Advances in Software Engineering Economics

Progress, Obstacles, and
Opportunities in
Software Engineering
Economuics

Pressing demands from industry suggest more attention
should be focused on this critical area.

) Nearly a decade of Workshops on Information Systems and Eco-

Chris F. Kemerer
nomics (WISE) have examined a wide range of research topics.
These include a number of what could be termed “demand-side” topics, which focus on the
effective use of information technology, such as IT-induced changes to markets, and “supply-
side” topics, which focus on the efficient provision of IT resources. Software engineering economics

(SEE) spans both groups, but it has generally been the most dominant topic within the supply

area. While the economics of hardware have been relatively ignored in the man-

agement research literature, given industry’s ability to continually provide
faster, smaller hardware at ever-decreasing prices, software has been an
entirely different matter. Software costs continue to be significant, and
industry’s understanding of how to reduce them has improved only very
slowly in contrast to hardware. This dilemma has merited a significant
amount of research attention, and the consequent research findings tend to

have important practical applications.

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 63

Software engineering focuses on the production of software,

which is by its very nature a relatively intangible good. Objectifying and

measuring its many dimensions are often challenging to researchers.

Also in contrast to some of the demand-related
topics, SEE research commonly has a significant
technological component to it, since much of the
research is focused on evaluating promising new
technologies or approaches to software development.
This diverges with much demand-side work, which
tends to be closer to traditional economics research.
Therefore it requires some skills and knowledge of
both the software engineering and economics disci-
plines. Accordingly, it has also attracted some
researchers from the software engineering area
within computer science, whose work will also be
reflected in this review, and in the suggestions for
future work. This combination of skill requirements
also tends to make research in this area compara-
tively difficult, and suggests one reason why we
don’t see more research in this important area.

Practitioners are most concerned about under-
standing what aspects of software engineering inno-
vations have worked best and whether they are
applicable to their particular situation. This motiva-
tion also lies at the heart of most SEE research. In
addition, with the huge growth in the packaged
software industry, more attention has been focused
on software as an economic good.

Obstacles to Progress

A number of factors militate against observing
progress in software engineering in general, and soft-
ware engineering economics in particular. Software
engineering focuses on the production of software,
which is by its very nature a relatively intangible
good. Objectifying and measuring its many dimen-
sions are often challenging to researchers. Even in
situations where we have relatively good software-
related artifacts to examine, there may be little evi-
dence to examine concerning the process by which
they were constructed.

64

August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

Even if there were good access to project data,
there is another significant confounding factor. The
number and complexity of applications for software
have grown very rapidly, fueled, in large measure, by
the dramatic improvements in hardware technology.
As hardware decreases in size and increases in per-
formance per dollar, more applications can be justi-
fied. This then creates demand for software. While
this tremendous demand for software has fueled the
fortunes of many software developers and their orga-
nizations, it provides significant challenges to
researchers as we attempt to assess progress in the
delivery of software. Since the applications have
changed as well as the tools, it becomes very difficult
to assess the impacts of these new tools. It may well
be the case that the effect of a new tool is to create a
difference in kind (systems are completed that would
not otherwise be attempted) rather than a difference
in the degree of efficiency with which certain classes
of systems are created.

Much software engineering research has been
focused specifically on assisting teams of software
developers to plan, design, implement, and control
software projects. The success of software engineer-
ing projects needs to be evaluated in terms of the
delivery of a set of functionality assessed on a num-
ber of dimensions, for instance, the application’s
cost, reliability, ease of use, maintainability, etc.
These dimensions have proven notoriously difficult
to measure, even when functionality is relatively
constant. Instead, it is widely believed that applica-
tions have grown in terms of their complexity, and
that what would otherwise be seen as gains are essen-
tially obscured by the greater complexity. For exam-
ple, it might be believed that a measure such as the
“percentage of failed projects” should decline as
progress is made in developing better software
processes. However, this number could easily remain

constant, or even increase if such processes were sim-
ply used to attempt more ambitious projects.

Applying SEE to Practice. Although concrete
evidence of progress is difficult to document, given
the previously referenced difficulties, there are
strong beliefs in the field about some key progress
areas over the last decade. These are areas in which
research subjects have evolved to become more
widely accepted practical approaches, and topics that
formerly merited notice as best practice have now
become merely the professional standard.

Overall, perhaps, the most significant area of
progress is in the notion of software process. While in a
sense much or all of software engineering research can
be seen as illuminating the subject of process, there
has been a tremendous awakening on the part of prac-
tice to this research topic. Practitioners have made
significant changes in how they view software devel-
opment. Early focus on coding, and then later on
whole projects, has broadened toward thinking about
portfolios of projects and the processes by which these
are developed and maintained. For example, even the
market leader, Microsoft, realized that its strategy of
employing small teams of star developers did not
scale up when confronted with the market realities of
developing, marketing, and maintaining integrated
suites of mass-market applications [5].

Much of the credit for this evolution must go to
the Software Engineering Institute’s Capability
Maturity Model, which, despite some controversy in
its details and in the policy decisions surrounding its
implementation, has effected a change in the lan-
guage by which people describe software develop-
ment. By providing a shared framework, much more
effective communication has taken place regarding
the appropriate role for process in software develop-
ment. In addition, empirical evidence is emerging
surrounding the economic value added when advanc-
ing to a higher level of process maturity [8].

A second area is the greater acceptance and use of
measurement in software development practice [11].
Partly in response to market pressures to evaluate
tools and to benchmark against competitive alterna-
tives, and, more recently, as the key component of
process improvement efforts, there has been a notice-
able increase in the measurement of software prod-
ucts and processes. This greater use of measurement
can also be attributed, at least in some part, to
greater awareness of, and confidence in, software
metrics stemming from software engineering eco-
nomics research. Some specific WISE-related metrics
work includes the development of object points [2]
and extensions of function points [9].

Beyond these two general categories of process

and measurement, progress has been made in sub-
stantiating the value of a number of specific
approaches to improving software engineering. For
example, the economics of software reuse have been
well elaborated and validated over the last decade
[10]. The development and use of models for cost
estimation, perhaps the single greatest focus of the
earliest work in software engineering economics,
have progressed greatly and now are standard tools in
well-managed software development environments
[3, 12]. Risk management is another area in which a
significant amount of progress has been made [6].

Another area that has received a considerable
amount of attention from the WISE community is
software evolution and maintenance. Long recognized as
the major element of cost in any true software devel-
opment life cycle, the economics of software mainte-
nance have been addressed both in theory and in
practice [1, 7]. SEE research has focused on estimat-
ing the costs and benefits of investments in reducing
controllable complexity and in promoting initial
software quality.

While the vast majority of the work in software
engineering economics focuses on the supply side, a
new area has taken increased notice of the significant
packaged software market and has begun to look
more carefully at software as an economic good [4].
This work brings to bear traditional econometric
tools to the questions of the value of individual soft-
ware features and of adherence to standards; it also
examines trends in software demand and the quality-
adjusted price of software.

In summary, while its effects are difficult to mea-
sure concretely, research on software engineering
economics has greatly expanded over the past decade
and its likely consequences are manifest in multiple
areas of software development practice.

Challenges and Opportunities

Work in this area will continue to face the same set
of challenges that have confronted it in the past. The
rapid rate of technological change is at variance with
the pace of most research efforts. Practitioners and
researchers alike are often concerned with this dis-
parity. However, some of this concern may be mis-
placed. While there is a significant amount of real
change, there is also a tremendous amount of surface
change that should not be allowed to affect the
progress of research in this area.

Motivated in part by practitioners’ desires for solu-
tions, many of the efforts in software engineering tool
creation come equipped with new labels for what may
be relatively minor differences. This nomenclature
tends to cloud the discussion about the degree to

COMMUNICATIONS OF THE ACM August 1998,/Vol. 41, No. 8 65

which results obtained in one area are relevant to
another. For example, while there has been a tremen-
dous amount of apparent change in the development
of programs, there is a core set of fundamental ideas,
for example, information hiding, that has remained
important.

Within these fundamental ideas lie some concepts
that have had considerable longevity, for example,
within modularity the notions of coupling and cohe-
sion. It is important for both researchers and practi-
tioners to keep this in mind when examining new
software engineering technologies. Researchers
should be clear about the fundamental ideas within
any new technology—technology innovators need to
be explicit about why the new technology is believed
to work and evaluation research should be pegged to
these fundamental ideas, rather than the surface
nomenclature. In this way the value of any research
study should be much easier to communicate to prac-
titioners who could make use of it. This focus should
prevent a certain amount of distraction for researchers
who should focus on problems with long-term and
significant payoffs.

This idea also applies to software engineering eco-
nomics research aside from technology evaluation.
For example, a current practitioner problem may be
stated as the shortage of Java programmers. Clearly,
this is a problem that will be solved by market
forces. What we ought to focus on is the fundamen-
tal and recurring problem of organizations’ long-
term strategies for training and retaining staff
members in emerging technologies. How can orga-
nizations that wish to adopt new technologies best
structure themselves to provide an environment for
individuals with scarce skills that will always be in
high demand? What lessons can be drawn from the
economics contracting literature that would aid
these organizations?

Another continuing challenge in the area of soft-
ware engineering economics is its fundamentally
interdisciplinary nature. Because of the significant
role played by people, software engineering is
already one of the computer science disciplines that
is closest to the social sciences. By focusing on the
economic aspects of software development the
research moves even more in that direction. Work
done in business schools using economics as a disci-
pline needs to have a strong basis in the underlying
technology to assure that pertinent questions are
being asked and that the models used are appropri-
ate. Therefore, this work tends to be closer to engi-
neering than other research conducted in most
business schools.

Despite this confluence of interests, sizable gaps

66 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

remain in practice. For example, computer scientists
too frequently fail to cite relevant work done by
business school researchers that is published in busi-
ness school journals. Similarly, despite current
chronic faculty shortages, business schools too rarely
hire computer scientists for information systems
positions in business schools. These two academic
communities could be doing much more to work
together on research in this area. Joint work would
marry traditional computer science strengths (facil-
ity with the technology and understanding of the
fundamental concepts at work) with business
strengths (measurement, modeling, and access to
industrial research partners). There are synergies that
could be brought to bear on many, if not all, software
engineering economics problems.

REFERENCES
1. Banker, R., Davis, G. and Slaughter, S. Software development practices,

software complexity, and software maintenance effort: A field study.
Manage. Sci. (forthcoming)

. Banker, R.D., Kauffman, R.J. and Kumar, R. An empirical test of
object-based output measurement metrics in a computer-aided software
engineering (CASE) environment. J. Manage. Info. Syst. 8, 3 (1991),
127-150.

. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and
Selby, R. Cost model for future software life cycle processes: COCOMO
2.0. Annals of Software Eng. 1,1 (1995), 57-94.

4. Brynjolfsson, E. and Kemerer, C.F. Network externalities in micro-
computer software: An econometric analysis of the spreadsheet market.
Manage. Sci. 42, 12 (1996), 1627-1647.

5. Cusumano, M. and Selby, R. Microsoft Secrets. The Free Press, New
York, 1995.

6. Dorofee, A.J., Walker, J.A., Alberts, C.J., et al. Continuous Risk Man-
agement Guidebook. Carnegie Mellon University Software Engineering
Institute, Pittsburgh, PA, 1996.

7. Gode, D.K., Barua, A. and Mukhopadhyay, T. On the economics of the
software replacement problem. In Proceedings of the 11th International
Conference on Information Systems, (Copenhagen, Denmark, 1990), pp.
159-170.

. Humphrey, W.S., Snyder, T.R. and Willis, R.R. Software process
improvement at Hughes aircraft. IEEE Software 8, 4 (1991), 11-23.

9. Kemerer, C.F. Reliability of function points measurement: A field
experiment. Commun. ACM 306, 2 (Feb. 1993), 85-97.

10. Lim, W.C. Effects of reuse on quality, productivity, and economics. In
Kemerer, C.F., Ed., Software Project Management: Readings and Cases,
McGraw-Hill (R.D. Irwin), Boston, Mass., 1997.

11. Pfleeger, S.L. Lessons learned in building a corporate metrics program.
IEEE Software 10, 3 (1993) 67-74.

12. Shepperd, M., Schofield, C., and Kitchenham, B. Effort estimation
using analogy. In Proceedings of the 18th International Conference on Soft-
ware Engineering (Berlin, Germany, 1996).

|38}

(3

o]

CHRIS F. KEMERER (ckemerer@katz.business.pitt.edu) is the
David M. Roderick Chaired Professor of Information Systems at the
University of Pittsburgh.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0800 $5.00

