

J 17% dy < Cn.a(diam Q)* Maiam @|ul(2) -
Q

Proof. We can break the integral into the sum of the integrals over the
“rings” Q@ N (B(z,diam Q/2%) \ B(x, diam @/2**1)). In each ring, we have
|z — y|*™ " ~ (diam Q/2¥)>~". Now we estimate the integral over the ring
by the integral over the ball B(z, diam Q/2¥) and the lemma follows easily.

Let f e W 1(IR") and its derivatives be defined at every point by (4).
Let z,y € R™ be such that | f(y)| < co and !D*f(z)| < oo for ja| <m — 1.
Moreover, let  C R™ be any cube such that z.y € Q.

As a direct consequence of the triangle inequality we have
8) |fly) - T W)l < U fly) - T3 ()]

| (y=2)* (=2 m-1-ial |
, | Mo S 7 m ol o |
- Y D) ——Tg D% (=)

ol <m—1' !

| Q Y) ol W) J | .
laj<m-—1
The last term is identically zero since it is the difference of two equal poly-
nomials. Indeed, the first polynomial is Tén'l f(y) and the second is Taylor’s
expansion of the first one.
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The remaining terms on the right hand side of (8) can be estimated by
Theorem 1. This leads to the following

THEOREM 2. Let f € W'lm’lfR") and its derivatives be defined at every

oc \
point by (4), and let z,y € R™ be such that |f(y)|,|D*f(z)] < oo, |a] <
m—1. If z,y € Q, then for some constant C = C(n,m),

m—1
)~ T )] < C (IR ) + 3 (diam Q) IZ (V™ F)() )

1=0
where Ig (9)(z) = fQ lz —yl*~" g(y) dy is the local Riesz potential of order k.
If we now apply Lemma 3, we obtain
9)  1fly) =T ()]
< C(Mgiam @IV™ fI(y) + Maiam @| V™ fl(z))(diam @)™ .

Analogously, we can obtain the inequality
(10)  |f(y) =T f ()l

< C(Maiam @I V™ f = al(y) + Mdiam @|V™ f — bi(z))(diam @)™ ,
where a = (@a)|al=m; D = (ba)jaj=m- We note a difference in the proof

of (10): the highest order terms are estimated directly without the use of
Theorem 1 and Lemma 3. Namely,

S s B W metel pe (g

a! ol

|

lal=m
< Cly —=™MV™f(z) = (V" fal
< C(diam Q)™ (V™ f(z) — b| + [(V™ f)q — b])
< C'{diam Q)™ Maiam | V™ f — bl(x) .
Thus we have the following
THEOREM 3. If f € W,;”C*{R”) and its derivatives are defined at every
point by (4), then the following inequalities are satisfied.
Y IfIf(y)l < o0 and | D f(z)| < o0 for |a| <m —1, then
fly) = TP ()] S C(Mp—y [V Fl(y) + Mgy [V fl(2)) ]2 — 5™

2) If 1f(y)l < oo, D*f(z)| < oo for laf < m and a = (aa)iaj=m, b =
(ba)a|=m are taken arbitrarily, then

f(y) =T f )l < ClMpey [V F = al(y) + Mgy [V f = bl(z)|z — y|™ .

where the constant C depends on m and n only.

Proof. There exists a cube @ < R"™ such that a:,'y € @ and diam @ ~
iz — y|. Now the theorem follows from (9) and (10).
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Remarks. 1) We will prove in the next section (Lemma 4) that if
M;|VFfl(z) < oo, then |D*f(z)| < oo for |a| < k. 2) Inequalities of the
type considered in Theorem 3 have been obtained in [H1], but the proof

presented here is a direct generalization of the method given in [B2] for the
special case of m = 1 (see also [H2]).

COROLLARY 1. If f € W’lgzcl and its deriwatives are defined at every point
by (4), |D*f(z)] < 00 and | D f(y)| < oo for |a] < m, then

D% f(y) = T~ %1 D% f(y))
<COMEL_ VA + ML IVl ()|z -yl

le—yi lz—y]!
Proof. It suffices to put a = V™ f(y), b = V™ f(z) and apply the second
inequality from Theorem 3 to D f € wmlall

loc

If we apply inequality 1) from Theorem 3 to f € W" '(R™) and to all
its derivatives (in a way similar to Corollary 1), then Whitney—Glaeser’s
extension theorem ([M], Th. 3.6) implies that for every € > 0 there exists
a function h € C[7H(R™) (C™! function with locally Lipschitz (m — 1)-
derivatives) such that |{z : h(z) # f(z)}| < . But as follows from another
theorem of Whitney ([F], Th. 3.1.15), for every § > 0 there exists a function
g € C™(R") such that [{z : g(z) # h(z)}| < 6. Therefore, we have proved
the theorem of Calderén and Zygmund ([CZ], Th. 13) which can be stated

as follows.

~m,1

COROLLARY 2. If f € W "(R"™), then for every € > 0 there exists a
function g € C™(R™) such that {z: f(z) # g(z)}| < e.

In Section 5 we show how Coroliary 1 can be used to get a short proof
of the generalization of Corollary 2—the theorem of Michael and Ziemer.

COROLLARY 3. If f € W,"P(R™) where 1 < p < mp, then

loc

(f 17 @-T57 @) da) " < Copldiomel™( f (V7 s)Pdy)
Q Q

for each cube  C R™ with the constant C,, ,p, depending on m,n,p only.

This is the precise form of the Sobolev imbedding inequality for the
spaces W™P(R™), mp < n. Here p* = pn/(n — mp). The proof is a direct
consequence of the Hardy-Littlewood—Sobolev inequality for Riesz poten-
tials [S], [Z2].

The global Sobolev imbedding inequality for the spaces W™?((2) for a
large class of domains {2 C R", inciuding in particular the class of so-called
John domains, which may not have a rectifiable boundary, has been obtained
in [B3l, as a consequence of Coroilary 3. See also [GR].
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3. Integral representations and Taylor’s formula for Sobolev
functions. If f € C*(Q), then, integrating the Taylor formula multiplied
by a weight p € C5°(Q), ftp~1 we have

1) fly) - T3 fly)

:mf Z [ Dfla+(y —x)t)@:&—f”)—ago(x)dx(l—t)m-ldt,

or, in an equivalent form,

(12) f)-T7fw=m [ > [ (D*f(z+(y—=2)t) - D*f(=z))
0 |aj=m @
-

y—2)* p(z)dz (1 —t)™ 1 dt.

a!
Now we prove

LEMMA 4. Let f € W™L(Q). If M1|V™f|(y) < oo, then the limit

lim § flz)dz
B(y,r)
exists and is finite. If we set f(y) equal to this limit (compare (1)), then
formulas (11) and (12) hold at y.

Proof. For notational reasons we assume that diam @ = 1. We will be
concerned only with (12). The proof in this case includes (11) as well. We
can assume that f is defined in a neighborhood of Q. Let f. be a standard
convolution approximation of f (with a C§° kernel). First we prove that
the right hand side of (12) applied to f. converges as ¢ — 0 to the same
expression but with f. replaced by f. This will be a direct consequence of
the Lebesgue Dominated Convergence Thecrem if we prove that for |a| = m
the integrals

[1D*flz+ (y—2)t)ldz and [ |D*f(z)|da
Q Q

are bounded by a constant independent of = and t.
The estimate for the second integral follows directly from

LEMMA 5. If g is a convolution approximation of g and E is a measur-
able set, then

[ ig@)de<C [ ig(z)dz,

m o

i ~e

where E. = {z : dist (z, E) < z}.
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Proof
fige z)|dz = [!f We(z —y)dy|dz < Ce™ [ [ |g(y)|dydz.
E B{z.e)

This inequality follows from the observation that supp¥. C B(0,¢) and
.| < Ce ™ Ifz € Fandy € B(z,<), then y € E. and z € B(y,¢). Hence,
using Fubini’s theorem, the lemma follows.

Now we estimate the first integral. We have
[1D%fe(z+(y-at)dz=(1-t)™" [ |D*fu(2)]dz,
Q I

where J? denotes the homothety with center a and scale factor s.

If 1 -t > g, then it follows readily from Lemma 5 and M, (y) < o0
that this integral is bounded by a constant independent of ¢ and t.

Ifi—t<eg, then

(1=t [ |D*f(2)]dz

I,
<Cl-t)"e™ [ [ |D*f(v)dvdz
J,7'Q B(z.e)
<C(1-t)e 2 [ f |D*f(v)|dvdz

‘]1]; tQB( y“e)
< C" (notice that B(z,e) C B(y,2¢)).

We have proved the desired convergence. Hence the left hand side of
(12) is convergent and, in consequence, f.(y) is convergent as ¢ — 0 and
the limit is independent of the choice of the C'§° convolution kernel. The
averaged integral fB(y’r)f(:v) dz is a convolution with kernel w = |B| "y 5.
Since such a kernel can be approximated by C§° kernels, one can prove that
the formula analogous to (12) holds if we replace D*f with (D®f) * w, for
laf < m in both sides of this inequality. Namely, we write (12) for f = 1y
instead of f, where %y is a sequence of C§° kernels approximating w. Then
we pass to the limit as k£ — 0.

Now we can prove. just as in the smooth kernel case. that the limit of
(f+w:)(y) exists and is equal to that for smooth kernels. This ends the proof
of Lemma 4.

Remark. One can prove Theorem 3 using Lemma 4 instead of Theo-
rem 1 and Lemma 3.
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Formula (11) plays a key role in the proof of the so-called integral rep-
resentation formula for Sobolev functions ([KA], p. 437, Lemma la; [Bu];
[Ma}, Th. 1.1.10).

It is easy to show that (11) holds a.e. for a Sobolev function. We have
proved much more. Namely we have exhibited the points (probably not all)
at which this formula holds. Hence we are in a position to prove the following
stronger form of the integral representation theorem.

THEOREM 4. Let 2 CR™ be a bounded domain, starshaped with respect
to a ball B C §2. Let © G C§°(B), f(p = 1. There exists a smooth, bounded
function w, € C*(2 x 2) such that if f € W™P({2) and

]\/[va (y) < 00,
then

fly) =17~ Yfly) = f Z Def xinw@(y,x)dax.
2 |al=m

Remark. To be more accurate, we should replace M;|V™f|(y) by
M4|V™ fi(y), where d = dist(y, 092).

Proof of Theorem 4. This follows easily from formula (11) by a
linear change of variables in the integral on the right hand side. The details
can be found in [KA], pp. 438-439, [Bu]| or, in a slightly modified form, in
[Ma|, Th. 1.1.10.

Remark. Following the same ideas as in the proof of Theorem 2 we can
obtain Taylor’s formula for Sobolev functions. Namely, we can represent
Taylor’s remainder f(y) — T™ ! f(y) as a potential type integral operator
involving derivatives of the highest order m only.

4. Bessel capacity and Lebesgue points. In this section we re-
call some results concerning Bessel capacity. In the previous sections we
were concerned with the set of Lebesgue points of a Sobolev function. It
is weil known that almost all points of the domain of a locally integrable
function are Lebesgue points. In the case of Sobolev functions we can say
more. Namely, we prove (see Theorem 8 below) Ziemer’s theorem ([Z1], [Z2],
Th. 3.10.2 and Remark 3.10.3), which generalizes the fact that if f € W*?,
then By ,-almost all points are Lebesgue points, where B , denotes Bessel
capacity (Coroilary 4).

The results of this section (with aimost the same proofs) can be found
in [Z2]. We added this section for the sake of completeness.

Let G,, a > 0, be the kernel of the operator (1 —A)~*/2,

Let L*P(R™) = {G,*g: g < L°(R™)} denote the space of Bessel poten-
vials. If f € LYP, f = G, *g, then we define the norm of [ as || fila,p =
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THEOREM 5. If k € N and 1 < p < o0, then
LFP(R™) = WHP(R™).
The proof of this classical theorem can be found in [S], Chapter 5, Th. 3.
The Bessel capacity of a set E' is defined by
Bap(E) = inf{“g]l}’; :Ge*xg>1in E, g>0}.

Sets of zero B, , capacity have Hausdorff dimension less than or equal to
n — ap. Namely, one can prove the following

THEOREM 6. If ap < n, then
Hy_op(E) <oco = By,(E)=0,
Bap(E)=0 = V.so Hp—apte(E) =0.
If ap > n, then there exists a constant C > 0 such that
E+#0 = B,,(E)>C
(Hs denotes Hausdorff measure).

The proof can be found in [Me], Theorems 20 and 21.
In the sequel we need the following

THEOREM 7. If 1 < p < o0, @ >0, and f € L*P(R"™), then

C | |
Bapl{z: Mf(2) > t}) < ZIfIL,
where the constant C depends on p and n only.

Proof. Let f = Go*g, ||fllap = llg]lp- Let wr = [B(0,7)] "xp
have

(0,r)° We
F 1f W)l dy = w, + |f1(z) < wp  Ga * lg](x)
B(z,r)

= Ga*wr x|gl(z) < Go x Mg(z).

Hence
Mf(z) <Gy*Mg(z).
And so, by the definition of By, p,
, , C, .
Bap({Mf > t}) < Bap({Gax Mg > t}) < [M(g/t)[7 < IFIIE -

The last inequality follows from the Hardy-Littlewood maximal function
theorem.

THEOREM 8. If 1 < p < oo, @ > 0, and [ € L*P{R™), then for every
s > 0 there exists an open set U C R™ such that B, ,(U) < & and

MEF
rf 0

uniformiy in R™\ U.
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Remark. The maximal function ]VI?%' f is defined everywhere since f is
defined everywhere by (1).

Proof of Theorem 8. There exists g € C§°(R") such that
1f - glln, < 7.
Let h = f — ¢g. We have
M f(z) < Mig(z) + Mih(z) < Mbg(x) + 2Mh(z).
There exists £ > 0 such that
1\/[?29(3:) < ¢ for every z € R™
Hence, as follows from Theorem 7, we have
Bop({Mhf > 3¢}) < By p({2Mh > €}) < Ce.

If &, = 27'¢/C and R; is taken with respect to €;, then

Bop({M} f > ei}) <

3.2

Let
V= J{M} f>el

Evidently Bg (V) < ze.
Now, as is well known, there exists an open set U 2 V such that
Bop(U) < € (see e.g. [22], Lemma 2.6.6).

COROLLARY 4. If f € L®P where « > 0 and 1 < p < o0, 1s defined
everywhere by (1), then B, p-almost all points are Lebesgue points of f.

5. A new proof of Michael and Ziemer’s theorem. In this section
we give a new, short proof of Michael and Ziemer’s theorem ([MZ], [Z1],
[Z2], Th. 3.11.6). This theorem extends an earlier result of Calderén and
Zygmund {Corollary 2 in this paper) and of Liu [L]. In the proof we only need
Corollary 1, Theorems 7 and 8 from the previous sections and Whitney's
extension theorem ({W], [M], Th. 3.2, 3.5). This proof is independent of
Section 3 and is based on the proof of a weaker result, given in [H1] (see
also [B2]).

THEOREM 9. Let 2 C R™ be an open set, 1l <p<oco, 1 <m<k mk
integers, and f € T/V{Z‘CP(Q). Then, for every = > 0, there exists a closed set
F C 2 and a function g € C™(§2) such that

(13) Biomp(2\F) <=,

(14) DYf(z)=D%(z) forz € F and |a] <m,
(15) F-g s Wy P(R), |

(16) 1f = gllms <=
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Remarks. 1) The derivatives D f are defined everywhere by (4).
2) WP (£2) stands for the completion of C§°(£2) in the W™P? norm.

Proof of Theorem 9. First assume that f € W*?P(R") and f has
a compact support in 115@ (the cube with the same center as @ and with
1/10 of its side length). Let

E, = {:13: S M(D%f)() < s}.

laj<m

Evidently |R™ \ Es|s? — 0 as s — oo (the maximal function belongs to L?
and this convergence follows directly from the Chebyshev inequality). Let
U? be the set, defined as in Theorem 8, with the following properties:

Mrﬂ a
Mp(D f)g:go

uniformly in R™ \ U” for all || = m,

.
Bi—mp(U®) < =,
3
and

-\ TS|
(11) !Qﬂ(/ i<;;,:_T'

Inequality (17) can be guaranteed since it follows easily from the fact that
sets of zero capacity are also of zero Lebesgue measure. It also follows directly
from the more sophisticated fact that a suitable power of the Lebesgue
measure is dominated by By, ([Mel, Th. 20).

Let E{ = E, N (Q\ U?®). Corollary 1 implies that (D% f|z:)jaj<m sat-
isfles the assumptions of Whitney’s extension theorem ([W], [M], Th. 3.2).
Obviously,

(18) | IQ\ ELls? -0 ass— oo.
Moreover,
Bk—m.p(Q \\ E;) —0 as § — Co.

This follows easily from the definition of the £ and from Theorem 7.
Now we estimate Whitney’s norm of f on E. (see [M], Section 2.3 for
notations):

/ . D% F(y) — T D rro)|
115 = sap (D*f(a)+ swp DLW T DU
fai<m laj<m |z — yymTie
zEE LRI 28

TEY

We have | D f| < s in E, {because |[D*f| < M(D*f)). Moreover, as follows
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from Corollary 1,

« _ m—la| ma
El

Sup lz — y|m—lal

< Csup2M|\V™fl < C's.

Hence
WE’
[film < Cs.
If f is a Whitney extension of a function f € £™(FE.), then
aZr W Es
sup |[D%f(z)| < Cllfllm

z€Q
laf<m

(see [M], Th. 3.5). Hence
(17) |D*f(z)| < Cs

in Q for all |a| < m. The formula which defines f (see [M], the beginning of
the proof of Th. 3.2) and the fact that supp f C 11—0Q implies that f(z) =0
in R™ \ @ (for all sufficiently large s). Thus

If=fle,= > [ ID*f-Df]

jal<m Q\E/
<t S [ipegp+ [ IDefE) — 0.
lajl<m Q\E! Q\E,

This convergence follows from two facts:
L. fQ\EQ |D*f|P — 0, because |@ \ E;| — 0,
DfIP < (Cs)PIQ\ Eyf — 0 (see (17)).
The general case can be reduced to the case with compact support by a

standard partition of unity argument as in Meyers—Serrin’s theorem ([MS],
[Ma], Th. 1.1.5/1, [H3], Th. 1).

2 oz |
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