Chem. 1410, Problem Set 9; solution key.

1) a) The two basis functions are orthogonal, and are unit-normalized. That is, $\int d x \phi_{i}(x) \phi_{j}(x)=\delta_{i j}$ for $i=1,2$. [Recall that $\delta_{i j}$ is the Kronecker delta: $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$.] Thus, the overlap matrix \mathbf{S} becomes the 2 x 2 unit matrix and "disappears" from the problem.
b) Using the property: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \phi_{j}(x)}{\partial x^{2}}=j^{2} E_{g s}^{P B} \phi_{j}(x), j=1,2$, then: $H_{j k}=E_{g s}^{P B} j^{2} \delta_{j k}$.
c) By straightforward addition, one obtains:

$$
\boldsymbol{H} \equiv\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]+\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]=E_{g s}^{P B}\left[\begin{array}{cc}
1 & -\gamma \\
-\gamma & 4
\end{array}\right]
$$

d)The eigenvalues of \boldsymbol{H} are $E_{1,2}=E_{g s}^{P B} \lambda_{1,2}$, where $\lambda_{1,2}$ are the two roots of the quadratic equation:

$$
(1-\lambda)(4-\lambda)-\gamma^{2}=0
$$

Thus,

$$
\lambda_{1}=\frac{5-\sqrt{9+4 \gamma^{2}}}{2} \quad, \lambda_{2}=\frac{5+\sqrt{9+4 \gamma^{2}}}{2}
$$

Obviously, $\lambda_{1}<\lambda_{2}$, and hence:

$$
E_{G S}(\gamma) / E_{g s}^{P B}=\frac{5-\sqrt{9+4 \gamma^{2}}}{2}
$$

A plot of $E_{G S}(\gamma) / E_{g s}^{P B}$ is shown in Fig. 1: clearly, this ratio is less than 1 for any non-zero value of the perturbation γ. The ground state energy of this system is thus lowered from the standard particle in the box value for any non-zero value of γ.

Fig. 1
e) We seek the eigenvector $\binom{c_{1}}{c_{2}}$ arising from the matrix equation:

$$
E_{g s}^{P B}\left[\begin{array}{cc}
1 & -\gamma \tag{A1}\\
-\gamma & 4
\end{array}\right]\binom{c_{1}}{c_{2}}=E_{g s}^{P B} \lambda_{1}\binom{c_{1}}{c_{2}}
$$

This vector is specified by the ratio:

$$
r=c_{2} / c_{1}=2 \gamma /\left(3+\sqrt{9+4 \gamma^{2}}\right)
$$

[Note: The ratio c_{2} / c_{1} is uniquely determined by Eq. [A1], but the absolute value is not.]
f) The approximation to the unit-normalized ground state eigenfunction arising from the trial function adopted here is thus:

$$
\psi_{G S}(x)=\frac{1}{\sqrt{1+r^{2}}}\left[\phi_{1}(x)+r \phi_{2}(x)\right]
$$

For the value $\gamma=0.5, \psi_{G S}(x)$ is plotted vs. $\phi_{1}(x)$ in Fig. 2. Note that with a linear trough $w(x)=k(x-L / 2)$ in the internal region of the box [note: $w(x)$ has a positive slope when k (or γ) is
positive], the ground state eigenfunction shifts so as to "sit in" the trough (where the potential is lower) to some degree.

Fig. 2. For the value $\gamma=0.5, \psi_{G S}(x)$ is plotted vs. $\phi_{1}(x)$.

