IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009 1

The Impact of Design and Code Reviews
on Software Quality:
An Empirical Study Based on PSP Data

Chris F. Kemerer, Member, IEEE Computer Society, and Mark C. Paulk, Senior Member, |IEEE

Abstract—This research investigates the effect of review rate on defect removal effectiveness and the quality of software products,
while controlling for a number of potential confounding factors. Two data sets of 371 and 246 programs, respectively, from a Personal
Software Process (PSP) approach were analyzed using both regression and mixed models. Review activities in the PSP process are
those steps performed by the developer in a traditional inspection process. The results show that the PSP review rate is a significant
factor affecting defect removal effectiveness, even after accounting for developer ability and other significant process variables. The
recommended review rate of 200 LOC/hour or less was found to be an effective rate for individual reviews, identifying nearly two-thirds
of the defects in design reviews and more than half of the defects in code reviews.

Index Terms—Code reviews, design reviews, inspections, software process, software quality, defects, software measurement, mixed

models, personal software process (PSP).

1 INTRODUCTION

UALITY is well understood to be an important factor in

software. Deming succinctly describes the business
chain reaction resulting from quality: improving quality
leads to decreasing rework, costs, and schedules, which all
lead to improved capability, which leads to lower prices
and larger market share, which leads to increased profits
and business continuity [14]. Software process improve-
ment is inspired by this chain reaction and focuses on
implementing disciplined processes, i.e., performing work
consistently according to documented policies and proce-
dures [37]. If these disciplined processes conform to
accepted best practice for doing the work, and if they are
continually and measurably improving, they are character-
ized as mature processes.

The empirical evidence for the effectiveness of process
improvement is typically based on before-and-after analyses,
yet the quality of process outputs depends upon a variety of
factors, including the objectives and constraints for the
process, the quality of incoming materials, the ability of the
people doing the work, and the capability of the tools used, as
well as the process steps followed. Empirical analyses are
rarely able to control for differences in these factors in real-
world industrial projects. And, even within such a project,
these factors may change over the project’s life.

o C.F. Kemerer is with the Katz Graduate School of Business, University of
Pittsburgh, 278A Mervis Hall, Pittsburgh, PA 15260.
E-mail: ckemerer@katz.pitt.edu.

o M.C. Paulk is with the IT Services Qualification Center, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213.
E-mail: mcp@cs.cmu.edu.

Manuscript received 12 Nov. 2007; revised 6 Jan. 2009; accepted 13 Jan. 2009;
published online 1 Apr. 2009.

Recommended for acceptance by A.A. Porter.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-11-0322.
Digital Object Identifier no. 10.1109/TSE.2009.27.

0098-5589/09/$25.00 © 2009 IEEE

An example of an important process where there is
debate over the factors that materially affect performance
is the inspection of work products to identify and remove
defects [17], [18]. Although there is general agreement
that inspections are a powerful software engineering
technique for building high-quality software products
[1], Porter and Votta’s research concluded that “we have
yet to identify the fundamental drivers of inspection costs
and benefits” [44]. In particular, the optimal rate at which
reviewers should perform inspections has been widely
discussed, but subject to only limited investigations [6],
[21], [45], [47].

The research reported in this paper investigates the
impact of the review rate on software quality, while
controlling for a comprehensive set of factors that may affect
the analysis. The data come from the Personal Software
Process (PSP), which implements the developer subset of the
activities performed in inspections. Specifically, the PSP
design and code review rates correspond to the preparation
rates in inspections.

The paper is organized as follows: Section 2 describes
relevant previously published research. Section 3 describes
the methodology and data used in the empirical analyses.
Section 4 summarizes the results of the various statistical
models characterizing software quality. Section 5 describes
the implications of these results and the conclusions that
may be drawn.

2 BACKGROUND

Although a wide variety of detailed software process
models exists, the software process can be seen at a high
level as consisting of activities for requirements analysis,
design, coding, and testing. Reviews of documents and
artifacts, including design documents and code, are
important quality control activities, and are techniques that

Published by the IEEE Computer Society

Testing

Design

Fig. 1. A conceptual view of the software development process and its
foundations.

can be employed in a wide variety of software process life
cycles [36]. Our analysis of the impact of review rate on
software quality is based on previous empirical research on
reviews and it considers variables found to be useful in a
number of defect prediction models [5], [32].

2.1 A Life Cycle Model for Software Quality

A conceptual model for the software life cycle is illustrated
in Fig. 1. It shows four primary engineering processes for
developing software—requirements analysis of customer
needs, designing the software system, writing code, and
testing the software. A process can be defined as a set of
activities that transforms inputs to outputs to achieve a
given purpose [36]. As illustrated in Fig. 1, the engineering
processes within the overall software life cycle transform
input work products, e.g., the design, into outputs, e.g., the
code, which ultimately result in a software product
delivered to a customer. These general engineering
processes may be delivered via a variety of life cycles,
e.g., evolutionary or incremental. The quality of the outputs
of these engineering processes depends on the ability of the
software professionals doing the work, the activities they
do, the technologies they use, and the quality of the input
work products.

Early empirical research on software quality identified
size as a critical driver [2], and the size of work products
remains a widely used variable in defect prediction
models [32]. Customer requirements and the technologies
employed (such as the programming language) are
primary drivers of size. Finally, since software develop-
ment is a human-centric activity, developer ability is
commonly accepted as a critical driver of quality [3], [12],
[13], [49], [55].

The cumulative impact of the input quality can be seen in
the defect prevention models that use data from the various
phases in the software’s life cycle to estimate test defects.
For example, predicting the number of released defects has
been accomplished by multiplying the sizes of interim work
products by the quality of the work products and the
percentage of defects escaping detection [11].

2.2 Production of Engineering Work Products

Although software quality can be characterized in a number
of ways, defects, as measured by defect density (defects/lines
of code), are a commonly used quality measure [22], [52].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 35, NO. XX, XXXX 2009

. Review
Production
Effort Effort
Production Initial Reviewed
Activity Work Work
Product Product
/ Rz
Predecessor Injected Captured Escaped
Work Product(s) Defects Defects Defects
Technology :

Fig. 2. Production and review steps.

Typical reported defect density rates range from 52 to
110 per thousand lines of code (KLOC) [5], [24].1

Empirical research in software defect prediction models
has produced a range of factors as drivers for software
quality. As different models have been found to be the best
for different environments, it appears unlikely that a single
superior model will be found [8], [53]. For example, Fenton
and Neil point out that defect prediction models based on
measures of size and complexity do not consider the
difficulty of the problem, the complexity of the proposed
solution, the skill of the developer, or the software
engineering techniques used [19]. Therefore, the extent to
which these factors (and potentially others) can affect
software quality remains an open empirical question.
However, based on the prior literature and starting from
the general model shown in Fig. 1, the relevant software
engineering activity can be described in terms of a
production step and a review step, as shown in Fig. 2.

This figure can be read from left to right as follows.
Production results in an initial work product whose quality
in terms of injected defects depends upon the quality of
predecessor work products, the technologies used in
production, the ability of the developer, and the effort
expended on production. The quality of production can be
measured by the number of defects in the resulting work
product, which typically is normalized by the size of the
work product to create a defect density ratio [5], [22], [24],
[52]. The initial work product may be reviewed to capture
and remove defects, and the quality of the resulting
corrected work product depends upon the size and quality
of the initial work product, the ability of the developer, and
the effort expended in the review. Given a measure of the
number of defects in the work product at the time of the
review, the quality of reviews can be seen as the effective-
ness of the review in removing defects.

2.3 Reviews

Reviews of work products are designed to identify defects
and product improvement opportunities [36]. They may be
performed at multiple points during development, as

1. It should be noted that a complete view of “quality” would include
many attributes, such as availability, features, and cost. However, as an in-
process measure, the number of defects in the software provides insight
into potential customer satisfaction, when the software will be ready to
release, how effective and efficient the quality control processes are, how
much rework needs to be done, and what processes need to be improved.
Defects are, therefore, a useful, if imperfect, measure of quality.

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 3

opposed to testing, which typically can occur only after an
executable software module is created. A crucial point in
understanding the potential value of reviews is that it has
been estimated that defects escaping from one phase of the
life cycle to another can cost an order of magnitude more to
repair in the next phase, e.g., it has been estimated that a
requirements defect that escapes to the customer can cost
100-200 times as much to repair as it would have cost if it
had been detected during the requirements analysis phase
[5]. Reviews, therefore, can have a significant impact on the
cost, quality, and development time of the software since
they can be performed early in the development cycle.

It is generally accepted that inspections are the most
effective review technique [1], [21], [23], [47]. A typical set of
inspection rules includes items such as:

e The optimum number of inspectors is four.

e The preparation rate for each participant when
inspecting design documents should be about
100 lines of text/hour and no more than 200 lines
of text/hour.

e The meeting review rate for the inspection team in
design inspections should be about 140 lines of text/
hour and no more than 280 lines of text/hour.

o The preparation rate for each participant when
inspecting code should be about 100 LOC/hour
and no more than 200 LOC/hour.

o The meeting review rate for the inspection team in
code inspections should be about 125 LOC/hour and
no more than 250 LOC/hour for code.

e Inspection meetings should not last more than two
hours.

Many variant inspection techniques have been proposed.
Gilb and Graham, for example, suggest a preparation rate of
0.5to 1.5 pages per hour; they also suggest that rates as slow as
0.1 page per hour may be profitable for critical documents
[21]. The defect removal effectiveness reported for different
peer review techniques (e.g., inspections, walk-throughs, and
desk checks) ranges from 30 to over 90 percent, with
inspections by trained teams beginning at around 60
percent and improving as the team gains experience [17],
[18], [33], [47].

Despite consistent findings that inspections are generally
effective, Glass has summarized the contradictory empirical
results surrounding the factors that lead to effective inspec-
tions [23]. Weller found that the preparation rate for an
inspection, along with familiarity with the software product,
were the two most important factors affecting inspection
effectiveness [50]. Parnas and Weiss argue that a face-to-face
meeting is ineffective and unnecessary [35]. Eick et al. found
that 90 percent of the defects could be identified in
preparation, and therefore, that face-to-face meetings had
negligible value in finding defects [16]. Porter and his
colleagues created a taxonomy of review factors that they
argue should be empirically explored [44], [45], including:

e structure, e.g., team size, the number of review teams,
and the coordination strategy for multiple teams [42];

e techniques, e.g., individual versus cooperative re-
views; ad hoc, checklist-based, and scenario-based
[30], [40], [43];

e inputs, e.g., code size, functionality of the work
product, the producer of the work product, and the
reviewers [45];

e context, e.g., workload, priorities, and deadlines [41];
and

e technology, e.g., Web-based workflow tools [39].

In summary, although the benefits of inspections are
widely acknowledged, based on these competing views and
conflicting arguments the discipline has yet to fully under-
stand the fundamental drivers of inspection costs and
benefits [23], [44].

2.4 The Personal Software Process (PSP)

In order to address the empirical issues surrounding the
drivers for effective inspections, it will be beneficial to focus
on specific factors in a bounded context. The PSP incremen-
tally applies process discipline and quantitative manage-
ment to the work of the individual software professional [25].
As outlined in Table 1, there are four PSP major processes
(PSPO, PSP1, PSP2, and PSP3) and three minor extensions to
those processes. Each process builds on the prior process by
adding engineering or management activities. Incrementally
adding techniques allows the developer to analyze the
impact of the new techniques on his or her individual
performance. The life cycle stages for PSP assignments
include planning, design, coding, compiling, testing, and a
postmortem activity for learning, but the primary develop-
ment processes are design and coding, since there is no
requirements analysis step. When PSP is taught as a course,
there are 10 standard assignments and these are mapped to
the four major PSP processes in Table 1.

Because PSP implements well-defined and thoroughly
instrumented processes, data from PSP classes are fre-
quently used for empirical research [20], [24], [46], [51], [54].
PSP data are well suited for use in research as many of the
factors perturbing project performance and adding “noise”
to research data, such as requirements volatility and team-
work issues, are either controlled for or eliminated in PSP.
And, since the engineering techniques adopted in PSP
include design and code reviews, attributes of those reviews
affecting individual performance can be investigated.

In PSP, a defect is a flaw in a system or system
component that causes the system or component to fail to
perform its required function. While defects in other
contexts may be categorized according to their expected
severity, in PSP, defects are not “cosmetic,” ie., a PSP
defect, if encountered during execution, will cause a failure
of the system.

Researchers Hayes and Over observed a decrease in
defect density as increasingly sophisticated PSP processes
were adopted, along with improvements in estimation
accuracy and process yield [24]. Their study was replicated
by Wesslen [51]. Wohlin and Wesslen observed that both
the average defect density and the standard deviation
decreased across PSP assignments [54]. Prechelt and Unger
observed fewer mistakes and less variability in performance
as PSP assignments progressed [46]. In a study of three
improvement programs, Ferguson et al. observed that PSP
accelerated organizational improvement efforts (including
improved planning and scheduling), reduced development

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX,

XXXX 2009

TABLE 1
Description of the PSP Processes and Assignments

PSP Process Description and Related Assignments

Process

PSP0 The “current” process of the developer at the beginning of the course. Basic measures of
historical size, time, and defect data are collected to establish an initial baseline. Assignment
1A.

PSPO.1 Adds a coding standard, process improvement proposals, and size measurement. Assignments
2A and 3A.

PSP1 Adds size estimating and test reports. Assignment 4A.

PSP1.1 Adds task planning and schedule planning. Assignments 5A and 6A.

PSP2 Introduces design reviews and code reviews — personal reviews conducted by an engineer on
his or her own design or code to remove all defects before compiling the program.
Assignments 7A and 8A.

PSP2.1 Adds design templates for functional specifications, state specifications, logic specifications,
and operational scenarios. Assignment 9A.

PSP3 Introduces the concept of cyclic development — incrementally building a program in multiple
cycles. Assignment 10A.

time, and resulted in better software [20]. Using PSP data,
Paulk found that developer ability reinforced the consistent
performance of recommended practices for improved soft-
ware quality [38].

3 METHODOLOGY

PSP employs a reasonably comprehensive and detailed set of
process and product measures, which provide a rich data set
that can be statistically analyzed in order to estimate the effect
of process factors, while controlling for technology and
developer ability inputs. However, quality factors associated
with volatile customer requirements, idiosyncratic project
dynamics, and ad hoc team interactions are eliminated in the
PSP context. The reviews in PSP correspond to the checklist-
based inspections described by Fagan, but PSP reviews are
performed by the developer only; no peers are involved.
Therefore, review rates in PSP correspond to the developer
preparation rates in inspections.

Since the PSP data provide insight into a subset of the
factors that may be important for peer reviews in general, this
analysis provides a “floor” for inspection performance in the
team environment. Of course, a key benefit of analyzing a
subset of the factors is that we can isolate specific factors of
interest. These results can then be considered a conservative
estimate of performance as additional elements, such as
team-based reviews, and variant elements, such as scenario-
based reading techniques, are possibly added. In addition,
this research investigates the contributors to quality in the
PSP processes at a finer level of granularity than has been
performed in typical prior empirical PSP analyses.

3.1 The PSP Data Sets

This research uses PSP data from a series of classes
taught by Software Engineering Institute (SEI) authorized

instructors. Since the focus of this research is on review
effectiveness, only data from the assignments following
the introduction of design and code reviews, i.e., assign-
ments 7A to 10A, are used. These correspond to the final
two PSP processes, numbers 3 and 4, and represent the
most challenging assignments.

Johnson and Disney have identified a number of potential
research concerns for PSP data validity centered on the
manual reporting of personal data by the developers, and
they found about 5 percent of PSP data in their study to be
unreliable [28]. For our PSP data set, the data were checked to
identify any inconsistencies between the total number of
defects injected and removed, and to identify instances where
the number of defects found in design review, code review, or
compile exceeded the number reported to have been injected
at that point, suggesting that one count or the other was in
error. As a result of this consistency check, 2.9 percent of the
data was excluded from the original set of observations. This
rate is similar to Johnson and Disney’s rate, and the smaller
degree of invalid data may be attributed to the fact that some
of the classes of data errors they identified, such as developer
calculation errors, would not be present in our study because
we use only the reported base measures and none of the
analyses performed by the PSP developers. Although data
entry errors can be a concern in any empirical study, since
they occur in the data collection stage and are difficult to
identify and correct, fewer than 10 percent of the errors
identified by Johnson and Disney (or less than 0.5 percent of
their data) were entry errors. There is no reason to believe that
such data entry errors are more likely in our PSP data set, nor
that such errors are likely to be distributed in a manner that
would bias the results.

To control for the possible effect of the programming
language used, the PSP data set was restricted to assignments

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 5

TABLE 2
Variable Names and Definitions for the Models

Category Variable Name Definition Units of Measure
KLOC) hours / % of
defects/ | KLOC defects
KLOC identified
Control Size Program size as measured by thousands v
variable of lines of code (KLOC)
Control Ability Developer ability (as measured by v
variable average defect density in testing for
assignments 1A-3A, prior to reviews)
Design InitDsnQual Initial design quality (before design N
review)
Design DsnRevRate Design review rate v
Design DsnRevEffect Defect removal effectiveness of design v
review
Design DsnQual Design quality (after design review) v
Coding InitCodeQual Initial code quality (before code N
review)
Coding CodeRevRate Code review rate v
Coding CodeRevEffect Defect removal effectiveness of code v
review
Coding CodeQual Code quality (after code review) v
Testing | TestQual | Software quality in test | | N | |

done in either C or C++ (the most commonly used PSP
programming languages), and the data for each language
were analyzed separately. Since the focus of the analyses is
on the impact of design and code reviews, only those
assignments where reviews occurred were included. In
addition, some observations had no recorded defects at the
time of the review. As no factor can affect review effective-
ness if no defects are present, these reviews were also
excluded from the data set. After these adjustments, the
resulting C data set has 371 observations for 153 developers
and the C++ data set has 246 observations for 90 developers.
Note that a single developer may have up to four observa-
tions in a data set, which is one driver for the mixed models
analysis later in this paper.

3.2 The Basic Models

Our basic quality model is derived in two parts: a high-level
model (“project level”) and a lower level of detail model
(“engineering activity level”). Ultimately, a customer cares
about the quality of the software as delivered at the end of
the project, and therefore, the high-level project objective of
reliably addressing customer needs is fundamental to
effective software process improvement. The process as
conceptually captured in Fig. 1 for the project as a whole
can be modeled as follows:

Software quality = f (Developer ability, Technology,
Requirements quality, Design quality, Code quality).

A cutoff point is needed for counting and comparing the
total number of defects in a product. For PSP, acceptance of
a work product (assignment) by the instructor constitutes
the most logical cutoff point; therefore, software quality is

defined for purposes of this model as defect density
measured in testing.

The quality of work products, such as requirements,
design, and code (as depicted in Fig. 2) can be modeled as a
function of the initially developed work product quality
and the effectiveness of the review. As the focus of this
research is on the effectiveness of the reviews, this leads to
the following model for the defect removal effectiveness of
a review as performed by an individual software engineer:

Review effectiveness = f (Developer ability, Technology,

Review rate).

Review rate (effort/size) is both a management control
and likely to be a driver of review effectiveness within the
context of developer ability and technology [17], [47]. While
other factors could be considered for team-based peer
reviews, the factors shown here are believed to be the
critical factors for PSP’s checklist-based individual reviews.

3.3 Operationalizing the Variables

The operational definitions of the variables used in these
models are contained in Table 2. The processes character-
ized by these variables are design, code, and test. In the
context of a PSP assignment, the requirements can be
considered a defect-free work product, given that they are
identical for each developer. For purposes of the research,
this controls for variance that might otherwise be attribu-
table to defects or changes in requirements, and allows for
the analysis of variance attributable statistically to the
review process. Design and code quality can be determined
in operational terms since causal analysis performed by the
developer, who is closest to the work, informs us of how

TABLE 3
Range of Important PSP Data Values

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009

Variable C Data Set C++ Data Set
N= 371 246
minimum median maximum minimum median maximum
Lines of code 17 120 985 18 124 913
Number of design defects 1 3 34 1 3 55
Design review time (min) 1 21 180 1 23 131
Design review rate (LOC/hr) 27 296 4740 32 338 5580
Number of code defects 1 6 45 1 7 56
Code review time (min) 2 26 227 4 28 145
Code review rate (LOC/hr) 41 261 2463 30 277 1896
Number of test defects 0 1 16 0 1 26

many defects were injected and removed at each step in the
PSP process.

Starting at the top of Table 2, the Size of the system in
lines of code is a commonly used measure. Ability is
measured by averaging the defect density in testing for the
first three assignments. Developers are, therefore, rated on a
set of tasks that is similar to the ones that will follow, and in
the same setting. We would expect that developers who do
well on the first three tasks are likely to do well on those
that follow, ceteris paribus. It should be noted that since the
first three assignments do not include reviews, this is a
measure of developer ability and does not specifically
include reviewer ability. The measure of defect density,
(defects/KLOC) is then inverted (-defects/KLOC) to create
the measure of ability so that larger values can be intuitively
interpreted as “better.”

Similarly, all of the quality variables (InitDsnQual,
DesignQual, InitCodeQual, CodeQual, and TestQual) are
measured using this same unit directionality (-defects/
KLOC), although the measurements are taken at different
points in the process.

Review rates combine program size, expressed in KLOC,
and effort, expressed in hours. When review rates are
measured as the ratio of hours/KLOC, there is a natural,
increasing progression from fast reviews (those with a
relatively small number of hours spent) to slower reviews.
For example, a recommended rate of less than 200 LOC/
hour is transformed to a value greater than 5 hours/KLOC,

400

300

8 2004
-

100

Boxplot

Fig. 3. Box and whisker chart for lines of code: C data set.

and in this manner, larger values can intuitively be
interpreted as “better.” The two review rates (DesnRevRate
and CodeRevRate) are measured as hours/KLOC.

When a defect is identified in PSP, causal analysis by the
developer identifies where in the life cycle the defect was
injected. The number of defects in the design and code at
the end of each PSP step can, therefore, be determined
based on the number of defects injected or removed during
the step. The total number of defects for a PSP program is
operationally defined as the number identified by the end
of testing when the assignment is accepted. Design and
code review effectiveness (DsnRevEffect and CodeRevEffect)
are measured as the percentage of defects in the design and
code, respectively, which were identified in their reviews.
Finally, technology can be controlled as a factor by splitting
the data set into subsets by programming language.

To give a feel for these PSP programs, the ranges of the
important numbers that these variables are based on are
provided in Table 3. The minimum, median, and maximum
values are listed.

As discussed in Section 3.1, observations with zero defects
at the time of design review or code review were removed,
therefore, the minimums must be at least one for these two
variables. This is not the case for the number of test defects. In
addition to the detailed statistics in Table 3, we also provide
sample box plots for the C data set, the larger of the two, in
order to provide some intuitive feel for the data. As can be
observed in Fig. 3 for lines of code and Fig. 4 for the number of

N -
o (&)
P IR

(&3]
N BT

Number of Defects Found in Test

Boxplot

o
|

Fig. 4. Box and whisker chart for number of test defects: C data set.

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 7

TABLE 4
Regression Results for the Life Cycle Models

C Data Set C++ Data Set
Prob > F <0.0001 <0.0001
R, 0.5845 0.6513
Coefficient estimates
(standard errors)
Bo -0.12 247
(1.09) (1.73)
Ability 0.057" 0.0002
(0.02) (0.03)
DsnQual 0.10"" 0.10"
(0.03) (0.05)
CodeQual 038" 046"
(0.02) (0.03)
Tp<0.10; 7 p<0.05; " p<0.01; " p<0.001

test defects, these data sets have the typical skewness seen in
most empirical data sets, and therefore, we will employ an
analysis that takes the presence of outliers into account.

4 STtATISTICAL MODELING

We begin with an analysis using multiple regression
models that allow us to examine the impact on quality of
process variables, such as review rate, in a context where
other effects, such as developer ability and the program-
ming language used, can be controlled.” Splitting the data
sets by programming language, in addition to addressing
the potential impact of technology differences, also allows
us to replicate our analyses.

4.1 Life Cycle Models for Software Quality

The project life cycle model in Fig. 1 expressed as a
regression model for quality is

TestQual = By + 51 (Ability) + 2 (DsnQual)
+ B3 (CodeQual) + .

The quality of the product depends upon the ability of the
developer and the quality of the predecessor work products.
We expect that the quality of the software as measured in
test (TestQual) will increase as developer ability grows (/5 is
expected to be positive) and as the quality of the design and
code improve (8, and [33 are expected to be positive), where
Bo is the intercept term and ¢ is the error term.

This model was estimated for both the C and C++ data
sets as described in Table 4. Both models are statistically
significant, accounting for approximately 58 and 65 percent
of the variation in the data, respectively, as measured by the
adjusted r-squared statistic R?.

We would expect better developers to do better, all else
being equal, so we control for that effect by including the
Ability variable in the model. As indicated by the positive

(1)

2. Due to the occurrence of multiple observations per developer, the
preferred analysis technique is mixed models, which we present in Section 4.3.
However, we begin with an analysis using ordinary least squares regression
as the interpretation of the results will be more familiar to TSE readers, and
this method can be relatively robust to some specification errors. (In fact, the
results from Sections 4.2 and 4.3 are very similar.)

coefficients, the data support this interpretation. (Note that
the coefficient for ability in the C++ model, while positive,
is not significantly different from zero at usual statistical
levels.) Having included this variable in the model, we can
now interpret the coefficients of the other variables with
greater confidence, since variation that should properly be
attributed to the developers has been accounted for.

As expected, the quality of the predecessor work
products was found to be statistically significant for both
data sets, with the quality of the most recent work product,
the code, having the larger impact on software quality. The
positive sign for the coefficient estimates indicates that as the
quality of the design and code improve, so does the quality
of the software as measured in testing, as expected.

The correlation matrix for the independent variables in
the life cycle models is shown in Table 5. The relatively
high correlations for design and code quality may suggest
that good designers also tend to be good coders all else
being equal.

Collinearity diagnostics indicate that collinearity is not a
significant issue for these models. The condition numbers
for the two models range from 4.1 to 4.4, which is less than
Belsley et al.’s suggested limit of 20 [4]. The maximum
variance inflation factors (VIFs) for the predictor variables
range from 1.1 to 1.8, which is less than the suggested
maximum of 10 [34].

A number of standard diagnostics were used to identify
influential outliers that might unduly affect a regression
model: leverage, studentized deleted residual, Cook’s
distance, and DFFITS [34]. For the C data set, 17 influential
outliers were identified by at least one of these diagnostics;
for the C++ data set, 15 influential outliers were identified.
Models for the data sets excluding influential outliers,
which are shown in Table 6, were not materially different
from those including the outliers, although R? increased to
71 and 75 percent, respectively, and the sum of squares of
the errors (SSE) decreased 33 and 48 percent, respectively.
Therefore, the managerial conclusions from the model
excluding influential variables are not materially different
from those for the model with all of the data points.

Transformations of the dependent variable attempt to
provide a simple, normal linear model that simultaneously
satisfies constant variance, normality, and E(Y) = X3 [48].
The life cycle models are described in Table 6, with a Box
Cox transformation of the dependent variable (without
influential outliers) and with a natural logarithm transfor-
mation of the independent variables (without influential
outliers and using the Box Cox transformation of the
dependent variable).”> The Box Cox transformation de-
creased SSE 30 percent for the C++ data set with A = 0.5
and 51 percent for the C data set with A =0.4) [34]. A
natural logarithm (Ln) transformation of the independent
variables was also investigated, but was not found to add
explanatory power. Although heteroscedasticity was iden-
tified by White’s test for both models in Table 4, it is not an
issue for any of the transformed models in Table 6. The
managerial conclusions using the Box Cox transform of the
independent variable or the natural logarithm transforma-
tions of the dependent variables are not materially different
from those for the initial simpler model form.* Finally,
interaction effects were also investigated, but these more

3. Note that, when making a Box Cox transformation, values >0 are
desired for the dependent variable and a small offset was added to prevent
an undefined Ln(0) transformation. As a result, the expected coefficients for
the ability and quality variables are negative for the Box Cox and Ln
transformations.

4. Note that the sign of the coefficient for the Box Cox transform changes
due to the necessity of using an unadjusted (positive) ratio for defect
density, rather than the more managerially intuitive negative ratio.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009
TABLE 5
Correlation Matrix for the Independent Variables in the Life Cycle Models
C Data Set C++ Data Set
Ability DsnQual CodeQual Ability DsnQual CodeQual
Ability -- 020197 | 0.2264" -- 0.1547" 02304
DsnQual — - 0.41327" -- -- 0.6427
CodeQual -- -- -- -- -- --
"p<0.10; T p<0.05; " p<0.01; " p<0.001
TABLE 6
Life Cycle Models Excluding Outliers and with Transformations
C Data Set C++ Data Set
Excluding Box Cox Ln Excluding Box Cox Ln
Outliers Transforms Transforms Outliers Transforms Transforms
of Y of X; of Y of X;
Prob >F <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R, 0.7115 0.6289 0.5606 0.7546 0.6051 0.5441
Coefficient estimates
(standard errors)
Bo 2477 4907 -16.227" 4.09™ 6.137" -6.07"
(0.95) (0.80) (2.53) (1.39) (0.97) (2.91)
Ability 0.05"" -0.047" 235 0.02 -0.02 -0.51
(0.01) (0.01) (0.65) (0.03) (0.02) (0.79)
DsnQual 0117 -0.06" 0.98"" 0317 -0.14™ 2.5477
(0.03) (0.02) (0.32) (0.04) (0.03) (0.40)
CodeQual 0497 03477 7847 0437 0227 6227
(0.02) (0.02) (0.43) (0.03) (0.02) (0.52)
Tp<0.10; T p<0.05; " p<0.01; " p<0.001

complex life cycle models did not provide additional
managerial insight [38].

In summary, both higher design quality and higher code
quality are consistently associated with higher software
quality as measured by fewer test defects in both data sets.
As was the case with the simpler linear model, greater
developer ability was also significantly associated with
higher software quality for the C data set only. Overall, these
results support the general intuition that developer ability
and input quality are expected to be related to output
quality. Having established that these expected relationships
hold for our data, in the next section we turn to our primary
research questions, which are the effect of design and code
review rates on quality, while controlling for ability and
input quality.

4.2 Defect Removal Effectiveness Models

Having empirically verified in Section 4.1, the intuition from
Fig. 1 that software quality depends upon the quality of the
predecessor work products used to build the software and on
developer ability, the next step is to analyze the factors
affecting the quality of those predecessor work products. As
modeled in Fig. 2, quality depends upon initial work product
quality and review effectiveness. It is an open question as to
whether there should be a relationship between initial work
product quality and defect removal effectiveness since ability
as both a developer and a reviewer need not coexist.
Therefore, we include initial work product quality to allow
us to investigate the issue. We expect that the defect removal

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 9

TABLE 7
Regressions for Defect Removal Effectiveness
Design Code
C Data Set | C++ Data Set C Data Set | C++ Data Set
Prob >F 0.0072 0.0064 Prob > F <0.0001 <0.0001
R, 0.0244 0.0376 R, 0.0673 0.1442
Coefficient estimates
(standard errors)
Bo 0.58"" 0.50"" Bo 046" 047"
(0.04) (0.05) (0.03) (0.03)
Ability 0.001" 0.0001 Ability 0.0004 0.0006
(0.0005) (0.0007) (0.0004) (0.0005)
InitDsnQual 0.001 0.002"" InitCodeQual 0.0008" 0.001""
(0.0007) (0.0007) (0.0003) (0.0003)
DRRate 0.017 0.027" CRRate 0.037" 0.03""
(0.005) (0.007) (0.005) (0.005)
"p<0.10; T p<0.05; " p<0.01; p<0.001
TABLE 8

Correlation Matrix for the Independent Variables in the Defect Removal Effectiveness Models

Design Reviews
C Data Set C++ Data Set
Ability InitDsnQual DRRate Ability InitDsnQual DRRate
Ability = 0.1354 -0.1416 == 0.1678" -0.1509"
InitDsnQual -- - -0.2912 -- -- -0.5638"
DRRate == - == - - -
Code Reviews
C Data Set C++ Data Set
Ability | InitCodeQual CRRate Ability | InitCodeQual CRRate
Ability == 0.2590""" -0.1137" - 02053 -0.1303"
InitCodeQual - -- -0.4553" -- -- -0.7088""
CRRate - == - - B =
Tp<0.10; T p<0.05; 7 p<0.01; " p<0.001

effectiveness of a review will increase as developer ability
grows, and as more care is taken to do a careful review, note
that the review rate increases since it is measured in hours per
KLOC in these analyses. We also expect the quality of the

work product to improve as its initial quality increases.”
The defect removal effectiveness of a review is modeled

as a function of developer ability, the quality of the initially
developed work product, and the review rate:

DsnRevEffect = By + 01 (Ability) + B2 (InitDsnQual)

+ B3 (DsnRevRate). (2)

Similarly, the model for defect removal effectiveness of
code reviews is

CodeRevEffect = By + 1 (Ability) + (2 (InitCodeQual)
+ B3 (CodeRevRate).

(3)
5. Note that, although removing a single defect has a greater percentage

impact on effectiveness, when there are a smaller number, such defects will
be correspondingly harder to find.

These two models were estimated for both the C and C++
data sets as described in Table 7.

All four models are statistically significant at usual
levels. After the addition of the Design Review Rate
(DRRate) variable, Ability and Initial Design Quality
continue to have positive coefficients, although some of
these coefficients are not significantly different from zero at
usual levels of statistical significance. DRRate (hours/
KLOC) is consistently and positively associated with defect
removal effectiveness at statistically significant levels in all
four cases, i.e., for both data sets in both design and code,
even after controlling for developer ability and the initial
work product quality.

The correlation matrix for the independent variables in
this linear model is presented in Table 8. The relatively
high negative correlations between the initial quality of a
work product and the review rate suggest that developers
who build high-quality work products may also take less
time reviewing those work products. The positive correla-
tion of developer ability with initial work product quality,
along with the negative correlation with review rate,
suggests that reviewer ability may be relatively indepen-
dent of developer ability.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009

TABLE 9
Design Review Effectiveness Models, Excluding Outliers, with Transformations
C Data Set C++ Data Set
Excluding Ln Logit Excluding Ln Logit
Outliers Transforms Transforms Outliers Transforms Transforms
of X; of Y of X; of Y
Prob > F 0.0048 <0.0001 <0.0001 0.0040 <0.0001 <0.0001
R, 0.0268 0.0867 0.1806 0.0422 0.0821 0.1181
Coefficient estimates
(standard errors)
Bo 0.58"" 0.907" 1121.3477 0.537" 0.64" 838.107
(0.04) (0.12) (136.36) (0.05) (0.13) (152.90)
Ability 0.001°"" -0.07" -46.78 0.0004 0.006 -23.20
(0.0005) (0.03) (30.15) (0.0008) (0.03) (38.28)
InitDsnQual 0.001 -0.097" 262,947 0.002° -0.107" -192.2377
(0.0007) (0.03) (29.98) (0.0008) (0.03) (33.51)
DRRate 0.017 0.157" 154.90™" 0.02"" 0.157" 102.18™"
(0.005) (0.03) (30.17) (0.007) (0.03) (35.18)

Tp<0.10; T p<0.05; " p<0.01; " p<0.001

Collinearity diagnostics indicate that collinearity is not a
significant issue for these models. The condition numbers
for the various models range from 4.2 to 5.0, which is less
than the suggested limit of 20 [4]. The maximum VIF for the
predictor variables ranges from 1.0 to 2.1, which is less than
the suggested maximum of 10 [34]. For design reviews
using the C data set, one influential outlier was identified;
for the C++ data set, three influential outliers were
identified. For code reviews using the C data set, six
influential outliers were identified; for the C++ data set, five
influential outliers were identified. Although the arcsine
root and logit transformations are frequently proposed for
percentage data [7], the logit transformation of the
dependent variable was found to be the best for this data

set. A natural logarithm transformation of the independent
variables was found to improve the fit of the model.

Three defect removal effectiveness models for design
reviews are described in Table 9 for both the C and C++
data sets: 1) with influential outliers excluded; 2) with
influential outliers excluded and a natural logarithm
transformation of the independent variables; and 3) with
influential outliers excluded, a natural logarithm transfor-
mation of the independent variables and a logit transforma-
tion of the dependent variable. Review rate is statistically
significant in all six cases for design reviews while
controlling for developer ability and the initial work
product quality.

The corresponding defect removal effectiveness models
for code reviews are described in Table 10. Review rate is

TABLE 10
Code Review Effectiveness Models, Excluding Outliers, with Transformations

C Data Set C++ Data Set
Excluding Ln Logit Excluding Ln Logit
Outliers Transforms Transforms Outliers Transforms Transforms
of X; of Y of X; of Y
Prob > F <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R, 0.0759 0.0873 0.0870 0.1610 0.2084 0.2092
Coefficient estimates
(standard errors)
Bo 047" 0.627" 47539 048" 075" 618357
(0.03) (0.09) (85.84) (0.03) (0.09) (92.46)
Ability 0.0007" -0.03" -9.57 0.0009° -0.02 -36.44
(0.0004) (0.02) (18.07) (0.0005) (0.02) (23.37)
InitCodeQual 0.0009™" -0.05" -115.907" 0.002""" 0.117 -151.79™"
(0.0003) (0.02) (19.97) (0.0003) (0.02) (21.87)
CRRate 0.037" 0.1377 62.84"" 0.03"" 0.187 139457
(0.005) (0.02) (21.08) (0.005) (0.02) (24.00)

Tp<0.10; " p<0.05; " p<0.01; " p<0.001

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 11

again statistically significant in all six cases for code reviews
while controlling for developer ability and the initial work
product quality. Analogous to the relationship between
Tables 4 and 6, White's test identified heteroscedasticity in
the models in Table 7, but not in the transformed models in
Tables 9 and 10. Finally, interaction effects were also
investigated, but these more complex defect removal
effectiveness models did not provide additional managerial
insight [38].

In summary, both design and code review rates were
found to be a statistically significant factor for the initial
defect removal effectiveness models even after controlling
for developer ability, the quality of the work product being
reviewed, and the programming language used. Additional
analyses with models that 1) excluded influential outliers,
2) used the logit transformation of the dependent variable
for defect removal effectiveness, and 3) used a natural
logarithm transformation of the independent variables
provided a generally better fit, with review rate a statistically
significant factor in all 12 cases for both design and code
reviews and both languages. The managerial conclusions
from these alternative models are consistent and not
materially different from those for the initial simpler model
form—review rate is strongly associated with defect
removal effectiveness at statistically significant levels.

4.3 Mixed Models of Software Quality

In this section, we adopt an alternative approach to
controlling for possible variance in developer (and reviewer)
ability. Using multiple observations from the same developer
could potentially affect the model. One simple way of
addressing this concern would be to only use the data from
a single assignment, but at a cost of discarding most of the
data, and no additional insight is provided. A more
sophisticated manner of dealing with multiple observations
from the same developer is mixed models; their use is
described below.

Rather than the basic measure of developer ability used
above with the multiple regression models, we take
advantage of the fact that with the PSP data set, there are
multiple observations for each developer in the data, i.e.,
the final four assignments that include reviews. This issue is
addressed in the context of repeated measures for a
developer across assignments in mixed models, which
allows us to incorporate more sophisticated per-developer
regressions [15], [29], [31]. Mixed models can be used for
analyzing growth curves using repeated data and they are
an appropriate tool for analyzing models containing both
fixed and random effects.®

The general linear mixed model equation [31] is

Y =XB+ Zu+e, (4)

where Y, X, 3, and e are the same as the general linear
model, and Z and v add in the random effects. Z is the
random effects design matrix and u is the vector of random
block effects. Random effects can also address learning

6. Random effects describe data where only a subset of the levels of
interest might have been included, for example, C and C++ are two of many
programming languages. Potentially confounding variables, such as
academic degrees and experience, can be explored as random effects.

curves via repeated measures for both the PSP course across
the multiple assignments and individual students [31].

There are several reasons that a mixed model may be
preferred over a fixed effects model [31], some of which
include the following:

e The inference space for a statistical analysis can be
characterized as narrow, intermediate, or broad,
depending on how it deals with random effects. In
the majority of practical applications, the broad
inference space is of primary interest. The mixed
model calculates broad inference space estimates
and standard errors. The general linear model works
with the narrow inference space. In the case of the
PSP data, the broad inference space is appropriate
since generalizing to the general population of the
developers is desirable.

e Estimates in the general linear model are ordinary
least squares. Estimates in the mixed model are
estimated generalized least squares, which are
theoretically superior.

e In the presence of random effects, the mixed model
calculates correct standard errors by default, incor-
porating the variance components of random effects.
The general linear model does not.

e Specific random effects, or linear functions of
random effects, can be estimated using the best
linear unbiased predictors (BLUPs), which are
unique to mixed model theory. Fixed effect models
use the best linear unbiased estimates (BLUEs). To
the degree that random effects such as years of
experience or programming language are significant in
the mixed models, estimates incorporating all effects
correctly, whether fixed or random, are appropriate.

e Observations with missing data for any repeated
measures variable are discarded for the general
linear model, where the mixed model can use all
data present for a subject, so long as the missing data
are random. Since any missing data for a subject
causes all of the subject’s data to be discarded in the
general linear model, the power of the statistical tests
is likely to be lower.

The mixed model deals with repeated measures, where
multiple measurements of a response variable on the same
subject are taken [29], [31]. For PSP, the repeated measures
are taken on the students over the course of the class and
the treatments (or between-subject) factors are the process
changes that occur across PSP assignments. The objective of
the analysis is to compare treatment means or treatment
regression curves over time. Without considering repeated
measures, the implicit assumption is that the covariances
between observations on the same subject are the same,
which may be unrealistic as observations close in time may
be more highly correlated than those far apart in time.

The covariance structure for the repeated measures in a
mixed model is specified by the analyst. A model-fit
criterion, such as Akaike’s Information Criterion (AIC), is
typically used to select the most appropriate covariance

7. AIC is essentially a log likelihood value penalized for the number of
parameters estimated, therefore, it selects for simplicity and parsimony [29].

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.XX, XXXX 2009
TABLE 11
Mixed Models for Defect Removal Effectiveness
Design Code
C Data Set | C++ Data Set C Data Set | C++ Data Set
Prob > 0.0172 0.0042 Prob >y’ <0.0001 0.0518
AIC 350.6 229.2 AIC 39.4 4.7
Coefficient estimates
(standard errors)
Bo 0.60"" 054" Bo 043" 047
(0.05) (0.05) (0.03) (0.03)
Ability 0.001° 0.0002 Ability 0.0005 0.0005
(0.0006) (0.0009) (0.0004) (0.0006)
InitDsnQual 0.001 0.002"" InitCodeQual 0.0006 0.0017"
(0.0007) (0.0008) (0.0003) (0.0003)
DRRate 0.017 0.027" CRRate 0.037" 0.037"
(0.006) (0.007) (0.005) (0.005)
"p<0.10; T p<0.05; " p<0.01; " p<0.001
TABLE 12
Mixed Models for Design Review Effectiveness Excluding Outliers and with Transformations
C Data Set || C++ Data Set
Excluding Ln Logit Excluding Ln Logit
Outliers Transforms Transforms Outliers Transforms Transforms
of X; of Y of X; of Y
Prob > y* 0.0121 0.0054 0.0387 0.0039 0.0021 0.0345
AIC 347.2 306.1 5373.2 2229 194.1 3472.7
Coefficient estimates
(standard errors)
Bo 0.60"" 0.95"" 1183.28"" 0.57"" 0.72"" 74586
(0.05) (0.13) (151.07) (0.06) (0.17) (184.93)
Ability 0.001" -0.08" -69.67" 0.0007 0.009 10.79
(0.0006) (0.03) (34.25) (0.001) (0.05) (49.21)
InitDsnQual 0.0009 -0.107" 251377 0.003™"" -0.127 -192.90™
(0.0007) (0.03) (31.59) (0.0008) (0.03) (33.62)
DRRate 0.01" 0.157" 149.89™" 0.02™" 0.157" 9415
(0.006) (0.03) (32.52) (0.007) (0.03) (35.49)
p<0.10; " p<0.05; " p<0.01; " p<0.001

structure and model (smaller values are better), although a
likelihood ratio test is generally considered to be more
rigorous [29], [31]. For the mixed models described here, the
unstructured covariance structure, which imposes no
mathematical pattern on the covariance structure, is used.
It has the smallest AIC value of all the covariance structures
investigated® and the unstructured covariance structure
was consistently better than the other structures for the
likelihood ratio test. The model formulations in Table 11
mirror those of the regression models.

As was the case with the regression models, review rate
is consistently and positively associated with defect
removal effectiveness, and it is statistically significant at

8. The covariance structures investigated were the unstructured,
compound symmetry, autoregressive order 1, autoregressive order 1 with
heterogeneous variances, compound symmetry with heterogeneous var-
iances, spherical contrast, first-order factor analysis with specific variances
all different, and first-order factor analysis with specific variances all the
same [29].

usual levels in all four cases while controlling for developer
ability and the initial work product quality. Ability and
work product quality are also positively associated with
defect removal effectiveness, although they are not always
statistically significantly different from zero.

The mixed models of defect removal effectiveness for
design reviews are described in Table 12 corresponding to
the design review models in Table 9. Review rate is
statistically significant in all six cases for design reviews
while controlling for developer ability and the initial work
product quality. The model using a natural logarithm
transformation of the dependent variables provides the best
fit according to the AIC criterion.

The mixed models of defect removal effectiveness for
code reviews are described in Table 13 corresponding to
the regression models for code reviews in Table 10. Review
rate is again statistically significant in all six cases for code
reviews while controlling for developer ability and the
initial code quality. The model using a natural logarithm

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 13
TABLE 13
Mixed Models for Code Review Effectiveness Excluding Outliers and with Transformations
C Data Set C++ Data Set
Excluding Ln Logit Excluding Ln Logit
Outliers Transforms Transforms Outliers Transforms Transforms
of X of Y of X of Y
Prob > Xz <0.0001 <0.0001 <0.0001 0.0518 0.0338 <0.0001
AIC 33.9 5.2 4852.1 -4.1 -36.1 3080.3
oefficient estimates
(standard errors)
Bo 0457 0.58"" 364977 049" 0.817"" 493.64
(0.03) (0.09) (75.11) (0.03) (0.11) (87.10)
Ability 0.0007 -0.02 -12.11 0.0008 -0.02 -31.88
(0.0004) (0.02) (16.48) (0.0006) (0.03) (21.76)
InitCodeQual 0.0007" -0.05" -88.42"" 0.002"" 0.1277 116177
(0.0003) (0.02) (16.71) (0.0004) (0.02) (18.51)
CRRate 0.03"" 0.16"" 57.027" 0.03"" 0.18™" 93.39™"
(0.005) (0.02) (17.75) (0.005) (0.02) (19.21)

Tp<0.10; 7 p<0.05; " p<0.01; " p<0.001

transformation of the dependent variables again provides
the best fit according to the AIC criterion.

The managerial conclusions suggested by the traditional
regression models and also supported by the more rigorous
mixed models as design and code review rates are positive
and statistically significant in all 16 cases. However, the
mixed models do address the issue of independence of the
observations when there are multiple observations for a
single student, and they address the systemic changes in
performance across assignments via repeated measures.
This statistical rigor allows greater confidence in the results.

4.4 Sensitivity Analysis
Mixed models also support investigation of random effects
that might confound the analyses. Six potentially confound-
ing factors were investigated. A separate set of random
effect models was built for each random effect investigated,
using the mixed models previously described for the fixed
effects. The 243 distinct developers reported up to 34 years
of experience, with a median of seven years of experience.
They were typically familiar with four programming
languages and some were familiar with over 10. Almost
all of the developers were college graduates; there were
138 bachelors” degrees, 71 masters’ degrees, and 9 doc-
torates in the group.

None of the following five variables was found to be
statistically significant as follows:

highest academic degree attained (of BA, BS, MS, PhD);
years of experience;

number of programming languages known;
programming language used; and

number of assignments completed by each developer
(some developers did not finish all 10 assignments).

However, the percentage of time spent programming was
found to be positive and statistically significant (p = 0.0358)
as a random effect in one of the four tests (code reviews in
C), although it was not significant in the other three cases:
design reviews in C, design reviewers in C++, and code

reviews in C++. However, even in the code review in C
case, including this variable in the model did not materially
affect the significance levels of the variables shown to
explain variance in the earlier models, and therefore, does
not change any of the managerial conclusions already
drawn. With a total of 24 tests (6 variables times 4 models
each), a single test represents 4 percent (0.04) of the data. At
the 0.05 level of statistical significance, a single “false
positive” could be expected by chance about once in
20 times, and therefore, there can be little confidence that
this one variable in one test is a meaningful result. Overall,
since these variables do not contribute to the models, they
are not included in the analyses that follow.

4.5 Testing the Recommended Review Rate

Inspections include both preparation rates (individual
inspector) and inspection rates (meeting time for the
inspection team). Review rates in PSP correspond to
preparation rates in inspections since preparation is
performed by individuals rather than teams. The recom-
mended preparation rate is less than or equal to 200 LOC/
hour [27], [47]. A faster rate is considered ineffective and a
reinspection is recommended. This provides two classes of
reviews based on review rate: those where the review rate is
greater than the recommended limit of 200 LOC /hour (“fast
review rate”) and reviews less than or equal to the
recommended rate (“recommended review rate”).

The estimates of the means for defect removal effec-
tiveness at the recommended review rate versus a faster
rate are listed in Table 14 for both design and code reviews
and for both the C and C++ data sets. The Levene test
revealed an undesirable level of heteroscedasticity for the
four models in Table 14 due to “boundary peaks” at 0 and
100 percent, so a Welch test was used to test for statistical
significance in the presence of heteroscedasticity. In all
four cases, reviewers who adhere to the recommended
review rate find more defects than those who do not. For
design defects, they find 66 and 57 percent, respectively,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009

TABLE 14
Defect Removal Effectiveness for Recommended versus Fast Review Rates
Review Rate Design Review Rate Code Review Rate
Category C Data Set C++ Data Set C Data Set C++ Data Set
Recommended 65.6 56.7 56.0 57.4
Review Rate (3.6) (4.7) (2.3) (2.8)
Fast Review Rate 48.8 50.7 46.9 45.2
(2.3) (2.8) (1.6) (1.8)
p-value (Welch) <0.0001 0.2206 0.0013 0.0003
power (a=0.05) 0.9770 0.1944 0.9031 0.9545
100 . .
L] = |]
[id . .
S 60 : : O
Sol O
r 40 H
c =
2] 1
O_ - RSN S
T -
Fast Recommended Each Pair
Student's t
Design Review Rate (Rec vs Fast) 0.05

Fig. 5. Comparing recommended versus fast design review rates for C.

and 56 and 57 percent for code defects. Reviewers using a
faster-than-recommended review rate find only 49 and 51
percent of design defects and 47 and 45 percent of code
defects. This superior performance difference is statistically
significant at a very high level of statistical significance in
three of the four cases, and in the one case that is not
statistically significant, the power of the statistical test is
low. Whether these differences are economically significant
will depend on the business situation; in the PSP context,
this difference may be as few as one or two defects since
the absolute numbers are not large.

In order to provide some greater intuition, these results
are illustrated graphically in Fig. 5 for the design review
rates using the C data set. It is interesting to note that this
statistically significant difference is present despite the fact
that reviews at both the recommended and fast rates reflect
variances in performance that range from 0 to 100 percent in
their effectiveness.

Overall, these results tend to support the recommended
preparation rates, but they also raise the question as to
whether a slower rate would be even more effective. In
order to test this additional question, the data on review
rates were categorized into 100-LOC and 50-LOC “bins.”
For reviews using the recommended review rates, no
statistically significant difference was observed for either
design or code reviews for review rates at 0-100 LOC/hour
versus 100-200 LOC/hour; neither was a statistically
significant difference observed between 50-LOC bins. As

shown in Fig. 6, however, defect removal effectiveness
continues to decline as the review rate becomes faster.

4.6 Threats to External Validity

Concerns are sometimes raised as to whether data from
assignments done by students can be generalized to
industry projects. However, for PSP, two factors tend to
alleviate this concern. First, PSP classes are frequently
taught in an industry rather than an academic setting, and
the developers in our sample reported up to 34 years of
experience, with a median of seven years of experience.”
Therefore, these “students” look much more like average
industry developers rather than the canonical computer
science undergraduate subjects.

Second, since the target of this analysis is preparation rate
for inspections, and the recommended rate is about
100 LOC/hour (maximum of 200 LOC/hour), and the
recommended length of an inspection meeting that the
developer would prepare for is 2 hours, the typical size of
work product we might expect to see in an industry
inspection would be about 200 LOC. Since the median size
of a PSP assignment is about 120 LOC, the relative sizes of
the work products being reviewed are comparable, although
smaller. Therefore, although industrial projects on the whole
are, of course, much larger than the typical PSP assignment,
the task size that is most relevant here is about the same.

9. Note that, as reported in Section 4.4, amount of experience was not a
significant factor affecting the quality of PSP work.

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 15

70

60

50

40 -

30

20 -

Defect Removal Effectiveness (%)

10

=—¢—C Design Review DRE
—i—C++ Design Review DRE
= & =C Code Review DRE

= B =C++ Code Review DRE

<200 200-400 400-600

600-800
Review Rate Categories (200 LOC/hr)

800+

Fig. 6. Defect removal effectiveness versus review rate.

Of course, as a general rule, any process or tool should be
calibrated to its environment and it would be advisable for
any organization to empirically determine the preferred
review rates for its developers in its own environment. It is
possible that the relative smaller size of PSP assignments
may be an influence on these results. In addition, in this
research, the only reviewer is the developer, whereas in
larger commercial applications, the developer is typically
just one of a team of inspectors. The lack of nondeveloper
reviewers may be an influence on the results. However, the
recommended rates provide a useful starting point for this
investigation and our research independently supports
earlier recommendations.

5 DiscussION, IMPLICATIONS, AND CONCLUSIONS

This research supports and quantifies the notion that the
quality of software depends upon the quality of the work
done throughout the life cycle. While the definition of
quality in a larger context includes many attributes other
than defects, understanding defects helps us to control and
improve our processes. This research shows that the quality
of the work products depends upon the quality control
mechanisms we employ as an integral part of our processes,
and it specifically supports the view that review rate affects
the defect removal effectiveness of reviews. Since PSP
review rates are analogous to the preparation rates in
inspections, it provides empirical evidence supporting the
notion that allowing sufficient preparation time is a
significant factor for more effective inspections while
controlling for other factors that might be expected to
impact performance. The data also support the observation
that review quality declines when the review rate exceeds
the recommended maximum of 200 LOC/hour. And, it is
also worth noting that the performance of PSP’s checklist-
based individual reviews is similar to the 60 percent defect
removal effectiveness reported for inspections performed
by recently trained teams [47].

It may be somewhat surprising to some that, once the
200 LOC/hour limit has been met, a more deliberate pace
seems to not materially improve performance. Of course,
whether an improvement in effectiveness of 8-15 percent

for design reviews and 10-11 percent for code reviews is
economically worthwhile is a business decision (similarly
for the 25-33 percent difference for review rates greater
than 800 LOC/hour); this research quantifies the differ-
ence in order to permit informed decisions to be made in
terms of process changes. However, given the increasing
reliance of organizations and products on high-quality
software, and the typically significant negative conse-
quences of defective software, it is to be expected that
such a level of improvement is likely to be cost-effective
for the vast majority of organizations.

Statistical analyses can identify a correlation, but they do
not prove a cause-and-effect relationship. An alternative
explanation to the idea that slowing the review rate is the
reason that more issues are found might be that when a
developer finds more issues, he or she slows down to
address the defect (e.g., recording it).

However, when Fagan formalized the inspection process
in 1976, he included guidelines on recommended preparation
and meeting rates for effective inspections based on his
observations at IBM [17]. Buck found an optimal inspection
rate of 125 LOC /hour, and rates faster than this showed a
rapid decline in the number of defects found [9]. Weller found
similar results for preparation rate [50]. Christenson and
Huang modeled the inspection process based on the premise
that with more effort, a greater fraction of coding errors will
be found [10]. After considering the findings of these and
other researchers, Radice concluded that “it is almost one of
the laws of nature about inspections, i.e. the faster an
inspection, the fewer defects removed” [47]. Although many
factors may affect the effectiveness of a review, both
conceptually and empirically, it is clear that review rate is
an important factor, and we follow the precedent of previous
research in attributing the higher number of defects found to
the care taken in performing the review.

The statistical insight provided by this research is possible
because of the rich data set available in PSP for empirically
investigating important process issues. PSP provides an
opportunity to retrospectively analyze design and code
reviews, while allowing for the control of a variety of factors,
including developer ability and programming language,

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXX 2009

which mightbe expected to influence the results. The size and
longitudinal nature of the PSP data sets allow us to use
statistical techniques, such as mixed models, that enable us to
address issues such as multiple observations for a developer.
Mixed models also allow us to rigorously account for
potentially confounding factors, such as years of experience.

When effects are relatively small and the amount of
variation in the process is intrinsically large, it can be difficult
to discern their significance. One of the advantages of the PSP
data is that it provides a thoroughly instrumented set of
observations for large data sets. Few industry projects
provide similar amounts of data with the degree of process
instrumentation built into PSP. Extending this research into
industry projects is a logical expectation. One possible source
of rich process data from industry is the Team Software
Process (TSP), which applies and extends the PSP concepts to
project teams [26]. As TSP is adopted by industry, we can
hope to perform similar sophisticated analyses across multi-
ple TSP projects. This would allow us to investigate a larger
subset of the factors that affects inspection effectiveness.
Instructors of the PSP course might also consider teaching
other forms of inspection, e.g., using scenario-based rather
than checklist-based inspections.

This research empirically verifies that allowing sufficient
preparation time for reviews and inspections can produce
better performance. Within a deadline-driven business
context, it is easy to see examples of the tendency to take
shortcuts, which, while perhaps meeting a short-term
schedule goal, have clear implications for raising future
costs of maintenance and customer support for the resulting
lower quality software. We can only hope that empirical
evidence supporting recommended practices will drive
economically optimal behavior within projects. The mes-
sage is clear: Disciplined processes that follow recom-
mended practice can improve performance.

REFERENCES

[1] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, “Software
Inspections: An Effective Verification Process,” IEEE Software,
vol. 6, no. 3, pp. 31-36, May/June 1989.

[2] F. Akiyama, “An Example of Software System Debugging,” Proc.
Int’l Federation for Information Processing Congress 71, pp. 353-359.
Aug. 1971.

[3] R.D. Banker, S.M. Datar, and C.F. Kemerer, “A Model to Evaluate
Variables Impacting Productivity on Software Maintenance
Projects,” Management Science, vol. 37, no. 1, pp. 1-18, Jan. 1991.

[4] D.A. Belsley, E. Kuh, and R.E. Welsch, Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity. John Wiley &
Sons, 1980.

[S] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E.
Horowitz, RJ. Madachy, D. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice-Hall, 2000.

[6] K.V. Bourgeois, “Process Insights from a Large-Scale Software
Inspections Data Analysis,” Crosstalk:]. Defense Software Eng.,
vol. 9, no. 10, pp. 17-23, Oct. 1996.

[71 F.W. Breyfogle III, Implementing Six Sigma: Smarter Solutions Using
Statistical Methods. John Wiley & Sons, 1999.

[8] S. Brocklehurst and B. Littlewood, “Techniques for Prediction
Analysis and Recalibration,” Handbook of Software Reliability
Engineering, M.R. Lyu, ed., pp. 119-166, IEEE CS Press, 1996.

[9] F.O. Buck, “Indicators of Quality Inspections,” IBM Technical

Report TR21.802, Systems Comm. Division, Dec. 1981.

D.A. Christenson and S.T. Huang, “A Code Inspection Model for

Software Quality Management and Prediction,” Proc. IEEE Global

Telecomm. Conf. and Exhibition in Hollywood, pp. 14.7.1-14.7.5, Nov.

1988.

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(171

(18]

(19]

(20]

(21]

[22]

(23]

[24]

(25]
(26]
(27]

(28]

(29]

(30]

(31]
(32]
(33]
(34]

(35]

[30]

(371

(38]

(39]

M. Criscione,]J. Ferree, and D. Porter, “Predicting Software Errors
and Defects,” Proc. 2001 Applications of Software Measurement,
pp- 269-280. Feb. 2001,

B. Curtis, “The Impact of Individual Differences in Programmers,”
Working with Computers: Theory versus Outcome, G.C. van der Veer,
ed., pp. 279-294, 1988.

B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software
Design Process for Large Systems,” Comm. ACM, vol. 31, no. 11,
pp- 1268-1287, Nov. 1988.

W.E. Deming, Out of the Crisis. MIT Center for Advanced Eng.
Study, 1986.

T.E. Duncan, S.C. Duncan, L.A. Strycker, F. Li, and A. Alpert, An
Introduction to Latent Variable Growth Curve Modeling. Lawrence
Erlbaum Assoc., 1999.

S.G. Eick, C.R. Loader, M.D. Long, S.A.V. Wiel, and L.G. Votta,
“Estimating Software Fault Content before Coding,” Proc. 14th
Int’l Conf. Software Eng., May 1992.

M.E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” IBM Systems |., vol. 15, no. 3, pp. 182-211,
1976.

M.E. Fagan, “Advances in Software Inspections,” IEEE Trans.
Software Eng., vol. 12, no. 7, pp. 744-751, July 1986.

N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Trans. Software Eng., vol. 25, no. 5, pp. 675-689,
Sept./Oct. 1999.

P. Ferguson, W.S. Humphrey, S. Khajenoori, S. Macke, and A.
Matvya, “Results of Applying the Personal Software Process,”
Computer, vol. 30, no. 5, pp. 24-31, May 1997.

T. Gilb and D. Graham, Software Inspection. Addison-Wesley,
1993.

G.K. Gill and C.F. Kemerer, “Cyclomatic Complexity Density and
Software Maintenance Productivity,” IEEE Trans. Software Eng.,
vol. 17, no. 12, pp. 1284-1288, Dec. 1991.

RL. Glass, “Inspections—Some Surprising Findings,” Comm.
ACM, vol. 42, no. 4, pp. 17-19, Apr. 1999.

W. Hayes and J.W. Over, “The Personal Software Process (PSP):
An Empirical Study of the Impact of PSP on Individual
Engineers,” Technical Report CMU/SEI-97-TR-001, Software
Eng. Inst., Carnegie Mellon Univ., 1997.

W.S. Humphrey, A Discipline for Software Engineering. Addison-
Wesley, 1995.

W.S. Humphrey, Introduction to the Team Software Process.
Addison-Wesley, 1999.

IEEE 1028, IEEE Standard for Software Reviews and Audits, IEEE CS,
Aug. 2008.

P.M. Johnson and A.M. Disney, “The Personal Software Process: A
Cautionary Case Study,” IEEE Software, vol. 15, no. 6, pp. 85-88,
Nov./Dec. 1998.

R. Khattree and D.N. Naik, Applied Multivariate Statistics with SAS
Software. SAS Publishing, 1999.

LPK. Land, “Software Group Reviews and the Impact of
Procedural Roles on Defect Detection Performance,” PhD dis-
sertation, Univ. of New South Wales, 2002.

R.C. Littell, G.A. Milliken, W.W. Stroup, and R.D. Wolfinger, SAS
System for Mixed Models. SAS Publishing, 1996.

Handbook of Software Reliability Engineering, M.R. Lyu, ed. IEEE CS
Press, 1996.

R.T. McCann, “How Much Code Inspection Is Enough?” Crosstalk:
J. Defense Software Eng., vol. 14, no. 7, pp. 9-12, July 2001.

J. Neter, M.H. Kutner, and C.J. Nachtscheim, Applied Linear
Statistical Models, fourth ed. Irwin, 1996.

D.L. Parnas and D.M. Weiss, “Active Design Reviews: Principles
and Practices,” . Systems Software, vol. 7, no. 4, pp. 259-265, Dec.
1987.

M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis, The
Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.

M.C. Paulk, “The Evolution of the SEI's Capability Maturity
Model for Software,” Software Process: Improvement Practice, vol. 1,
no. 1, pp. 3-15, Spring, 1995.

M.C. Paulk, “An Empirical Study of Process Discipline and
Software Quality,” PhD dissertation, Univ. of Pittsburgh, 2005.
J.M. Perpich, D.E. Perry, A.A. Porter, L.G. Votta, and M.W. Wade,
“Anywhere, Anytime Code Inspections: Using the Web to
Remove Inspection Bottlenecks in Large-Scale Software Develop-
ment,” Proc. 19th Int’l Conf. Software Eng., pp. 14-21, May 1997.

KEMERER AND PAULK: THE IMPACT OF DESIGN AND CODE REVIEWS ON SOFTWARE QUALITY: AN EMPIRICAL STUDY BASED ON PSP... 17

[40] D.E. Perry, A.A. Porter, M.W. Wade, L.G. Votta, and]. Perpich,
“Reducing Inspection Interval in Large-Scale Software Develop-
ment,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 695-705, July
2002.

[41] A.A. Porter, H.P. Siy, and L.G. Votta, “Understanding the Effects
of Developer Activities on Inspection Interval,” Proc. 19th Int’l
Conf. Software Eng., pp. 128-138. May 1997.

[42] A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta, “An
Experiment to Assess the Cost-Benefits of Code Inspections in
Large Scale Software Development,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 329-346, June 1997.

[43] A.A. Porter and P.M. Johnson, “Assessing Software Review
Meetings: Results of a Comparative Analysis of Two Experimental
Studies,” IEEE Trans. Software Eng., vol. 23, no. 3, pp. 129-145, Mar.
1997.

[44] A.A. Porter and L.G. Votta, “What Makes Inspections Work?”
IEEE Software, vol. 14, no. 6, pp. 99-102, Nov./Dec. 1997.

[45] A.A.Porter, H.P. Siy, A. Mockus, and L.G. Votta, “Understanding
the Sources of Variation in Software Inspections,” ACM Trans.
Software Eng. and Methodology, vol. 7, no. 1, pp. 41-79, Jan. 1998.

[46] L. Prechelt and B. Unger, “An Experiment Measuring the Effects
of Personal Software Process (PSP) Training,” IEEE Trans. Software
Eng., vol. 27, no. 5, pp. 465-472, May 2000.

[47] R.A. Radice, High Quality Low Cost Software Inspections. Paradox-
icon Publishing, 2002.

[48] J.O. Rawlings, S.G. Pantula, and D.A. Dickey, Applied Regression
Analysis, second ed. Springer-Verlag, 1998.

[49] M. Takahasi and Y. Kamayachi, “An Empirical Study of a Model
for Program Error Prediction,” Proc. Eighth Int’l Conf. Software
Eng., pp. 330-336. Aug. 1985.

[50] E.F. Weller, “Lessons from Three Years of Inspection Data,” IEEE
Software, vol. 10, no. 5, pp. 38-45, Sept. 1993.

[51] A. Wesslen, “A Replicated Empirical Study of the Impact of the
Methods in the PSP on Individual Engineers,” Empirical Software
Eng., vol. 5, no. 2, pp. 93-123, June 2000.

[52] C. Withrow, “Error Density and Size in Ada Software,” IEEE
Software, vol. 7, no. 1, pp. 26-30, Jan. 1990.

[53] C. Wohlin and P. Runeson, “Defect Content Estimations from
Review Data,” Proc. 20th Int’l Conf. Software Eng., pp. 400-409, Apr.
1998.

[54] C. Wohlin and A. Wesslen, “Understanding Software Defect
Detection in the Personal Software Process,” Proc. Ninth Int’l
Symp. Software Reliability, pp. 49-58, Nov. 1998.

[55] C. Wohlin, “Are Individual Differences in Software Development
Performance Possible to Capture Using a Quantitative Survey?”
Empirical Software Eng., vol. 9, no. 3, pp. 211-228, Sept. 2004.

Chris F. Kemerer received the BS degree from
the Wharton School at the University of
Pennsylvania and the PhD degree from Carne-
gie Mellon University. He is the David M.
Roderick Chair in Information Systems at the
Katz Graduate School of Business at the
University of Pittsburgh. Previously, he was an
associate professor at the Massachusetts In-
stitute of Technology’s Sloan School of Man-
agement. His current research interests include
management and measurement issues in information systems and
software engineering, and the adoption and diffusion of information
technologies. He has published more than 60 papers on these topics,
as well as editing two books. He has served on a number of editorial
boards, including serving as the departmental editor for Management
Science and as the editor-in-chief of Information Systems Research.
He is a member of the IEEE Computer Society and is a past associate
editor of the IEEE Transactions on Software Engineering.

Mark C. Paulk received the MS degree in
computer science from Vanderbilt University
and the PhD degree in industrial engineering
from the University of Pittsburgh. He is a senior
systems scientist in the Institute for Software
Research at Carnegie Mellon University. He led
the team at the Software Engineering Institute
that developed the Capability Maturity Model
for Software and was the coproject editor for

y ISO/IEC 15504:2 (Performing an Assessment).
His research interests are high maturity practices, statistical thinking
for software processes, empirical research into best practices, and
agile methods. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

