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1. Introduction

Bayesian networks [19] (also called belief networks) are acyclic directed
graphs modeling probabilistic dependencies and independencies among vari-
ables. The graphical part of a Bayesian network reflects the structure of a
problem, while local interactions among neighboring variables are quantified
by conditional probability distributions. Bayesian networks proved to be
powerful tools for modeling complex problems involving uncertain knowledge.
They have been employed in practice in a variety of fields, including engi-
neering, science, and medicine with some models reaching the size of hundreds
of variables.

A major difficulty in applying Bayesian network models to practical prob-
lems is the effort that goes in model building, i.e., obtaining the model structure
and the numerical parameters that are needed to fully quantify it. The complete
conditional probability distribution table (CPT) for a binary variable with n
binary predecessors in a Bayesian network requires specification of 2" inde-
pendent parameters. For a sufficiently large n, eliciting 2" numbers from a
domain expert may be prohibitively cumbersome. One of the main advantages
of Bayesian networks over other schemes for reasoning under uncertainty is
that they readily combine existing frequency data with expert judgment within
their probabilistic framework. When sufficient amount of data is available,
they can be used to learn both the structure and the parameters of a Bayesian
network model [3,20,25]. The existing learning methods are theoretically sound
and are guaranteed to produce very good results given sufficiently large data
sets. However, in case of small data sets, quite typical in practice, learned
models can be of lesser quality.

The focus of this paper is learning CPTs in Bayesian network models from
small data sets given an existing network structure. Learning CPTs amounts
essentially to counting data records for different conditions encoded in the
network. Roughly speaking, prior probability distributions are obtained from
relative counts of various outcomes for each of the nodes without predecessors.
Conditional probability distributions are obtained from relative counts of
various outcomes in those data records that fulfill the conditions described by a
given combination of the outcomes of the predecessors (we will refer to this
combination of parents’ outcomes as conditioning case). While prior proba-
bilities can be learned reasonably accurately from a database consisting of a
few hundred records, learning CPTs is more daunting. In small data sets, many
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conditioning cases are represented by too few or no data records and they do
not offer sufficient basis for learning conditional probability distributions. In
cases where there are several variables directly preceding a variable in question,
individual combinations of their values may be very unlikely to the point of
being absent from the data file. In such cases, the usual assumption made in
learning the parameters is that the distribution is uniform, i.e., the combination
is completely uninformative.

A CPT offers a complete specification of a probabilistic interaction that is
powerful in the sense of its ability to model any kind of probabilistic depen-
dence between a discrete node Y and its parents Xj,...,X,. However, when
learning the conditional probability distribution from data sets, this precision
can be illusory. If the size of the data set is small, many of the CPT entries will
have be learned from an insufficient number of records, undermining the very
purpose of a full specification. In this paper, we propose enhancing the process
of learning the CPTs from data by combining the data with structural and
numerical information obtained from an expert. Given expert’s indication that
an interaction in the model can be approximated by a Noisy-OR gate [8,19], we
first estimate the Noisy-OR parameters for this gate. Subsequently, in all cases
of a small number of records for any given combination of parents of a node,
we generate the probabilities for that case as if the interaction was a Noisy-OR
gate. Effectively, we obtain a conditional probability distribution that has a
higher number of parameters. At the same time, the learned distribution is
smoothed out by the fact that in all those places where no data is available to
learn it, it is reasonably approximated by a Noisy-OR gate. Noisy-OR distri-
butions approximate CPTs using fewer parameters and learning distributions
with fewer parameters is in general more reliable [7]. While applications of the
Noisy-OR gates in medical Bayesian models have already been recorded in the
past (e.g., [6,13,24]), our method is novel.

We test our approach on HEPAR 11, a Bayesian network model for diagnosis
of liver disorders consisting of 73 nodes. The parameters of HEPAR 11 are
learned from a data set of 505 patient cases. We show that the proposed
method leads to an improvement in the quality of the model as measured by its
diagnostic accuracy. While the observed improvement in accuracy is modest
(only 6.7% and 14.3% in comparison to a multiple-disorder model and single-
disorder model, respectively), it is obtained at a negligible cost, which makes
our method attractive in practice.

The remainder of this paper is structured as follows. Section 2 introduces the
Noisy-OR gate. Section 3 describes our data set and our model. Section 4 il-
lustrates the structural modifications that we performed on the model in order
to apply our method. Section 5 explains the details related to obtaining the
Noisy-OR parameters. Finally, Section 6 compares diagnostic accuracy of a
model learned using the direct CPT method to models whose parameters are
learned using our method.
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2. The Noisy-OR gate

Some types of conditional probability distributions can be approximated by
canonical interaction models that require fewer parameters. Very often such
canonical interactions approximate the true distribution sufficiently well and
can reduce the model building effort significantly.

One type of canonical interaction, widely used in Bayesian networks, is
known as Noisy-OR gate [5,8,19]. Noisy-OR gates are usually used to describe
the interaction between n causes X;,X>,...,X, and their common effect Y. 2
The causes X; are each assumed to be sufficient to cause Y in absence of other
causes and their ability to cause Y is assumed independent of the presence of
other causes.

The simplest and most intuitive canonical model is a binary Noisy-OR gate
[19], which applies when there are several possible causes X, X;,...,X, of an
effect variable Y, where (1) each of the causes X; has a probability p; of being
sufficient to produce the effect in the absence of all other causes, and (2) the
ability of each cause being sufficient is independent of the presence of other
causes. The above two assumptions allow us to specify the entire conditional
probability distribution with only n parameters py, ps, ..., p,. p; represents the
probability that the effect Y will be true if the cause X; is present and all other
causes X, j # i, are absent. In other words,

p,-:Pr(y|fl,)_cz,...,x,-,...,)_c,,_l,)_c,,). (1)

It is easy to verify that the probability of y given a subset X,, of the X;s that are
present is given by the following formula:

Pry|X,) =1- ] (1 -p). )

iXieXp

This formula is sufficient to derive the complete CPT of Y conditional on its
predecessors X1, X5, ..., X,.

Henrion [8] proposed an extension of the binary Noisy-OR gate for situa-
tions where the effect variable can be true even if all its causes are false and
called this extended model a leaky Noisy-OR gate. Leaky Noisy-OR is appli-
cable to situations in which a model does not capture all possible causes of Y.
Arguably, almost all situations encountered in practice belong to this class.

2 Throughout this paper, upper case letters (e.g., ¥) and indexed upper-case letters (e.g., X;) will
stand for random variables. Lower case letters will denote their outcomes (e.g., x is an outcome of a
variable X). In case of binary random variables, the two outcomes will be denoted by lower case
and negated lower case (e.g., the two outcomes of a variable X will be denoted by x and x). Bold
upper case letters (e.g., X) will denote sets of variables.
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This can be modeled by introducing an additional parameter py, called the leak
probability, the combined effect of all unmodeled causes of Y.

pOZPr(y|x17-)—C27"'a)_cn)' (3)

po represents the probability that the effect Y will occur spontaneously, i.e., in
absence of any of the causes that are modeled explicitly.

Fig. 1 shows an example of a Noisy-OR gate for the node Hepatomegaly
(increased liver size). Each of the parents of the node, Steatosis, Toxic hepatitis,
and Reactive hepatitis can cause Hepatomegaly by itself, although their influ-
ence is probabilistic. Hepatomegaly can be also caused by some unmodeled
factors, which are captured by a leak probability.

In the leaky Noisy-OR gate, p; (i # 0) no longer represents the probability
that X; causes Y given that all the other causes are absent, but rather the
probability that Y is present when X; is present and all other explicit causes (all
the X;s such that j # i) are absent.

Let p! be the probability that Y will be true if X; is present and every other
cause of Y, including unmodeled causes, are absent. p! is the probability that X;
causes Y. We have

1—p;
1-p = .. 4
L )

From here, we have
pi=p;+ (1= p)po. (5)

It follows that the probability of Y given a subset X,, of the x; which are present
is given in the leaky Noisy-OR gate by the following formula:

1—p
Pr(Y|X,) = 1= (1—po) [T 7—=
ixi€X) Po

Diez [4] proposed an alternative way of eliciting the parameters of a leaky Noisy-
OR gate, which amounts essentially to asking the expert for the parameters p/ as
defined by Eq. (4). The difference between the two proposals has to do with the
leak variable. While Henrion’s parameters p; assume that the expert’s answer
includes a combined influence of the cause in question and the leak, Diez’s
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Hepatitis
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Fig. 1. An example of the Noisy-OR gate.

Reactive
Hepatitiz




170 A. Onisko et al. | Internat. J. Approx. Reason. 27 (2001) 165-182

parameters p; explicitly refer to the mechanism between the cause in question
and the effect with the leak absent. Conversion between the two parameters is
straightforward using Eq. (5). If the Noisy-OR parameters are learned from
data, Henrion’s definition is more convenient, as the observed frequencies in-
clude the leak probability and translate directly into parameters p;.

Two extensions of the binary Noisy-OR gate to nodes including multiple
outcomes have been proposed, the first independently by Diez [4] and Henrion
[8] and the second by Srinivas [26]. In our work, we followed the definition of
Henrion and Diez. We refer the reader to the original articles and a forth-
coming article by Diez and Druzdzel [5] for the details of these extensions.

3. The HEPAR 11 model and data

Support of a diagnosis in the management of liver disorders has been the
focus of a number of research projects in Artificial Intelligence (e.g., [1,2,10—
12,22,23,28]). The uniqueness of our approach to this problem is that we are
applying decision-theoretic techniques and base our diagnosis on a causal
Bayesian network model of the domain of liver disorders.

The starting point of the experiment described in this paper was a single-
disorder version of the HEPAR 11 model, which we describe in the remainder of
this section. The HEPAR 11 project [15,16] aims at applying decision-theoretic
techniques to diagnosis of liver disorders. It is a successor of the HEPAR project
[2,27], conducted at the Institute of Biocybernetics and Biomedical Engineering
of the Polish Academy of Sciences in collaboration with physicians at the
Medical Center of Postgraduate Education in Warsaw. The HEPAR system was
designed for gathering and processing clinical data of patients with liver dis-
orders and, through its diagnostic capabilities, reducing the need for hepatic
biopsy. An integral part of the HEPAR system is its database, created in 1990
and thoroughly maintained since then at the Gastroentorogical Clinic of the
Institute of Food and Feeding in Warsaw. The current database contains over
800 patient records and its size is still growing. Each hepatological case is
described by over 200 different medical findings, including patient self-reported
data, results of physical examination, laboratory tests, and, finally, a histop-
athologically verified diagnosis.

One of the assumptions made in the database that was available to us is that
every patient case is ultimately diagnosed with only one liver disorder. In other
words, the data set assumed that all disorders were mutually exclusive. This
assumption led us to the development of a single-disorder diagnosis model. We
elicited the structure of the model (i.e., we selected variables from the data set
and established dependencies among them) based on medical literature and
conversations with our domain expert, a hepatologist Dr. Hanna Wasyluk
(third author) and two American experts, a pathologist, Dr. Daniel Schwartz,
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and a specialist in infectious diseases, Dr. John N. Dowling, from the Uni-
versity of Pittsburgh. We estimate that elicitation of the structure took ap-
proximately 40 h of the interviews with the experts, of which roughly 30 h were
spent with Dr. Wasyluk and roughly 10 h spent with Drs. Schwartz and
Dowling. This includes model refinement sessions, where previously elicited
structure was reevaluated in a group setting. The model is a causal Bayesian
network involving a subset of variables included in the HEPAR database. The
most recent single-disorder diagnosis version of the model [17], consists of 66
feature nodes and one disorder node covering, in addition to the hepatologi-
cally healthy state, nine mutually exclusive liver disorders: Toxic hepatitis,
Reactive hepatitis, Functional hyperbilirubinemia, Chronic hepatitis (active and
persistent), Steatosis hepatis, Primary biliary cirrhosis (PBC), and Cirrhosis
(compensate and decompensate).

The numerical parameters of the model, i.e., the prior and conditional
probability distributions, were extracted from the HEPAR database. The data
used to extract the numerical parameters contained 505 patient records. All
continuous variables were discretized by our expert. One of the assumptions
that we used in learning the model parameters was that missing values for
discrete finding variables corresponded to state absent (e.g., a missing value for
Jaundice was interpreted as absent). In case of continuous variables, a missing
value corresponded to a normal value, elicited from the expert (e.g., a missing
value for Bilirubin was interpreted as being in the range of 0-1) as the typical
value for a healthy patient. We followed here the observation reported by Peot
and Shachter [21] that missing values in medical data sets are not missing at
random and are either indications of normal or less severe symptoms.

Given a patient case, i.e., values of some of the modeled variables, such as
symptoms or test results, the system computes the posterior probability dis-
tribution over the possible liver disorders. This probability distribution can be
directly used in diagnostic decision support.

4. Structural changes to the HEPAR 11 model

In order to be able to apply parametric probability distributions, such as
Noisy-OR gates, in learning the network parameters, we had to restructure the
network in such a way that various nodes express either binary propositions or
various grades of intensity of some quantity. The disorder node in the single-
disorder diagnosis version of the HEPAR 11 model is a categorical variable with
10 outcomes that is not suitable for a parametric probability distribution. One
way of preparing the structure for these distributions is by breaking the dis-
order node into separate nodes for each of the disorders. This modification
addresses two problems: it relaxes the assumption of mutual exclusivity of
disorders and makes the nodes more amenable to parametric quantification.
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We have concentrated the structural changes on the disorders. We split the
disorder node with its nine mutually exclusive disorders into seven nodes: five
binary nodes (Toxic hepatitis, Reactive hepatitis, Steatosis, Functional hyper-
bilirubinemia and PBC) and two three-valued nodes (Chronic hepatits and
Cirrhosis). The feature nodes that we originally modeled as causes/effects of the
single-Liver Disorder variable were broken down into several groups, specific
for each of the nine disorders. As far as the data used in learning the param-
eters are concerned, we worked with 66 findings and 505 records in the dat-
abase. The resulting model consisted of 73 nodes (66 feature nodes and seven
disorder nodes).

Fig. 2 shows simplified fragments of both models and gives an idea of the
structural changes performed in the transition from the single-disorder to the
multiple-disorder versions of the model. In particular, the models share each of
the four risk factors (Reported history of viral hepatitis, History of alcohol
abuse, Gallstones, and Hepatotoxic medications) and six symptoms and test
results (Fatigue, Jaundice, Bilirubin, Alkaline phosphatase, Ascites, and Total
proteins). The single-Liver disorder node is replaced by four disorder nodes
(Chronic hepatitis, Steatosis, Cirrhosis, and Toxic hepatitis).

A consequence of our structural changes was that they decreased the
number of numerical parameters required to quantify the model. The main
difference between the models is that some of the four new disorder nodes are
not connected with some of the risk factors and symptoms. While adding a
node might increase the number of parameters, it is compensated by removing
an outcome of a variable and removing some arcs. The latter especially leads
to a logarithmic decrease in the size of a CPT. Our transformation resulted in
a significant reduction of the number of numerical parameters necessary to
quantify the network. This, in turn, increased the average number of records
for each combination of parents in a CPT. Indeed, the multiple-disorder
version of the model required only 1,847 parameters (we counted u = 89.5
data records per parent combination) compared to the 3714 parameters
(1 = 16.8 data records per parent combination) needed for the single-disorder
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Fig. 2. Simplified fragments of the HEPAR 11 networks: single-disorder diagnosis (left) and multiple-
disorder diagnosis (right) version.
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Fig. 3. Distribution over the number of data records per parent combination for the single-disorder
and the multiple-disorder models.

version of the model. Fig. 3 shows the distribution of the number of data
records per parent combination for the single-disorder and the multiple-dis-
order models. We can see that over 50% of the parent combinations in the
single-disorder model had zero records. In the multiple-disorder model this
number is dramatically smaller — only 0.1% of all cases involved zero records
and there is quite a high proportion of conditional probability distributions
for which tens of records were available. With an increase in the average
number of records per parent combination, we can expect the quality of the
model parameters to improve.

Unfortunately, structural changes also introduced certain problems. The
fact that we used a data set in which each patient record had a single-disorder
diagnosis placed us before a difficulty in assessing CPTs of nodes that had
several disorder nodes as parents — there were no records in the database for
conditions involving combinations of various disorders. We applied a simple
solution, in which we included in the calculation all records that described the
disorders present in the condition. For example (see Fig. 2), when computing
the conditional probability distribution of the node Fatigue given presence of
both Chronic hepatitis and Steatosis, we used both: records that were diag-
nosed as Chronic hepatitis and records that were diagnosed as Steatosis. This
amounted to averaging the effect of various disorders. We also tried taking the
maximum effect of all disorders present in the condition, with a very modest
improvement in performance. Another limitation of the HEPAR data that had
a serious implication on our work is that mutual exclusivity of disorders did
not allow us to extract dependencies among disorders. Hepatology often deals
with disorders that are consequences of the previous disorders, e.g., a chronic
liver disorder implies hepatic fibrosis which can further cause cirrhosis. In the
future we plan to model and quantify these dependencies by combining data
with expert judgment.
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5. Obtaining parameters for Noisy-OR gates

For each combination of a node and its parents (a family) in the multiple-
disorder version of the HEPAR 11 model, we verified with our expert whether
the interaction could be approximately modeled by a Noisy-OR gate. The
expert identified 25 nodes (from among the total of 62 nodes with parents)
that could be reasonably approximated by Noisy-OR gates. Testing the
Noisy-OR assumption for each of the gates with the expert was quite
straightforward once the expert had understood the concept of independence
of causal interaction. When deciding whether an interaction can be approxi-
mated by a Noisy-OR gate, we followed the criteria proposed by Diez [6]. An
interaction can be approximated by a Noisy-OR gate if it meets the following
three assumptions: (1) the child node and all its parents must be variables
indicating the degree of presence of an anomaly, (2) each of the parent nodes
must represent a cause that can produce the effect (the child variable) in the
absence of the other causes, (3) there may be no significant synergy among the
causes.

Each of the such identified Noisy-OR gates was subject to the following
learning enhancement. Whenever there were sufficiently many records for a
given conditioning case, we used these records to learn a corresponding ele-
ment of the CPT. When there were no or very few data records, we generated
the CPT entry from our Noisy-OR parameters (Sections 5.1 and 5.2 describe
how we obtained these). Effectively, the complete CPT, once learned, was a
general CPT with a fraction of its elements generated using the Noisy-OR
assumption. The assumption that we made was that a general conditional
probability table will fit the actual distribution better than a Noisy-OR dis-
tribution. Noisy-OR will fit better than a uniform distribution in those cases
when there was not enough data to learn a distribution. In the following two
sections we describe two methods of obtaining the Noisy-OR parameters of
the gates in question.

5.1. Obtaining Noisy-OR parameters from data

We learned the Noisy-OR parameters from data for each of the 25 Noisy-
OR gates identified by our expert using Eq. (1). We learned the leak pa-
rameter using Eq. (3). Obtaining the parameters from records that contain a
combination of values of parent outcomes would be less reliable, as there
would be certainly fewer such records (a conjunction of two events is at most
as likely as each of these events in separation). We tried to obtain better
estimates of the Noisy-OR parameters by fitting the Noisy-OR distribution to
a larger fragment of a CPT but this simple approach yielded the best per-
formance.
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5.2. Expert assessments of Noisy-OR parameters

For each of the 25 Noisy-OR gates identified by the expert, we also obtained
all numerical parameters using direct expert elicitation. There was a total of
189 parameters and the assessment took a total of about 4 h of expert time.

Initially, we posed the expert two types of questions, corresponding to the
two theoretical formalizations of the Noisy-OR gate proposed in the literature.
The first type of questions focused on the parameters p; (Eq. (1)) and was based
on Henrion’s [8] definition. For the example network fragment in Fig. 1, it
amounted to:

What is the probability that Toxic hepatitis results in Hepatomegaly when
neither Reactive hepatitis nor Steatosis are present?

The second type of questions focused on parameters p; (Eq. (4)) and was
based on Diez’s [4] definition. For the example network fragment in Fig. 1, it
amounted to:

What is the probability that Toxic hepatitis results in Hepatomegaly when
no other cause of Hepatomegaly is present?

We stumbled across two interesting empirical questions: (1) which of the two
definitions is more intuitive for a human expert, and (2) which leads to better
quality assessments. While we have not tested (2), in the course of elicitation
our expert clearly developed preference for Diez’s definition. Using Eq. (5), we
subsequently converted the parameters elicited from the expert in Diez’s for-
mat into Henrion’s format, which is the current native format of our software,
GeNle and SMILE.

While we have no objective basis for comparing the quality of expert as-
sessment to the numbers obtained from the data (please note that we evaluated
our model using the data, so the best we can say is whether the expert’s
judgments matched the data or not), we observed a systematic difference be-
tween the two: our expert provided usually higher estimates than those learned
from the data (u = 0.32 versus u = 0.19 for the expert and data, respectively).

6. Comparison of diagnostic accuracy of the models

We performed a series of empirical tests of diagnostic accuracy of various
versions of the model. In order to make the comparison fair, we used the same
data set for learning the parameters of each of the models. Our data set con-
tained 505 patient records classified in nine different disorder classes. In each
case we used the same measure of accuracy: diagnostic performance using the
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leave-one-out method [14]. Essentially, given n = 505 data records, we used
n — 1 of them for learning model parameters and the remaining one record to
test the model. This procedure was repeated n times, each time with a different
data record. In our tests, we used as observations only those findings that were
actually reported in the data (i.e., we did not use the values that were missing,
even though we used their assumed values in learning). The diagnosis for each
patient case was calculated given the evidence, i.c., a subset of the 66 possible
observations such as symptoms, signs and the laboratory tests results. These
data did not include the results of a biopsy.

By accuracy we mean the proportion of records that were classified correctly.
Whenever we report accuracy within a class, we report the fraction of records
within that class that were classified correctly.

6.1. Single- versus multiple-disorder diagnosis model

Our first empirical test focused on a comparison of the diagnostic perfor-
mance for the single-disorder and the multiple-disorder models. We were in-
terested in overall performance of the models in terms of classification accuracy
(each of the disorders was viewed as a separate class that the program predicted
based on the values of all the other variables). This test is very conservative
against the multiple-disorder model, as this is the task for which the single-
disorder version of the model was designed. We were interested in both
(1) whether the most probable diagnosis indicated by the model is indeed the
correct diagnosis, and (2) whether the set of k most probable diagnoses con-
tains the correct diagnosis for small values of k (we chose a “window” of
k=1,2,3, and 4). The latter focus is of interest in diagnostic settings, where a
decision support system only suggest possible diagnoses to a physician. The
physician, who is the ultimate decision maker, may want to see several alter-
native diagnoses before focusing on one. Results were for the multiple-disorder
version of the model approximately 45% (compared to 42% for the single-
disorder version), 59% (57%), 70% (68%), and 77% (78%) for k = 1,2,3, and 4,
respectively. In other words, the most likely diagnosis indicated by the model
was the correct diagnosis in 45% of the cases. The correct diagnosis was among
the four most probable diagnoses as indicated by the model in 77% of the cases.
The performance of both versions of the model was similar, with the multiple-
disorder version being more accurate. While this performance may not seem
spectacular, we would like to point out that the problem that our model ad-
dresses is hard. The clinic, in which the data is collected, is a specialist clinic
and its patient population consists of typically hard cases that are referred to it
by other medical centers. The performance of the ‘naive Bayes’ approach [9]
applied to our problem is 41% giving an indication of the difficulty of the
problem.
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Fig. 4. Diagnostic accuracy as a function of the number of disorder cases in the database (class size)
for the single- and multiple-disorder diagnosis models, window = 1.

In order to gain some insight into when multiple-disorder version of the model
is better, we looked at the relationship between the number of records in the
database for each class and the diagnostic accuracy within that class. Fig. 4 shows
this relationship for the window of size 1 (i.e., the most likely disorder). It is clear
that accuracy of both models increases significantly with the number of data
records. Another interesting trend is that the multiple-disorder model performed
often better than the single-disorder model for those disorders that had many
records. This promises a higher diagnostic value of our approach when the
available data set is sufficiently large, i.e., when the quality of parameters is high.

6.2. Plain CPT model versus CPT smoothed by Noisy-OR parameters

Our second test aimed at comparing the diagnostic accuracy of the plain
multiple-disorder model to the models whose probabilities were smoothed out
using the Noisy-OR parameters. Here, we focused on three models: (1) the
plain multiple-disorder model (i.e., general CPT) and two models enhanced
with: (2) Noisy-OR parameters obtained from data, and (3) Noisy-OR pa-
rameters assessed by the expert.

As explained in Section 3, our enhancement process replaced those elements
of the CPT that had not enough data records to learn a distribution reliably,
i.e., when the number of records found in the data set was lower than a re-
placement threshold (we specified this threshold as a percentage of all records in
the data set, i.e., a threshold of 10% corresponds roughly to 50 records). Fig. 5
shows the relationship between the replacement threshold and the percentage
of all CPT entries that were replaced by the Noisy-OR distributions. The
percentage of replaced CPT entries seems to be directly proportional to the
replacement threshold.

Fig. 6 shows the results for the three tested models for the window size
of 1. It pictures the diagnostic accuracy of the models as a function of the
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Fig. 6. Diagnostic accuracy as a function of the replacement threshold, window = 1.

replacement threshold. In addition we included the results for the single-dis-
order model. It appears that the highest accuracy was reached by the model
whose CPTs were enhanced with the Noisy-OR parameters learned from data.
The highest accuracy achieved by the models was 45%, 48%, and 46% for the
CPT model, the data Noisy-OR model, and the expert Noisy-OR model re-
spectively.

Fig. 7 shows the performance within each class for the three models. Again
we observed that for almost each of the disorders, the data Noisy-OR model
performed better than the other models.

7. Discussion

The transformation of the model performed in order to prepare it for Noisy-
OR gates has shown that Bayesian network models readily accommodate
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Fig. 7. Diagnostic accuracy as a function of the number of disorder cases in the database (class size)
for the CPT and two versions of the model with Noisy-OR parameters.

multiple-disorder diagnoses. It was relatively easy to derive the multiple-dis-
order version of the model from the existing single-disorder version. We esti-
mate that the total time spent with the expert was less than 10 h, one fourth of
the original effort to build the network.

Diagnostic accuracy of the multiple-disorder model enhanced with the
Noisy-OR parameters was 6.7% better than the accuracy of the plain multiple-
disorder model and 14.3% better than the single-disorder diagnosis model. This
increase in accuracy has been obtained with very modest means — in addition to
structuring the model so that it is suitable for Noisy-OR nodes, the only
knowledge elicited from the expert and entered in the learning process was
which interactions can be viewed as approximately Noisy-OR. This knowledge
was straightforward to elicit. We have found that whenever combining expert
knowledge with data, and whenever working with experts in general, it pays off
generously to build models that are causal and reflect reality as much as pos-
sible, even if there are no immediate gains in accuracy.

We have also observed that the diagnostic accuracy of the model based on
numbers elicited from the expert (as opposed to learned from data) was quite
good for diseases with well understood risk factors and symptoms. The accu-
racy tends to be lower in case of those diseases whose mechanisms are not
exactly known, for example Functional hyperbilirubinemia, Reactive hepatitis,
or PBC, even if the number of records in the data set was very small.

Our future research plans include expert verification of the probability dis-
tributions of those nodes that have several disorder nodes as parents. As we
mentioned above, these parameters cannot be learned from our data and the
arbitrary assumptions that we made in the learning process may have had a
negative effect on the diagnostic performance of the system. We also plan to
focus on disorder-to-disorder dependencies. This information is lacking from
the database, so here again we will have to rely on expert judgment. A question
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that we find worth pursuing is whether there are any properties of individual
nodes that influence whether diagnostic accuracy of the model will be served by
Noisy-OR or CPT used in individual cases.
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