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                                Chemistry 1480, Hour Exam 2, March 14, 2007. 
 
This exam consists of four (4) problems. Please work them all, and provide brief descriptions of your 
reasoning as appropriate. GOOD LUCK!  [Note the designation 1( )Bk Tβ −≡ , where Bk  is Boltzmann’s 
constant and T is the absolute temperature in degrees K.]   
 
 
 
1)  [30%] Consider a noninteracting lattice gas, in which N particles (“molecules”) occupy M sites.  See 
Fig. 1 for a 2D illustration.  In 3D the volume of each site (“cell”) is equated with the volume taken up by 
one molecule. 
 
For such a system in thermal equilibrium at temperature T, the entropy can be shown to be given by the 
formula: 
 
                                         !

!( )!lnB
M

N M NS k −=                               [1] 

 
[Note: You do not have to prove this here!] 
 
a) Use Stirling’s approximation to show that Eq. 1 implies: 
 
            [ ln (1 ) ln(1 )]BS Mk θ θ θ θ≅ − + − −  ; /N Mθ ≡                  [2] 
 
b) Under normal (“ideal”) gas phase conditions the particle density is low, i.e., / 1N M << .  If so, then 
the 2nd term in Eq. 2 can be neglected, and ln( / )ln BB N MS Mk Nkθ θ≅ − = − .  Using this formula for 
the entropy of the lattice gas, consider a transition in which the gas is transferred from a container 
consisting of 1M  sites to a container consisting of 2M  sites at the same temperature.  Calculate 

2 1S S SΔ ≡ −  for this process.  Show that your results are consistent with the predictions of classical 
thermodynamics, namely, 2 1ln( / )BS Nk V VΔ = , where 1V  is the volume of container 1, and analogously 
for 2V . 
 
  
 
 
 
 
 
                                   
                                     Fig. 1: Lattice gas model with N=3 and M=16. 
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2) [20%] Benzene, 6 6C H , is a planar molecule with hexagonal symmetry.  Consider an idealized version 
of this molecule, “Benzane”, indicated in Fig. 2.  Benzane is also a planar molecule with hexagonal 
symmetry: essentially, we have fused each C-H group into an effective “atom” of mass m for the sake of 
geometric simplicity.  Calculate the three principal moments of inertia for Benzane (cf. Fig. 2 for axis 
labels).  In particular, show that: i) x yI I= , and ii) 2z xI I= . 
 
 
 
 
 
 

Fig. 2.  Benzane: a perfect hexagon. All “atoms” have mass m; all 
bond lengths are R.  Dashed circle indicates z axis pointing out of 
the plane. 
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(3) [25%] Consider the isotopic exchange reaction: 
 

2 2( ) ( ) 2 ( )H g D g HD g+ →  
 
 (a) The equilibrium constant Kc for this reaction (in the direction indicated) can be written in terms of 

the molecular partition function 
2Hq , 

2Dq , and HDq , describing H2, D2, and HD, respectively, as 
 

2 2

2( / )
( / )( / )

HD
c

H D

q VK
q V q V

=  

 
  (V being the volume of the container).  Show how this constant is related to the concentrations of 

the three gases at equilibrium, i.e., write the law of mass action for this reaction. 
 
 (b) For each gas species involved, the molecular partition function is a product of factors for 

translational, rotational, vibrational, and electronic motion.  For example, 

2 2 2 2 2
.elect trans rot vib

H H H H Hq q q g q=   Furthermore, since D is an isotope of H (they have the same number of 
protons and electrons), the chemical bonding characteristics of a molecule is unaltered if D is 
substituted for H, or vice versa.  This means that the electronic factors cancel out the equilibrium 
constant expression, and Kc can be written as 

 
trans rot vib

cK K K K=  
 

  with 
 

2 2 2 2 2 2

2 2 2( / ) ( ) ( )
; ;

( / )( / )

trans rot vib
trans rot vibHD HD HD

trans trans rot rot vib vib
H D H D H D

q V q q
K K K

q V q V q q q q
= = =  

 
   
              (i) Show that: 
 

2 2

3

3/ 2( )
trans HD

H D

mK
m m

=  

 
   where mHD is the mass of HD, etc. 
 
  (ii) Because the chemical bonding properties of all three species are the same, their equilibrium 

bond lengths are the same.  Show that this implies: 
 

2 2

24rot HD

H D

K μ
μ μ

=  

 
   where HDμ is the reduced mass of HD, etc. 
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(4) [25%] Calculate the molar heat capacity of gaseous O=C=O (carbon dioxide, a linear molecule) at 

300º K.  Assume the total heat capacity can be broken into translational, rotational, and vibrational 
contributions using the formulas developed in class for each type of motion.  The only molecular data 
needed are the four vibrational frequencies of carbon dioxide, namely 1337 cm-1 (symmetric stretch), 
2349 cm-1 (asymmetric stretch), and two degenerate bend modes each with vibrational frequency 667 
cm-1. 

 
      Note:  (i) The following conversion factor may be of use: At 300K, 1207Bk T cm−≅ . 
                  
                 (ii)To compute the vibrational contributions you will need to evaluate the function       
                 2 2( ) / sinh ( )f y y y=  at certain values of y. A tabulation of this function is given in Table 1. 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. 


