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Pointwise inequalities for Sobolev functions 
and some applications 

B O G D . 4 Y  B O J X R S K I  and P I G T R  H A J E X S Z  (Warszawaj 

Abstract. We get a ciass of pointwise ineq1,ialities for Soboiev functions. As a corollary 
we obtain a short, proof of Michael-Ziemer's theorem which states that Soboiev functions 
can be approximated by Cn' functions both in norm and capacity. 

1. Introduction. In this paper, we prove some pointwise inequalities for 
Sobolev Filnctions. i.e. functions in the Sobolev classes W m  *(Q), where m is 
an integer. p > 1, and l2 is an open subset of $2". For simplicity we restrict 
the discussion to  the case f2 = Wn and mp < n. The generaiized derivatives 
D a f ,  la j 5 m, are defined as equivalence classes of measurable functions. 
For our pointwise estimates, presented in a form valid for each point of the 
domain j"?. it is essential to select a representative in each ciass which is 
a Borel function, i.e. a function well defined a t  each point of its domain. 
essentially by an everywhere convergect iiniting process of sequences of 
continuous or continuously differentiable reai-valued functions. This is best 
illustrated by the weil known procedure of selecting a Borel function f i x )  
for the ciass of real-vaiued Lebesgue spaces Lfo,(Xn) using the formula 

- 
f(x) = iim sup f f:g)dy=!imsupfTi,(x). r > d .  

r-11 - 1 0  
B [ z  r) 

where ,', ( z) are the Stekiov means of the Lebesgue function f . Note that the 
above limiting pocess is rather delicace and should be applied with extreme - - 
care: in particuiar. it is not additive, and in general f (x)  - j- f) (.c ;. 

An important - remark is that our main gointwise inequalities ;"or the 
Borel function f (x) may be formulated in terms of the averaged Steklov type 
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functions f,(z): with the right hand side of these estimates independent of 
the averaging parameter T .  The pointwise estimates of this paper may be 
obtained from those inequalities for the averages f,(x) by the pointwise 
limiting process as T 4 0. A systematic exposition of this rather crucial, in 
our opinion. point of view is deferred to a subsequent paper. - 

We have used the Bore1 functions of type f(x) since this makes the expo- 
sition much shorter, allowing more direct references to the existing literature. 
Let us remark also that our pointwise estimates for firnctions in JVYrn.p are 
rather sharp. In particular, after local integration, for p > 1, they imply 
tile local Sobolev imbedding inequalities in the most general and precise 
form. 

This is the first of a series of papers on the local geometric theory of 
Sobolev spaces. The analogues of the above results for Sobolev spaces of 
fractional order t V r n . P ,  m real, p > 1. and the related theory of the Sobolev 
trace operator on submanifolds will be discussed in subsequent publica- 
tions. 

Theorem 1 of Section 3 generalizes the classical result. We prove that 
the inequalities in Theorem 1 hold everywhere. In the literature the first 
icequality was proved to hold almost ever:iwhere ja.e.1, but the second one 
seems to  be missing even in the a.e. form. 

in the ;est of Section 2 we give the pointwise estimate of the remainder 
in the formal Taylor formula for a Sobolev function (Theorem 2 ) .  This result 
will be used in Section 5 to give a short proof of Llfichael and Ziemer's version 
~ ? f  the Caider6n-Zygmund theorem (jhIZ]). 

In Section 3 we deal with an integral representation of Sobolev functions. 
The results of this section are somehow parallel to (but independent of) the 
results of Section 2. In Section 4. included here for completeness' sake, and 
for the convenience of the reader, we recall some necessary results concerning 
the Bessel capacit:~ estimates for the Lebesgue points of a Sobolev function. 
Theorems 4 and 5 are well known. Theorem 7 is due to Ziemer ( i Z l ]  and 
Lz2j;. 

Busic notcztzons. By ! i l l  we denote the Lebesgue measure of the set A4. 
By Q we denote a cube in X n .  fQ = fQ: = i Q - I  jy f is used to denote the 
mean value of f on &. Mo, reover. 

i f  J' p = i then we set 
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By Cm f we denote the vector with components DCY f ,  / a /  = m. If f is a 
locally integrable function, then we define 7 at  every point by the formula 

- 
f (XI = lim sup 

T--0 
B ( x . T ~  

- - 
Note that S(s) = f ix) .  In what follows, as a rule_ we identify f with f and 
omit the tilde sign. 

We say that x is a Lebesgve point of f if 

lim f f(3)- f[x)]dy=O 
7-0 

B ( x . T )  

(f (x) is defined by (1)). Some variants of the Hardy-Littlewood maximal 
functions are used: 

Kote that for all x, 

-$I: f ( X )  < 2i!%!fRf.r,f(~) 5 2 M f  (x) . 

We use the following definition of the Sobolev space: 

where / I p  denotes the LP-norm. -knalogously we define the corresponding 
-m ; locai space lVIT;p. Obviously Wm+' c . By C we denote the general 

constaat; it m2y varzi even in the same proof. 

2. Pointwise inequalities. Let Q c Rn be a cube and let f E C1(Q). 
rP 1 11le following inequality is weil Itnown to  be True for all x E Q: 

(see e.g. [GTI, Lemma 7.161. 
Now we show. by extending the method used in :B1] (see aiso IRI). how 

to  obtain tne stro~lger inequality involving the derivatives of any order m. 
Even for rn = 1 this inequality will be more sophisticatea than ( 2 ) .  
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Let f E Cm(Q) and let n = [ " z . ~ ) : , ~ = ~  be a family of real nurnbers. Let 

Obviouisly p!z: x j  = f jz) and 

where 6, = (0,. . . ,I,. . . . 0 )  (the ith component is equal to 1) 
Directly horn the definition we have 

Hence, appiying ( 2 )  to the hnction 9. we get 

where (Gm f ( y j  - a )  = (Da f (y) - is treated as a vector. 
Thus tve have 

LEMMA 1. If f E Cm(Q) and  a = (a, j a i = ,  t h e n  

and 

in part icular,  substituting a = G m f [ x j  ,we have 

where t he  constants  C7 depend on n and m only. 

R e  rn a r  k. ,4s far as we know. the second inequality is missing in the 
literature. 

P r o o f o f L e m m a 1. we have proved the second inequality. The first 
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follows easily from the second by taking a = 0. Indeed. 

Now we will deal with the Sobolev functions. If f E I.I\~;'. then we 
can choose natural Borei representatives of this function and its derivatives 
defined at  every point by the formula 

(4) D a f ( z ) = l i m s u p  $ Daf(y)dy 
r-0 .I 

B ( z ,  r) 

(compare (1) j. 
Xow we prove the fo'o!lowing extension of Lemma 1. 

THEOREM i. There exists a constant C,,, such that  i f f  E 1Vrn.'(Q) is  
defined at e - ~ e r y  point b y  (4) ( w i t h  cr = 0) and a = is a n  arbitrary 
family of real nu~mbers ,  t h e n ,  at eac.5 z E Q: 

R e m a r k s .  1) It seems to be a new and very important fact (as our 
appiications show) that inequalities (5) and (6) hold everywhere, and not 
only a.e. 2) l4-e prove this theorem with the constants C,,, larger than their 
counterparts in Lemma 1. 31 This proof extends the method used ir, [H21. 
See alsc iB2j. 

P r o o f  of T 11 e o r  e m  1. The same argTlment as in the proof of 
Lemma I shows that the first inequality follows from the second, so I t  sui- 
fices to prove the latter. X standard approximation argument implies that 
( 3 \  hoids a.e. for f E tVm ' ( Q ) .  Integrating both sides of that inequality 
over a bail we have 

'A-e can estimat? the right hand side of this inequality by Lemma 2 below. To 
our knowledge, the estima~es of Lemma 2 have been first lused by 0. Frcst- 
man [Fr] (see also [La;). Here tsre 2resent the simple proofs of Lemma '3 as 
well as of Lemma 3 for [he sake o i  completeness. 
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L E M M A  2. If a > 0, then  there exists a constant C,,, such that  for all 
z, a E Rn and all r > 0 ,  

P r a o f .  We can assume that 2 = 0. If r < + ; X I ,  then $ x  < y (  < 
l l x J .  hence y \ U - R  < Ca,,/xJa-", and the lemma follows. If r > then 
B(x .  r )  c B(O,3r) and hence 

If a < n,  then r"-" < 2"-"/xia-". This ends the proof of the lemma. 

-4s we have already mentioned. Lemma 2 leads to an estimate of the right 
hand side of ( 7 ) ,  and hence, by passing to the limit, the theorem follows. 

In the sequel we need the following lemma of Hedberg [He]: 

LEMMA 3. Ijc a > 0, then  there exists a constant C,., such that  for all 
u E L1(Q) and all x E Q ,  

I i u ( y )  
jx - y \ n - a  dy I Cn., [diam Q)"lWdian I u ~  ( x )  . 

Q 

P r G of. We can break the integral into the sum of the integrals over the 
.'rings" Q ? (B( .E ,  diam Q/2" \ B ( x ,  diam Q/2k41)) .  In each ring. we have 
I2 - y - (diam ~ / 2 ~  j"-". Sow we estimate tne integral over the ring 
by the integral over the ball 3 ( x ,  diam ~ ; 2 ' " )  and the lemma follows easily. 

Let J E l4;?;'(Rn) and its deri~fatives be defined a t  every point by (4). 
L e t  x.y be such that I f ( 7 ~ ) l  < x and IDa f ( z ) l  < m for iaj 5 m -  1. 
hIoreover. let Q z Rn be any cube such that 2 .  y E Q. 

-4s a direct consequence of the triangle inequality we ham 

The last term is identicall~r zero since it is the difference of two equal poly- 
norniais Indeed. the Srst polynomial is TT-'~!~ and the second is Tayior~s 
expansion of the first one. 
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The remaining terms on the right hand side of (8) can be estimated by 
Theorem 1. This leads to the following 

THEOREM 2. Let f E I.P;T;'{R") and zts derivatives be defined at  every 
poznt by (4).  and let z. y E Rn be such that  lf(y)j,lDaf(x)i < m, jaj < 
m - 1. If J ,  y E Q.  hen t o r  some  cons-tant C = Cjn, m) ,  

m-l  

where I$ (g)(x) = JQ x - yIX-% g(y) dy zs the local Riesz potentzal of order k. 

i f  we now apply Lemma 3. we obtain 

(9) I f  (y) - ~:-'J(y)i 

5 C(.kldiamQjTm f j(y) + fbidiamQivmf l(x))(diamQ)" 

Analogously. we can obtain the inequality 

(10) iSiy)-T?f(y)i 

< C(iV!diam ITrn f -- a1 (y)  - hrdiam Q I C ~ ~  - bi (x))(diam &)" , - 

where a = b = (b,)l ,,,,. TvVe note a difference in the proof 
or' (10): the highest order terms are estimated directly without the use of 
Theorem 1 and Lemma 3. Namely, 

- 
I < cly - sirnlVrn f (x)  - ( V m f ) ~ 1  

< - C' ,,&am Q)" ltidlam : Cm f - b j (x) . 
Thus we have the following 

THEORZM 3. 1;C f E i+T".i :~n'  ~ O C  and zts derzvatzues are defined at every 
?oznt b y  (4). then tn,e jfollo~uzng ~nequalzrzes are satzsfied. 

1) Lf f l y ) '  : x arzd IDff f (z:j < m for /a1 5 rn - 1 ,  t h e n  

I f ( y j  - T"-I' j i g ) l  5 C' i iVl lx-y , lVmf l(y) 7 -ldz-yliCm ~ ' ( J , ) / z  - ylm. 
/ 3) [f I f ( y j ~  < m, DUf ;z l ;  < m for < m ana  a = I , ~ , - ) I , ~ = ~ ,  5 = 

13,) ,,I,, are taken arbztrardy . t hen  

1 J ( y )  - T," f (y)i < C:,111,-,, 1VrnJ' - nl(y; A -2iiz-J, iVmf - ~ I ( X ; ) J  - y I m  . 
where the constant C depends o n  m and n only. 

P r o o f .  There exists a cube Q .Z Rn such that x, y E Q and diarnQ -. 
cc - y 1 .  Yow the theorem follows from (9) and (10). 



84 B. Bo ja r sk i  and P. Ha j l a sz  

R e  m a r  k s. 1) TVe will prove in the next section (Lemma 4j tnat if 
-Idi i 'Tk f i (x )  < K, then ID" f ( x )  1 < cc for , a ,  5 k.  2)  Inequalities of the 
t>-pe considered in Theorem 3 have been obtained in [HI], but the proof 
presented here is a direct generalization of the method given in iB2j for the 
special case of In = 1 (see also CB2J). 

CGROLLARY 1. I f f  t IVZ;' and its dertaatives are defined at every pomt 
by [ A ) ,  ,Da f : ( c?~  < x, and lDa f ( y ) i  < m for jcr/ < m, then 

P r o o f. It suffices to put a = V m  f ( ' y ) ,  b = Vm f ( x )  and apply the second 
wm-ial.l inequality from Theorem 3 to Da f E ,oc 

If we apply inequality 1: from Theorem 3 to f t 14;:~' (Rn) and to all 
its derivatives (in a way similar to Corollary 1). then Whitney-Glaeser's 
extension theorem ([&I]. Th. 3.6) implies that for every E > O there exists 

m-1 1 a function is E C,,, 'Rn) (Cm-' function with locally Lipschitz ( m  - 1)- 
derivatives) such that / { x  : hjx) f Jr(z)) 1 < E .  But as follows from another 
theorem of \%-hitney ([F], Th. 3.1.15). for every S > O there exists a function 
g t Cm(Xn)  such that / { z  : g ( s )  7 hjx))l < 6. Therefore. we have proved 
the theorem of Calder6n and Zygmund j!CZ], Th. 13) which can be stated 
as follows. 

COROLL.ARY 2. I f  S E T / v ~ , ~ " ( R ~ ) .  10c then jor every 5 > O there eztsts c. 
junctzon g E CmjRn) such that ' { x  : f jz) f g(,x))l < E .  

In Section 5 we show how Coroliary 1 can be used to get a short proof 
of the generalization of Corollary 3-the theorem of Michael and Ziemer. 

n , p  / COROLLARY 3. -Tf ,' E lViOc iR") where 1 < p < m p .  then 

for each cube Q C Rn wzth the constant Cm,,.p depending on m, n . p  only. 

This is the rec i se  form of :he So~o lev  imbedding inequality for the 
-'n.p8 spaces W ,Rn) ,  mv < n. Here p" = pa;  (n - q p ) .  The proof is a direct 

consequence of the Hardy-Littlewood-Sobolev inequality for Riesz poten- 
tials [S]. [Z2]. 

The global Soboiev imbedding inequality for the spaces Wm,P(Qi2) for a 
large class of domains G' (1 Rn.  inciuding in particular the class of so-called 
John domains. which may not have a rectifiable boundary. has been cbtained 
in [B3], as a consequence or' Coroilary 3. See also [GR;. 
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3. In tegra l  r epresen ta t ions  and Taylor's formula  for Sobolev 
functions. i f  f E Cx (Q) , then. integrating the Taylor formula multiplied 
by a weight q E CF(Q). J v  = 1, we have 

(11) J i y !  - ~p - ' f  (Y) 

or, in an equivalent farm: 

Now we prove 

LEMMA 4. Let f E Wml'(Q). If il,fl jCm f 1 ( y )  < cc, then the limit 

exists and is finite. If we set f ( y )  equal to this limit (compare (I)) ,  then 
formuias (11) and (12) hold at y. 

P roof .  For notational reasons we assume that diamQ = 1. we will be 
concerned only with (12). The proof in this case includes (11) as well. We 
can assume that f is defined in a neighborhood of Q. Let f, be a standard 
cor,volution approximation of f (with a C r  kernel). First we prove that 
the right hand side of (12) applied to  J ,  converges as E + 0 to the same 
expression but with fZ replaced by f .  This will be a direct consequence of 
the Lebesgue Dorninaced Convergence Theorem if we prove thai  for /cr j  = rn 
the integrais 

S Cfff.(- t ( 9  - x!tjl dz and /DofE(xji dx 
S Q 

are bounded by a constant independent of E and t .  
The estimate fsr ;he second ~ntegral f~ilows directly from 

LEMMA Tj. If g, zs a convoluizon npproxzrnatzon of 3 and UC I S  12 measur- 
able set. $hen 

6- g d c J y ( p )  d z .  J 
E 3, 

where E, = {x : ,list jx. 3) 5 4) .  
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P r o o f .  

This inequality follows from the observation that  supp d, c B(0, E) and 
idE/ 5 C Z - ~ .  If x E E and y  E B ( z ,  5). then y E EE and x E B(y,  E) .  Hence, 
 sing Fubini's thecrem, the lemma follows. 

Xow we estimate the first integral. '{Ve have 

where J i  denotes the homothety with center u and scale factor s. 
If 1  - t > E ,  then it follows readily from Lemma 5 and -&I; lVm f j (y) < cx, 

that shis integral is bounded by a constant independent of E and t .  
If 1 -  t 5 E,  then 

< - C" (notice that B(z .  E )  B ( y ,  2 ~ ) )  . 

We have proved the desired convergence. Hence the !eft hand side of 
(12) is convergent and, in consequence, f,(y) is convergent as E - 0 and 
the limit is independent of tine choice of the C r  convolution kernel. The 
averaged integral ;fB,,,,,f(s) dz is a convolution with kernel 2 = BI -IXB. 

Since such a kernel can be apprcximated by CF kernels, one can prove that 
the formula analogous to ( 1 2 )  holds if we replace D" f with (Da, i )  r J, for 
a 5 m in both sides of this inequality. Yamei:~. we write ( 1 2 )  for f * wk  

instead of f. where 711k is a sequence of C r  kernels approximating iv.. Then 
we ?ass to the limit as k -- =a. 

Now we can ?rove. just as in the smooth kernel case. that the limit of 
i j *u,)(y) exists and is equai t o  that for smooth kernels. This ends the proof 
(]I' Lemma 4. 

R e  m a r k. One can Trove Theorem 3 using Lemma 4 instead of Theo- 
rem 1 and Lemma 3. 
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Formula (11) plays a key role in the proof of the so-called integral rep- 
resentation formula for Sobolev functions ([KA4], p. 437, Lemma la ;  ~Bu]:  
Wa;,  . . Th. 1.1.10). 

It is easy to show that (11) holds a.e. for a Sobolev function. we have 
p r o ~ e d  much more. Yamely we have exhibited the points (probabiy not all) 
at which this formula holds. Hence we are in a position to prove the following 
stronger form of the integral representation theorem. 

THEGRELI 4. Let l? C Rn be c hounded domain,  starshaped wzt,h respect 
to a ball B R. Let J E Cr(B), j'p = 1. There ezzsts a smooth. bounded 
functzon J, c CCOC j f l  x J Z )  such that iff E W*mJ'(Q) and 

then 

R e m a r k .  To be more accurate, we should replace iZI1 IVm f l(y) by 
-VIdlVm f ~ ( y j ,  where d = dist(y. 8 9 ) .  

P r o o f  of T h e  o r e m 4. This follows easily from formula (11) by a 
linear change of variables in the integral on the right hand side. The details 
can be found in [KA], pp 438-439, [Buj or, in a slightly modified form, in 
il\ila], Th.  1.1.10. 

R e m a r k. Following the same ideas as in the proof of Theorem 2 we can 
obtain Taylor's formula for Soboiev functions. Namely, we can represent 
Taylor's remainder f (2) - TT-l f (y,\ as a potential type integral operator 
invoiving derivatives of the highest order m only. 

4. Bessel capacity and Lebesgue points. In this section we re- 
tail some resuits concerning Bessel capacity. IE the previous sections u-e 
were concerned with the set of Lebesgue points of a Sobolev function. I t  
is :veil known that almost ail points of xhe domain of a locally integrable 
function are Lebesgue points. In the case of Soboiev functions we can say 
more. Namely, we prove (see Theorem 8 below Ziemer's theorem i [ZI]. '221, 
1 3.10.3 and Remark 3.10.31. whicn gene~alizes the fac: that i f f  E W k . p .  

then Bk ,-almost ail points are Lebesg-le points. where .Elr,,, denotes Bessei 
capacity I Coroilary -1). 

The results of this section (7~1th aimost the same prcofs) can be found 
in [221. We added tnis ;ect:on h r  the sake of com~leteness. 

Let G,. 2 > 13. be zne kernel of the operator j i - 
Let L",?(Xn'  = [G, * g : g E LVR"'l) cienote the space of Bessel poten- 

L -  . " uals. i f  f f L " . P  ., -" = (3jQ * 9. men we :;eiine t,ie norm of J as i j f ' / , , ; ,  = igil,. 
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THEOREM 5. If ,k E N and 1 < p < x, then 
L ~ . P [ R " )  = W ~ , P ( X ~ )  . 

The proof of this classical theorem can be found in [S], Chapter 5 .  Th. 3.  
The Bessel capacity of a set E is defined by 

B,,,(E) = inf(jlgi/F : G, * _a > 1 ia E, g > 0 ) .  

Sets of zero B,,, capacity have HausdorE dimension less than or equal to 
n - o p .  Sameiy. one can prove the following 

THEOREM 6. If crp < n, then 

fln-,,(E) < cc * B,,?(E) = 0 ,  

Ba.,(E) = 0 5 Hn-crp+E(E) = O 
If ap > n, then  there ezzsts (2 constant C > 0  such that 

E i O  5 B,, (E)>C 

( H ,  denotes Hausdorfl measure j . 

The proof can be found in [XIej. Theorems 20 and 21. 
In the seqael we need the following 

THEOREM 7. If i < p < cx. a > 0 ,  and f E L".P(Rn), then 

Ba,,({5 : Mf(2) > t ) )  5 211 f I/:,, 
t P 

rohere the constant C depends o n  p and n only. 

P r o o f .  Let j = G ,  * g ,  / f / / , , ,  = Ilgl/,. Let d,  = B ~ O . T ) ~ - ' ~ ~ ! ~ ~ , .  We 
nave 

f f (yji dy = ul, * / f j (x j  2 ir, * G, * 1gI(x) 
B ( a , r j  

' < G, * *\Ig(x) . = Ga *L+* gl(xI - 
Hence 

MS(x)  I. G, * i l fg[x>.  

And so. by the definition of B,,,, 
C 

Ba,p((Al/if > t ) )  5 Ba.p({Gol * > t ) )  < i l ~ l d ( ~ / t ) i / P  P < - - t P  N I i  ' I & P  
The last inequaiity follows from the EIardy-Lilctlewood maximal function 
: heorem. 

THECREM 9. If 1 < p < x, cr > (1. and f S La.p(Rn), then for every 
5 > I! :here ezz.sts n n  open yet; Li c X T L  3 ~ ~ 3 ,  zhut B,>?(U) < E and 

$fA$j - 0 
n-o 
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R e  rn a r k .  The maximal function .%fk f is defined everywhere since f is 
defined everywhere by (1). 

P r o o f o f T h e o r e rn 8. There exists g E C r  (Wn)  such that 
I If - ~ ! l P a , ~  < 

Let h = f - g .  JF-e have 

rig f (x) 5 L $ l A g i ~ )  r - ~ l p [ x )  5 dlAg(x) + ?Aldh(z) .  

There exists R, > 0 such that 

LI,J~~~(X) < c for every x E Rn. 

Hence, as fol!osvs from Theorem 7 ,  we have 

If :, = 2-k_/C and -?, is taken with respect to  E , ;  then 

Let 
v = U{l~~j+f > E ~ ) .  

Z 

Evidently B ,  ,(V) < $ E .  

Xow. as is tvel! known, there exists an open set U > V such that 
B,,,(irj < E (see e.g. (221, Lemma 2.6.6). 

COROLLAP~Y- 4. I '  f E LaJ', ,where a > 0 and 1 < p < m, is dejined 
everywhere b y  (1). then i?,:p-almost all points are Lebesgue points of j". 

5 ,  A new proof of Michael and Ziemer's theorem. In this section 
we give a new. short proof of Michael and Ziemer's theorem (;hIZ], [Zl],  
;Z3], Th. 3.11.6). This theorem extends an earlier result of CalderCn and 
Z y g ~ u n d  (Corollary 2 iri ?;his paper' and of Liu [L]. In the proof we only need 
Cor~llary 1. Theorems 7 and 8 irom the previous sectlons and Whitney's 
extension theorem (:IT!. [MI, Th. 3.2, 3.3).  This proof is independent of 
Section :3 and is based on the proof of a weaker result. given in [HI] (see 
also [B '21 !. 

THEOREM 3 .  Let fi Xn be zn ope2 jet. 1 < p < CQ' 1 - < m < k .  n. k 
-:c p /  

Integers. and .f E Wioc [ Q I .  The?,. for sqjery s > 0, there exzsts a closed set 
F 1 ii and a juncizon 7 E C m ( 2 )  .such thut 

; 13) 3 k - m . p ( ~ i 2  I,,, F) < 5, 

( 1.4) D" f ( 2 )  = G"g(x:i :or L E F and / a /  5 m 

[ 1.5) J ; - u a Z W:F'"f;Z), 
(16) 1: - gilm,.p < 5 .  
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R e  m a r 1~ s. 1) The derivatives D" f are defined everywhere by (4). 
2 )  W7T'P(f2] stands for the completion of Cr(R) in the WmJ' norm. 

P r o o f  of  T h e o r e m  9. First assume that f E w"P(x") and f has 
a compact support in &Q (the cube with the same center as Q and with 
1/10 of its side length). Let, 

Evicientl:~ lWn '\, EJs' -+ 0 as s --+ x (the maximal function belongs to L? 
and this convergence follows directly froin the Chebyshev inequality). Let 
Gs be the set, defined as in Theorem 8, with the following properties: 

uniformly in iWn \ LrS for all !cuj = rn, 

and 

(17) 

Inequality (17) can be guaranteed since it follows easily from the fact that 
sets cf zero capacit:~ are also of zero iebesgue measure. It also follows directly 
from the more sophisticated fact that a suitable power of the Lebesgue 
nieasure is dornizated by B, ([hle]. Th. 30). 

Let EI, = E,  n (& '\ Cs). Corollary 1 implies that (D" f p),,,,<, sat- 
isfies the assumptions of TKhitney's extension theorem ([Wj, [hl]. TX. 3.2). 
Obviously, 

'Q\ - 0  a s s - x  B k - m . p \  

m  his follows 5asily from the definiti~n ar' the EL and from Theorem 7. 
Now we estimate Whitney's norm of , , h n  EL (see ;hl], Section 2.3 for 

notations 1 : 

tVe i l a ~ ~ e  DL'S' 5 s Ir, E: ' because D" ji < --vI( D"J\ ) .  SIoreover. as follows 



Pointwise inequalities for Sobolev functions 

from Corollary 1, 

< - C s ~ p 2 ~ 1 / f l G "  f i 5 C's 
E$ 

Hence 

< C s .  

If f is a TVhltney extension of a function f E Em(Ek). then 

(see [ l r l ] ,  Th .  3.5). Hence 

in Q for all a /  < m. Tlie formula which decnes f (see [MI. the beginning of 
tlie proof of Th. 3.2) and the fact that sup? f C &Q implies that f(x) = 0 
in Rn \ Q (for all suffciently large s). Thus 

This convergence follows from two facts: 

1. , D Y f P  -+ G ,  because IQ \, EL - 0. 
IP < ( f - l > ' p '  iofff, - ,,hi ,& '', EL/ -- O (see (17)) 2 .  J Q \ q  1 

The general case can be reduced to  the case with compact support by a 
standard partition of u~l i ty  argunent  as in Meyers-Serrin's theorem ([)IS], 
[Ma], Th. 1.1.511. [H3], Th. ii. 
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